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Intrusion Detection

• Detection and mitigation of cyber-attacks is of crucial 
importance; however, attackers try to stay stealthy 

• Intrusion Detection Systems (IDS) 
• generate alerts when they encounter suspicious activity

• in order to be able to detect novel attacks, 

they must also generate a large number of false alerts

false alerts
IDS

attack alerts
≫ alert investigation  

budget B 
(available manpower, …)

Problem: 
Which alerts to investigate?

?



Alert Prioritization

Alerts

?



Alert Types

Alert types T

t1

t2

t3

t4

Alerts • Alert types T 
• for example, matching different rules in 

an intrusion detection system (e.g., Snort)

• before investigating them, alerts of the 

same type appear equally important

• cumulative distribution Ft of the number 

of false alerts of type t is known


• Attacks A 
• for example, targeting certain machines 

or using certain exploitation techniques

• impact of attack a is La

• probability of attack a raising an alert of 

type t is Ra,t



Alert Types

Alert types T

t1

t2

t3

t4

Alerts Attacks

probability Ra,t

attack a1

attack a2



Alert Prioritization Problem

Alert types T

t1

t2

t3

t4

Alerts
Naïve prioritization

investigate

(using 

budget B)

attack



Alert Prioritization Problem

Alert types T

t1

t2

t3

t4

Alerts
ordering o1 ordering o2 ordering o3

Random choice

…

Problem: 
What is the optimal probability distribution?



Game-Theoretic Model

1. Defender: selects an alert prioritization strategy p, which 
is a probability distribution over possible orderings of T

2. Adversary:  
selects an attack a from the set of possible attacks A 

• Players

• Supposing that the defender uses ordering o ∈ T 
• probability of investigating type k (before exhausting budget B) is 
 
 

• probability of investigating attack a (before exhausting budget B) is

budget B or, in rare instances, until there are no more alert
types left to investigate. Now, consider an alert of type t
that was raised due to an attack. Suppose that type t is the
kth element of the prioritization (i.e., ok = t). Then, this
adversarial alert will be investigated if and only if

Co
k

+

k
X

i=1

ni · Co
i

 B, (1)

where ni, i = 1, . . . , k � 1, is the number of false alerts of
type oi, and nk is the number of false alerts of type ok that
were raised before the adversarial alert. Note that we have to
add cost Co

k

since the defender’s budget must also include
investigating the adversarial alert itself.

As a result, the probability that an adversarial alert of type
ok will be investigated is
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since the defender investigates the alarm if and only if the
numbers of false alerts satisfy Equation (1), and the prob-
ability of generating ni false alerts of type oi is Fo

i

(ni) �
Fo

i

(ni � 1) by definition.
We assume that the defender detects an attack if it investi-

gates any of the alerts raised due to the attack. Consequently,
an attack is detected if the defender does not exhaust its
alert-investigation budget before reaching the highest prior-
ity adversarial alert. Hence, if the set of alert types raised by
the attack is ˆT , then the attack is detected with probability
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Therefore, the probability that the defender detects an at-
tack a 2 A using prioritization o is
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2.2 Payoffs
The adversary’s expected gain from attack a when the de-
fender uses prioritization o is

EG(o, a) = (1� PD(o, a)) ·Ga �Ka, (5)

while the defender’s expected loss from invoking prioritiza-
tion o when the adversary mounts attack a is

EL(o, a) = (1� PD(o, a)) · La. (6)

A mixed strategy for the defender is a probability distribu-
tion over its pure strategies, that is, a probability distribution

tection by carefully timing its attack.

over the possible prioritizations O. We let p
o

denote the
probability that the defender chooses strategy o. Then, the
defender’s expected loss using the mixed strategy p when
the adversary mounts attack a is

X

o2O

p
o

· EG(o, a). (7)

Meanwhile, the adversary’s expected gain is
X

o2O

p
o

· EL(o, a). (8)

2.3 Optimal Prioritization
Following Kerckhoffs’s principle (Kerckhoffs 1883), we as-
sume that an adversary can infer the defender’s strategy
(e.g., can obtain the same software or use the same algo-
rithms as the defender). As a result, the adversary can adapt
its attack to the defender’s strategy. Therefore, we assume
that an adversary will always choose a best-response strat-
egy, which is formally defined as follows.
Definition 1 (Adversary’s Best-Response Strategy). The ad-
versary’s best-response strategies BR(p) against a given
mixed strategy p are the set of attacks that maximize the
adversaries’s expected gain. Formally,

BR(p) = argmax

a2A
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In contrast, the defender cannot know in advance which
attack the adversary will mount. However, the defender can
anticipate that the adversary will choose a best response. As
is typical in the security literature, we consider subgame per-
fect Nash equilibria as our solution concept (Korzhyk et al.
2011). As such, we will refer to the defender’s equilibrium
strategies as optimal strategies for the remainder of the pa-
per.
Definition 2 (Defender’s Optimal Strategy). A mixed strat-
egy is an optimal strategy if it minimizes the defender’s ex-
pected loss given that an adversary will always choose a best
response with tie-breaking in favor of the defender. For-
mally, a mixed strategy p

⇤ is optimal if it maximizes

max

p,a2BR(p)
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Note that the effect of the tie-breaking rule is negligible in
practice. The only purpose it serves is to avoid pathological
mathematical cases where no optimal strategy would exist.

3 Analysis
Given the model design, we now derive its analytic aspects,
with a particular focus on its computational components.
First, in Section 3.1, we prove that finding an optimal pri-
oritization is a computationally hard problem. Then, in Sec-
tion 3.2, we show how to compute the detection probability
PD(o, a) in polynomial time for a given prioritization o and
attack a. Finally, in Section 3.3, we formulate the problem of
finding an optimal prioritization as a set of linear programs
and introduce a column-generation approach that works ex-
ceptionally well in practice.
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Optimal Alert Prioritization

• Adversary’s gain and defender’s loss 
• adversary’s expected gain:


• defender’s expected loss:


• Solution concept: strong Stackelberg equilibrium 
• adversary’s best responses:


• optimal prioritization strategy: 

Challenge: finding an optimal probability 
distribution over a set of exponential size!

Theorem: Finding an optimal alert prioritization 
strategy is an NP-hard problem.
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A mixed strategy for the defender is a probability distribu-
tion over its pure strategies, that is, a probability distribution
over the possible prioritizations O. We let p
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denote the
probability that the defender chooses strategy o. Then, the
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2.3 Optimal Prioritization
Following Kerckhoffs’s principle (Kerckhoffs 1883), we as-
sume that an adversary can infer the defender’s strategy
(e.g., can obtain the same software or use the same algo-
rithms as the defender). As a result, the adversary can adapt
its attack to the defender’s strategy. Therefore, we assume
that an adversary will always choose a best-response strat-
egy, which is formally defined as follows.
Definition 1 (Adversary’s Best-Response Strategy). The ad-
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mixed strategy p are the set of attacks that maximize the
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In contrast, the defender cannot know in advance which
attack the adversary will mount. However, the defender can
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2011). As such, we will refer to the defender’s equilibrium
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and introduce a column-generation approach that works ex-
ceptionally well in practice.

budget B or, in rare instances, until there are no more alert
types left to investigate. Now, consider an alert of type t
that was raised due to an attack. Suppose that type t is the
kth element of the prioritization (i.e., ok = t). Then, this
adversarial alert will be investigated if and only if

Co
k

+

k
X

i=1

ni · Co
i

 B, (1)

where ni, i = 1, . . . , k � 1, is the number of false alerts of
type oi, and nk is the number of false alerts of type ok that
were raised before the adversarial alert. Note that we have to
add cost Co

k

since the defender’s budget must also include
investigating the adversarial alert itself.

As a result, the probability that an adversarial alert of type
ok will be investigated is

PI (o, k) =
X

n:
C

o

k

+
P

k

i=1 n
i

·C
o

i

B

"

�

F ⇤
o
k

(nk)� F ⇤
o
k

(nk � 1)

�

·
k�1
Y

i=1

(Fo
i

(ni)� Fo
i

(ni � 1))

#

(2)

since the defender investigates the alarm if and only if the
numbers of false alerts satisfy Equation (1), and the prob-
ability of generating ni false alerts of type oi is Fo

i

(ni) �
Fo

i

(ni � 1) by definition.
We assume that the defender detects an attack if it investi-

gates any of the alerts raised due to the attack. Consequently,
an attack is detected if the defender does not exhaust its
alert-investigation budget before reaching the highest prior-
ity adversarial alert. Hence, if the set of alert types raised by
the attack is ˆT , then the attack is detected with probability

PI
⇣

o,min

n

i 2 {1, . . . , |T |}
�

�

�

oi 2 ˆT
o⌘

. (3)

Therefore, the probability that the defender detects an at-
tack a 2 A using prioritization o is

PD(o,a) =
X

T̂✓T

Y

t2T̂

Ra,t

Y

t2T\T̂

(1�Ra,t)PI
⇣

o,min{i | oi 2 ˆT}
⌘

.

(4)

2.2 Payoffs
The adversary’s expected gain from attack a when the de-
fender uses prioritization o is

EG(p, a) =
X

o2O

p
o

· (1� PD(o, a)) ·Ga �Ka, (5)

while the defender’s expected loss from invoking prioritiza-
tion o when the adversary mounts attack a is

EL(p, a) =
X

o2O

p
o

· (1� PD(o, a)) · La. (6)

tection by carefully timing its attack.

A mixed strategy for the defender is a probability distribu-
tion over its pure strategies, that is, a probability distribution
over the possible prioritizations O. We let p

o

denote the
probability that the defender chooses strategy o. Then, the
adversary’s expected gain from mounting attack a when the
defender uses mixed strategy p is

X

o2O

p
o

· EG(o, a). (7)

Meanwhile, the defender’s expected loss is
X

o2O

p
o

· EL(o, a). (8)

2.3 Optimal Prioritization
Following Kerckhoffs’s principle (Kerckhoffs 1883), we as-
sume that an adversary can infer the defender’s strategy
(e.g., can obtain the same software or use the same algo-
rithms as the defender). As a result, the adversary can adapt
its attack to the defender’s strategy. Therefore, we assume
that an adversary will always choose a best-response strat-
egy, which is formally defined as follows.
Definition 1 (Adversary’s Best-Response Strategy). The ad-
versary’s best-response strategies BR(p) against a given
mixed strategy p are the set of attacks that maximize the
adversaries’s expected gain. Formally,

BR(p) = argmax

a2A
EG(p, a) (9)

In contrast, the defender cannot know in advance which
attack the adversary will mount. However, the defender can
anticipate that the adversary will choose a best response. As
is typical in the security literature, we consider subgame per-
fect Nash equilibria as our solution concept (Korzhyk et al.
2011). As such, we will refer to the defender’s equilibrium
strategies as optimal strategies for the remainder of the pa-
per.
Definition 2 (Defender’s Optimal Strategy). A mixed strat-
egy is an optimal strategy if it minimizes the defender’s ex-
pected loss given that an adversary will always choose a best
response with tie-breaking in favor of the defender. For-
mally, a mixed strategy p

⇤ is optimal if it minimizes
min

p,a2BR(p)
EL(p, a) (10)
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3 Analysis
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is typical in the security literature, we consider subgame per-
fect Nash equilibria as our solution concept (Korzhyk et al.
2011). As such, we will refer to the defender’s equilibrium
strategies as optimal strategies for the remainder of the pa-
per.
Definition 2 (Defender’s Optimal Strategy). A mixed strat-
egy is an optimal strategy if it minimizes the defender’s ex-
pected loss given that an adversary will always choose a best
response with tie-breaking in favor of the defender. For-
mally, a mixed strategy p

⇤ is optimal if it minimizes
min

p,a2BR(p)
EL(p, a) (10)
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and introduce a column-generation approach that works ex-
ceptionally well in practice.

budget B or, in rare instances, until there are no more alert
types left to investigate. Now, consider an alert of type t
that was raised due to an attack. Suppose that type t is the
kth element of the prioritization (i.e., ok = t). Then, this
adversarial alert will be investigated if and only if
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since the defender investigates the alarm if and only if the
numbers of false alerts satisfy Equation (1), and the prob-
ability of generating ni false alerts of type oi is Fo
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(ni � 1) by definition.
We assume that the defender detects an attack if it investi-

gates any of the alerts raised due to the attack. Consequently,
an attack is detected if the defender does not exhaust its
alert-investigation budget before reaching the highest prior-
ity adversarial alert. Hence, if the set of alert types raised by
the attack is ˆT , then the attack is detected with probability
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2.2 Payoffs
The adversary’s expected gain from attack a when the de-
fender uses prioritization o is

EG(o, a) = (1� PD(o, a)) ·Ga �Ka, (5)

while the defender’s expected loss from invoking prioritiza-
tion o when the adversary mounts attack a is

EL(o, a) = (1� PD(o, a)) · La. (6)

A mixed strategy for the defender is a probability distribu-
tion over its pure strategies, that is, a probability distribution

tection by carefully timing its attack.

over the possible prioritizations O. We let p
o

denote the
probability that the defender chooses strategy o. Then, the
defender’s expected loss using the mixed strategy p when
the adversary mounts attack a is
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Meanwhile, the adversary’s expected gain is
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2.3 Optimal Prioritization
Following Kerckhoffs’s principle (Kerckhoffs 1883), we as-
sume that an adversary can infer the defender’s strategy
(e.g., can obtain the same software or use the same algo-
rithms as the defender). As a result, the adversary can adapt
its attack to the defender’s strategy. Therefore, we assume
that an adversary will always choose a best-response strat-
egy, which is formally defined as follows.
Definition 1 (Adversary’s Best-Response Strategy). The ad-
versary’s best-response strategies BR(p) against a given
mixed strategy p are the set of attacks that maximize the
adversaries’s expected gain. Formally,
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In contrast, the defender cannot know in advance which
attack the adversary will mount. However, the defender can
anticipate that the adversary will choose a best response. As
is typical in the security literature, we consider subgame per-
fect Nash equilibria as our solution concept (Korzhyk et al.
2011). As such, we will refer to the defender’s equilibrium
strategies as optimal strategies for the remainder of the pa-
per.
Definition 2 (Defender’s Optimal Strategy). A mixed strat-
egy is an optimal strategy if it minimizes the defender’s ex-
pected loss given that an adversary will always choose a best
response with tie-breaking in favor of the defender. For-
mally, a mixed strategy p

⇤ is optimal if it maximizes
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Note that the effect of the tie-breaking rule is negligible in
practice. The only purpose it serves is to avoid pathological
mathematical cases where no optimal strategy would exist.

3 Analysis
Given the model design, we now derive its analytic aspects,
with a particular focus on its computational components.
First, in Section 3.1, we prove that finding an optimal pri-
oritization is a computationally hard problem. Then, in Sec-
tion 3.2, we show how to compute the detection probability
PD(o, a) in polynomial time for a given prioritization o and
attack a. Finally, in Section 3.3, we formulate the problem of
finding an optimal prioritization as a set of linear programs
and introduce a column-generation approach that works ex-
ceptionally well in practice.
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egy, which is formally defined as follows.
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mixed strategy p are the set of attacks that maximize the
adversaries’s expected gain. Formally,
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anticipate that the adversary will choose a best response. As
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fect Nash equilibria as our solution concept (Korzhyk et al.
2011). As such, we will refer to the defender’s equilibrium
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Note that the effect of the tie-breaking rule is negligible in
practice. The only purpose it serves is to avoid pathological
mathematical cases where no optimal strategy would exist.

3 Analysis
Given the model design, we now derive its analytic aspects,
with a particular focus on its computational components.
First, in Section 3.1, we prove that finding an optimal pri-
oritization is a computationally hard problem. Then, in Sec-
tion 3.2, we show how to compute the detection probability
PD(o, a) in polynomial time for a given prioritization o and
attack a. Finally, in Section 3.3, we formulate the problem of
finding an optimal prioritization as a set of linear programs
and introduce a column-generation approach that works ex-
ceptionally well in practice.
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7: end for
8: end for
9: Return PD(o, a) := PD(o, a, 1, B)

depends only on the input and previously computed values
PD(o, a, b0, i + 1), b0 < b. Finally, the algorithm out-
puts PD(o, a, B, 1), which is equal to PD(o, a) by defi-
nition. Since the algorithm iterates over all combinations of
b 2 [0, B] and i 2 [1, |T |], and computes each PD(o, a, b, i)
using bb/Co

i

c  B steps, the running time of the algorithm
is clearly O(B2 · |T |).

3.3 Finding an Optimal Prioritization
A natural solution approach for the problem of alert prior-
itization is by using multiple linear programs. Specifically,
for each attack a 2 A, we solve the following linear pro-
gram for p, a probability distribution over possible prioriti-
zations o 2 O, which we denote by LP (a):

max
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where D(o, a0) = [(1�PD(o, a))Ga�(1�PD(o, a0))Ga0
]

and � (Ka0
) = Ka �Ka0 . Once each LP (a) is solved, we

can choose the solution p

⇤ from these which minimizes the
defender’s expected loss.

The key challenge for each LP is that the set of possible
prioritizations O is exponential, making this intractable to
represent, let alone solve. We propose to address this chal-
lenge using column generation. Specifically, we start with
a small subset of prioritizations ¯O. Let y( ¯O) be the opti-
mal dual solution of LP (13) for a fixed subset of prioritiza-
tions ¯O, with y( ¯O, a0) denoting the component of the dual
solution corresponding to attack strategy a0 2 A. In each
iteration of the column generation algorithm, we aim to find
a new prioritization o 2 O to add to ¯O that maximizes re-
duced cost c̄(o), where

c̄(o) = PD(o, a) +
X

a02A

y( ¯O, a0)D(o, a0). (14)

Once we find that max

o2O c̄(o)  0, the solution of the LP
for a restricted set of prioritizations ¯O generated so far is
optimal. Otherwise, we repeat with ¯O =

¯O [ {o⇤}, where
o

⇤ 2 argmax

o

c̄(o).

Finally, we discuss the problem of finding prioritizations
that maximize reduced cost. Since the number of possible
prioritizations |O| is exponential in the number of alert types
|T |, exhaustive search is infeasible for larger problem in-
stances. In fact, using an argument similar to the one used in
the proof of Theorem 1, it can be shown that finding a cost-
maximizing prioritization is an NP-hard problem in general.

Algorithm 2 Greedy Column Generation
Input: prioritization game, reduced cost function c̄

1: o ;
2: while 9 t 2 T \ o do
3: o o+ argmaxt2T\o c̄(o+ t)
4: end while
5: Return o

To generate near-optimal columns in practice, we propose
Algorithm 2, a polynomial-time greedy algorithm. For this
algorithm, we generalize our model to consider truncated
prioritizations o, which have less than |T | elements. Specif-
ically, given a prioritization o of arbitrary length (i.e., a vec-
tor of at most |T | alert types), the defender will investigate
alert types in o one-by-one (the same way as in the original
definition), but will stop investigating after the last element
of o, even if the remaining budget is greater than zero.

Now, we can formulate a greedy algorithm as follows.
First, begin with an empty prioritization vector o = ;. Next,
add alert types to the end of the vector one-by-one (i.e.,
o  o + t). In each iteration, choose an alert type t that
leads to maximal increase in reduced cost. In the follow-
ing section, we demonstrate using numerical results that this
algorithm performs exceptionally well in practice.

4 Numerical Results
In this section, we numerically evaluate the proposed
column-generation approach with Algorithm 2 using syn-
thetic and real-world datasets. Our evaluation will focus on
two metrics: 1) how close to optimal the strategies obtained
using our approach are in terms of the defender’s expected
loss and 2) the running time of our approach. To compute
optimal solutions, we use the linear programs LP (13) with
the full sets of prioritizations O.



Finding an Optimal Alert Prioritization Strategy
• Linear-programming based formulation 

• for each attack a ∈ A, solve


• output the solution that attains the lowest loss

since the defender will detect attack a if and only if it is
either 1) detected using alert type oi or 2) not detected us-
ing alert type oi but detected using a lower-priority type.
Clearly, the probability of the former can be computed the
same way as for alert type o|T | (see Equation (11)). To
compute the probability of the latter, we iterate over pos-
sible numbers j of false alerts (we do not have to con-
sider j > bb/Co

i

c since the defender exhausts its budget
in those cases). For each number j, we multiply the prob-
ability of having that many false alerts, which is equal to
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(j � 1) by definition, with the probability that
the defender detects the attack using the remaining budget
and alert types, which is equal to PD(o, a, b�j ·Co
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, i+1).
Now, we can prove the correctness of Algorithm 1. First,

the algorithm computes PD(o, a, b, |T |) for every b 2 [0, B]

using Equation (11). Note that this is possible since Equa-
tion (11) depends only on the input of the algorithm. Sec-
ond, the algorithm iterates i backwards from |T | � 1 to
1, and computes PD(o, a, b, i) for b 2 [0, B] using Equa-
tion (12). Note that this is possible since Equation (11)
depends only on the input and previously computed values
PD(o, a, b0, i + 1), b0 < b. Finally, the algorithm out-
puts PD(o, a, B, 1), which is equal to PD(o, a) by defi-
nition. Since the algorithm iterates over all combinations of
b 2 [0, B] and i 2 [1, |T |], and computes each PD(o, a, b, i)
using bb/Co

i

c  B steps, the running time of the algorithm
is clearly O(B2 · |T |).
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that maximize reduced cost. Since the number of possible
prioritizations |O| is exponential in the number of alert types
|T |, exhaustive search is infeasible for larger problem in-
stances. In fact, using an argument similar to the one used in
the proof of Theorem 1, it can be shown that finding a cost-
maximizing prioritization is an NP-hard problem in general.

Algorithm 2 Greedy Column Generation
Input: prioritization game, reduced cost function c̄

1: o ;
2: while 9 t 2 T \ o do
3: o o+ argmaxt2T\o c̄(o+ t)
4: end while
5: Return o

To generate near-optimal columns in practice, we propose
Algorithm 2, a polynomial-time greedy algorithm. For this
algorithm, we generalize our model to consider truncated
prioritizations o, which have less than |T | elements. Specif-
ically, given a prioritization o of arbitrary length (i.e., a vec-
tor of at most |T | alert types), the defender will investigate
alert types in o one-by-one (the same way as in the original
definition), but will stop investigating after the last element
of o, even if the remaining budget is greater than zero.

Now, we can formulate a greedy algorithm as follows.
First, begin with an empty prioritization vector o = ;. Next,
add alert types to the end of the vector one-by-one (i.e.,
o  o + t). In each iteration, choose an alert type t that
leads to maximal increase in reduced cost. In the follow-
ing section, we demonstrate using numerical results that this
algorithm performs exceptionally well in practice.

4 Numerical Results
In this section, we numerically evaluate the proposed
column-generation approach with Algorithm 2 using syn-
thetic and real-world datasets. Our evaluation will focus on
two metrics: 1) how close to optimal the strategies obtained
using our approach are in terms of the defender’s expected
loss and 2) the running time of our approach. To compute
optimal solutions, we use the linear programs LP (13) with
the full sets of prioritizations O.

4.1 Synthetic Datasets
First, we evaluate our solution approach using randomly
generated instances of the alert-prioritization game. We con-
trol the size of the randomly-generated instances using a size
parameter N . For a given N , we generate an instance of the
alert-prioritization game as follows:
• let T = {1, . . . , N}, A = {1, . . . , N}, and B = 5 · |T |;
• for each a 2 A, Da and Ga are drawn uniformly at ran-

dom from [0.5, 1];
• for each a 2 A, Ka = 0;
• for each t 2 T , Ct = 1;
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alert-prioritization game as follows:
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• for each a 2 A, Da and Ga are drawn uniformly at ran-

dom from [0.5, 1];
• for each a 2 A, Ka = 0;
• for each t 2 T , Ct = 1;

• Polynomial-time column generation approach

since the defender will detect attack a if and only if it is
either 1) detected using alert type oi or 2) not detected us-
ing alert type oi but detected using a lower-priority type.
Clearly, the probability of the former can be computed the
same way as for alert type o|T | (see Equation (11)). To
compute the probability of the latter, we iterate over pos-
sible numbers j of false alerts (we do not have to con-
sider j > bb/Co

i

c since the defender exhausts its budget
in those cases). For each number j, we multiply the prob-
ability of having that many false alerts, which is equal to
Fo

i

(j) � Fo
i

(j � 1) by definition, with the probability that
the defender detects the attack using the remaining budget
and alert types, which is equal to PD(o, a, b�j ·Co

i

, i+1).
Now, we can prove the correctness of Algorithm 1. First,

the algorithm computes PD(o, a, b, |T |) for every b 2 [0, B]

using Equation (11). Note that this is possible since Equa-
tion (11) depends only on the input of the algorithm. Sec-
ond, the algorithm iterates i backwards from |T | � 1 to
1, and computes PD(o, a, b, i) for b 2 [0, B] using Equa-
tion (12). Note that this is possible since Equation (11)
depends only on the input and previously computed values
PD(o, a, b0, i + 1), b0 < b. Finally, the algorithm out-
puts PD(o, a, B, 1), which is equal to PD(o, a) by defi-
nition. Since the algorithm iterates over all combinations of
b 2 [0, B] and i 2 [1, |T |], and computes each PD(o, a, b, i)
using bb/Co

i

c  B steps, the running time of the algorithm
is clearly O(B2 · |T |).
3.3 Finding an Optimal Prioritization
A natural solution approach for the problem of alert prior-
itization is by using multiple linear programs. Specifically,
for each attack a 2 A, we solve the following linear pro-
gram for p, a probability distribution over possible prioriti-
zations o 2 O, which we denote by LP (a):
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where D(o, a0) = [(1�PD(o, a))Ga�(1�PD(o, a0))Ga0
]

and � (Ka0
) = Ka �Ka0 . Once each LP (a) is solved, we

can choose the solution p

⇤ from these which minimizes the
defender’s expected loss.

The key challenge for each LP is that the set of possible
prioritizations O is exponential, making this intractable to
represent, let alone solve. We propose to address this chal-
lenge using column generation. Specifically, we start with
a small subset of prioritizations ¯O. Let y( ¯O) be the opti-
mal dual solution of LP (13) for a fixed subset of prioritiza-
tions ¯O, with y( ¯O, a0) denoting the component of the dual
solution corresponding to attack strategy a0 2 A. In each
iteration of the column generation algorithm, we aim to find
a new prioritization o 2 O to add to ¯O that maximizes re-
duced cost c̄(o), where

c̄(o) = PD(o, a) +
X

a02A

y( ¯O, a0)D(o, a0). (14)

Once we find that max

o2O c̄(o)  0, the solution of the LP
for a restricted set of prioritizations ¯O generated so far is
optimal. Otherwise, we repeat with ¯O =

¯O [ {o⇤}, where
o

⇤ 2 argmax

o

c̄(o).
Finally, we discuss the problem of finding prioritizations

that maximize reduced cost. Since the number of possible
prioritizations |O| is exponential in the number of alert types
|T |, exhaustive search is infeasible for larger problem in-
stances. In fact, using an argument similar to the one used in
the proof of Theorem 1, it can be shown that finding a cost-
maximizing prioritization is an NP-hard problem in general.

Algorithm 2 Greedy Column Generation
Input: prioritization game, reduced cost function c̄

1: o ;
2: while 9 t 2 T \ o do
3: o o+ argmaxt2T\o c̄(o+ t)
4: end while
5: Return o

To generate near-optimal columns in practice, we propose
Algorithm 2, a polynomial-time greedy algorithm. For this
algorithm, we generalize our model to consider truncated
prioritizations o, which have less than |T | elements. Specif-
ically, given a prioritization o of arbitrary length (i.e., a vec-
tor of at most |T | alert types), the defender will investigate
alert types in o one-by-one (the same way as in the original
definition), but will stop investigating after the last element
of o, even if the remaining budget is greater than zero.

Now, we can formulate a greedy algorithm as follows.
First, begin with an empty prioritization vector o = ;. Next,
add alert types to the end of the vector one-by-one (i.e.,
o  o + t). In each iteration, choose an alert type t that
leads to maximal increase in reduced cost. In the follow-
ing section, we demonstrate using numerical results that this
algorithm performs exceptionally well in practice.

4 Numerical Results
In this section, we numerically evaluate the proposed
column-generation approach with Algorithm 2 using syn-
thetic and real-world datasets. Our evaluation will focus on
two metrics: 1) how close to optimal the strategies obtained
using our approach are in terms of the defender’s expected
loss and 2) the running time of our approach. To compute
optimal solutions, we use the linear programs LP (13) with
the full sets of prioritizations O.

4.1 Synthetic Datasets
First, we evaluate our solution approach using randomly
generated instances of the alert-prioritization game. We con-
trol the size of the randomly-generated instances using a size
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the proof of Theorem 1, it can be shown that finding a cost-
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tor of at most |T | alert types), the defender will investigate
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using our approach are in terms of the defender’s expected
loss and 2) the running time of our approach. To compute
optimal solutions, we use the linear programs LP (13) with
the full sets of prioritizations O.
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First, we evaluate our solution approach using randomly
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a small subset of prioritizations ¯O. Let y( ¯O) be the opti-
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that maximize reduced cost. Since the number of possible
prioritizations |O| is exponential in the number of alert types
|T |, exhaustive search is infeasible for larger problem in-
stances. In fact, using an argument similar to the one used in
the proof of Theorem 1, it can be shown that finding a cost-
maximizing prioritization is an NP-hard problem in general.
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1: o ;
2: while 9 t 2 T \ o do
3: o o+ argmaxt2T\o c̄(o+ t)
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5: Return o

To generate near-optimal columns in practice, we propose
Algorithm 2, a polynomial-time greedy algorithm. For this
algorithm, we generalize our model to consider truncated
prioritizations o, which have less than |T | elements. Specif-
ically, given a prioritization o of arbitrary length (i.e., a vec-
tor of at most |T | alert types), the defender will investigate
alert types in o one-by-one (the same way as in the original
definition), but will stop investigating after the last element
of o, even if the remaining budget is greater than zero.

Now, we can formulate a greedy algorithm as follows.
First, begin with an empty prioritization vector o = ;. Next,
add alert types to the end of the vector one-by-one (i.e.,
o  o + t). In each iteration, choose an alert type t that
leads to maximal increase in reduced cost. In the follow-
ing section, we demonstrate using numerical results that this
algorithm performs exceptionally well in practice.

4 Numerical Results
In this section, we numerically evaluate the proposed
column-generation approach with Algorithm 2 using syn-
thetic and real-world datasets. Our evaluation will focus on
two metrics: 1) how close to optimal the strategies obtained
using our approach are in terms of the defender’s expected
loss and 2) the running time of our approach. To compute
optimal solutions, we use the linear programs LP (13) with
the full sets of prioritizations O.

where

(i.e., reduced cost function)

exponential number 
of possible orderings

Problem: Finding an improving column (i.e., ordering) is an NP-hard problem.
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• for each t 2 T and a 2 A: with probability 2
3 , Ra,t = 0,

and with probability 1
3 , Ra,t is drawn uniformly at random

from [0, 1];
• for each t 2 T , Ft follows a Poisson distribution whose

mean is drawn uniformly at random from [5, 15], and F ⇤
t

follows a Poisson distribution whose mean is half of the
mean of Ft.
For each size N , we generated 50 random instances,

and plotted the averages of the expected losses and running
times over these 50 instances. To compute the probabilities
PD(o, a), we used the polynomial-time Algorithm 1.
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Figure 1: Defender’s expected loss in the synthetic instances
with optimal strategies ( ) and with strategies computed
using greedy column generation (Algorithm 2) ( ).

Figure 1 compares the strategies found using our greedy
column-generation approach ( ) to optimal ones ( ). We
can see that the strategies are close to each other in terms of
expected loss, even for larger problem instances.

Figure 2 compares the running time required to solve the
linear programs (13) with full sets of prioritizations O ( )
to that with our greedy column-generation algorithm ( ).
For N > 3, our column-generation approach is clearly su-
perior. For example, in the case N = 7, the average running
time is over 9 minutes with full sets of prioritizations, while
it is less than 17 seconds with Algorithm 2.

4.2 Real-World Dataset
Next, we evaluated our solution approach in a real set-
ting. To do so, we worked with five consecutive week-
days of access logs during 2016 from the electronic medi-
cal record (EMR) system, StarPanel (Giuse, Williams, and
Giuse 2010), in place at Vanderbilt University Medical Cen-
ter – a system that is well ingrained in clinical operations
with over 25 years of continuous use. This study was ap-
proved by the medical center’s institutional review board.

In preparation for this study, we integrated the EMR sys-
tem with human-resources data to document i) which med-
ical department each system user was affiliated with, ii)
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Figure 2: Running time of the linear programs with full sets
of prioritizations ( ) and with greedy column generation
(Algorithm 2) ( ). Please note the logarithmic scale on the
vertical axis.

which patients were also employees, and iii) home residen-
tial information for each system user. The resulting data
was then subject to an explanation-based auditing system
(EBAS) (Fabbri and LeFevre 2011; 2013) to annotate the
access logs for six types of alerts: EMR user and patient 1)
have the same surname, 2) are coworkers in the same de-
partment of the medical center, 3) have residential addresses
within 0.25 miles, 4) have department tags related to “Pri-
mary Care Physicians,” 5) have department tags related to
“Pediatrics Housestaff,” and 6) have department tags related
to “Internal Medicine.”

During this week, there were 8,481,767 accesses made by
14,531 users to 161,426 patient records, leading to a total
of 863,989 alerts. To ensure that finding optimal strategies
is numerically tractable, we restricted our analysis to three
departments and a random sample of 12 patients. The com-
plete description of the dataset used in our experiments can
be found in the Supplementary Material.

First, we estimated the distribution of the number of false
alerts for each alert type. Since most of the alerts on each
workday are generated in the time interval between 8am and
4pm, the detection problem is by far the most challenging
during these time intervals. Consequently, we focused our
analysis on the numbers of false alert generated between
8am and 4pm. Table 2 shows the actual numbers for each
workday and alert type. Based on these numbers, we ap-
proximated the actual probability distributions with Poisson
distributions, which we then used as Ft in our model.

Second, we selected a random sample of 12 patients, and
determined which alert types may be generated by accessing
their records. Table 3 shows the occurrence of alerts for each
patient (i.e., attack in our model) and alert type. We then
used these values as Ra,t in our solution approach. Note
that we limited the size of the problem to ensure that we can
compute the optimal strategies, which we use as baselines to
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to that with our greedy column-generation algorithm ( ).
For N > 3, our column-generation approach is clearly su-
perior. For example, in the case N = 7, the average running
time is over 9 minutes with full sets of prioritizations, while
it is less than 17 seconds with Algorithm 2.
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which patients were also employees, and iii) home residen-
tial information for each system user. The resulting data
was then subject to an explanation-based auditing system
(EBAS) (Fabbri and LeFevre 2011; 2013) to annotate the
access logs for six types of alerts: EMR user and patient 1)
have the same surname, 2) are coworkers in the same de-
partment of the medical center, 3) have residential addresses
within 0.25 miles, 4) have department tags related to “Pri-
mary Care Physicians,” 5) have department tags related to
“Pediatrics Housestaff,” and 6) have department tags related
to “Internal Medicine.”

During this week, there were 8,481,767 accesses made by
14,531 users to 161,426 patient records, leading to a total
of 863,989 alerts. To ensure that finding optimal strategies
is numerically tractable, we restricted our analysis to three
departments and a random sample of 12 patients. The com-
plete description of the dataset used in our experiments can
be found in the Supplementary Material.

First, we estimated the distribution of the number of false
alerts for each alert type. Since most of the alerts on each
workday are generated in the time interval between 8am and
4pm, the detection problem is by far the most challenging
during these time intervals. Consequently, we focused our
analysis on the numbers of false alert generated between
8am and 4pm. Table 2 shows the actual numbers for each
workday and alert type. Based on these numbers, we ap-
proximated the actual probability distributions with Poisson
distributions, which we then used as Ft in our model.

Second, we selected a random sample of 12 patients, and
determined which alert types may be generated by accessing
their records. Table 3 shows the occurrence of alerts for each
patient (i.e., attack in our model) and alert type. We then
used these values as Ra,t in our solution approach. Note
that we limited the size of the problem to ensure that we can
compute the optimal strategies, which we use as baselines to

Running TimeDefender’s Loss

D
ef

en
de

r’s
 e

xp
ec

te
d 

lo
ss

Ru
nn

in
g 

tim
e 

[s
]

Number of attack and alert types Number of attack and alert types
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Real-World Dataset:  
Electronic Medical Record System Alerts

• Access logs from the electronic medical record (EMR) 
system in place at Vanderbilt University Medical Center  
• integrated with human-resources data to document medical department 

affiliation, employment information, and home addresses
patient  
record 1

patient  
record 2

patient 

record 3

… Alert types T

1. same surname

2. coworkers

3. home within 0.25 miles

4. …      5. …      6. …

Explanation Based 
Auditing System [1]

[1] Fabbri, D., and LeFevre, K. 2013. Explaining accesses to electronic medical records using 
diagnosis information. Journal of the American Medical Informatics Association 20(1):52–60. 
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Numerical Results - Real-World Dataset

Table 2: Numbers of False Alerts
Alert type 1 Alert type 2 Alert type 3 Alert type 4 Alert type 5 Alert type 6 Sum

Day 1 2467 2544 2671 4340 3451 6152 21625
Day 2 2434 2072 2446 5002 4277 6304 22535
Day 3 2495 2538 2418 4192 3491 5461 20595
Day 4 3175 2842 2366 3745 3181 4920 20229
Day 5 2923 2597 2641 3064 2487 4280 17992
Sum 13494 12593 12542 20343 16887 27117 102976
Average 2698.8 2518.6 2508.4 4068.6 3377.4 5423.4

Table 3: Alert Types for Each Patient
Alert type 1 Alert type 2 Alert type 3 Alert type 4 Alert type 5 Alert type 6

Patient 1 0 0 1 0 0 0
Patient 2 1 1 0 0 0 0
Patient 3 0 0 0 1 0 0
Patient 4 0 0 0 1 1 1
Patient 5 1 1 0 0 0 0
Patient 6 1 1 0 0 0 0
Patient 7 0 0 0 0 1 1
Patient 8 0 0 0 1 1 1
Patient 9 0 0 0 0 1 1
Patient 10 1 1 0 0 0 0
Patient 11 0 0 0 1 1 1
Patient 12 1 1 0 0 0 0

evaluate our proposed algorithm.
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Figure 3: Defender’s expected loss in the real-world dataset
with optimal strategies ( ) and with strategies computed
using greedy column generation (Algorithm 2) ( ).

Figure 3 compares the strategies found using our greedy
column-generation approach ( ) to optimal ones ( ) for
various budget values B. We can see that our algorithm per-
forms exceptionally well as the defender’s expected loss is
very close to optimal in all cases.

5 Conclusion
The prioritization of alerts is of crucial importance to the ef-
fectiveness of intrusion and misuse detection. Even though
considerable research has been performed in this area, there
has been no investigation into strategic adversaries to the
best of our knowledge. In this work, we modeled strate-
gic adversaries, who may adapt to the prioritization chosen
the defender, as a Stackelberg security game. We showed
that finding an optimal prioritization against strategic ad-
versaries is a computationally hard problem, and we have
proposed a column-generation based approach, as well as a
greedy column-generation algorithm, for solving this prob-
lem in practice. Using numerical results, we have demon-
strated that our solution approach performs well in practice
with respect to both expected losses and running time.

There are multiple natural future research directions. In
this paper, we have shown using numerical results that Algo-
rithm 2 performs very well in practice. However, it remains
an open question if this algorithm – or any other polynomial-
time algorithm – can achieve a constant approximation ratio
for reduced cost. As another direction, the effectiveness of
alert prioritization could be further increased by consider-
ing multiple adversary types, with different attack costs and
gains. This extension could be modeled most naturally as a
Bayesian Stackelberg game.
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Figure 3: Defender’s expected loss in the real-world dataset
with optimal strategies ( ) and with strategies computed
using greedy column generation (Algorithm 2) ( ).

Figure 3 compares the strategies found using our greedy
column-generation approach ( ) to optimal ones ( ) for
various budget values B. We can see that our algorithm per-
forms exceptionally well as the defender’s expected loss is
very close to optimal in all cases.

5 Conclusion
The prioritization of alerts is of crucial importance to the ef-
fectiveness of intrusion and misuse detection. Even though
considerable research has been performed in this area, there
has been no investigation into strategic adversaries to the
best of our knowledge. In this work, we modeled strate-
gic adversaries, who may adapt to the prioritization chosen
the defender, as a Stackelberg security game. We showed
that finding an optimal prioritization against strategic ad-
versaries is a computationally hard problem, and we have
proposed a column-generation based approach, as well as a
greedy column-generation algorithm, for solving this prob-
lem in practice. Using numerical results, we have demon-
strated that our solution approach performs well in practice
with respect to both expected losses and running time.

There are multiple natural future research directions. In
this paper, we have shown using numerical results that Algo-
rithm 2 performs very well in practice. However, it remains
an open question if this algorithm – or any other polynomial-
time algorithm – can achieve a constant approximation ratio
for reduced cost. As another direction, the effectiveness of
alert prioritization could be further increased by consider-
ing multiple adversary types, with different attack costs and
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Conclusion & Future Work

• Prioritization of alerts is of crucial importance to the 
effectiveness of intrusion and misuse detection  

• Result highlights 
• introduced first model of alert prioritization against strategic adversaries 
• showed that finding an optimal prioritization strategy is NP-hard

• proposed an efficient column-generation based approach

• evaluated numerically using synthetic and real-world datasets


• Future work 
• constant approximation ratio algorithms

• modeling multiple adversary types as a Bayesian Stackelberg game



Thank you for your attention! 

Questions?


