A Game-Theoretic Approach for Alert Prioritization

<u>Aron Laszka</u>, Yevgeniy Vorobeychik, Daniel Fabbri, Chao Yan, Bradley Malin

Intrusion Detection

- Detection and mitigation of cyber-attacks is of crucial importance; however, attackers try to stay stealthy
- Intrusion Detection Systems (IDS)
 - · generate alerts when they encounter suspicious activity

Alert Prioritization

Alerts

Alert Types

Alerts

Alert types T

- for example, matching different rules in an intrusion detection system (e.g., Snort)
- before investigating them, alerts of the same type appear equally important
- cumulative distribution F_t of the number of false alerts of type t is known

Attacks A

- for example, targeting certain machines or using certain exploitation techniques
- impact of attack a is L_a
- probability of attack *a* raising an alert of type *t* is $R_{a,t}$

Alert Types

Alert Prioritization Problem

Alert Prioritization Problem

What is the optimal probability distribution?

Game-Theoretic Model

Players

1. Defender: selects an alert prioritization strategy p, which is a probability distribution over possible orderings of T

2. Adversary:

selects an attack *a* from the set of possible attacks *A*

- Supposing that the defender uses ordering $o \in T$
 - probability of investigating type k (before exhausting budget B) is

$$PI(\boldsymbol{o},k) = \sum_{\substack{\boldsymbol{n}:\\C_{o_k} + \sum_{i=1}^k n_i \cdot C_{o_i} \leq B}} \left[\left(F_{o_k}^*(n_k) - F_{o_k}^*(n_k-1) \right) \cdot \prod_{i=1}^{k-1} \left(F_{o_i}(n_i) - F_{o_i}(n_i-1) \right) \right]$$

• probability of investigating attack *a* (before exhausting budget *B*) is

$$PD(\boldsymbol{o},a) = \sum_{\hat{T} \subseteq T} \prod_{t \in \hat{T}} R_{a,t} \prod_{t \in T \setminus \hat{T}} (1 - R_{a,t}) PI(\boldsymbol{o}, \min\{i \mid o_i \in \hat{T}\})$$

Optimal Alert Prioritization

- Adversary's gain and defender's loss
 - adversary's expected gain: $EG(\mathbf{p}, a) = \sum p_{\mathbf{o}} \cdot (1 PD(\mathbf{o}, a)) \cdot G_a K_a$
 - defender's expected loss: $EL(\mathbf{p}, a) = \sum_{\mathbf{o} \in O} \mathbf{p}_{\mathbf{o}} \cdot (1 PD(\mathbf{o}, a)) \cdot L_a$
- Solution concept: strong Stackelberg equilibrium
 - adversary's best responses: $BR(\mathbf{p}) = \underset{a \in A}{\operatorname{argmax}} EG(\mathbf{p}, a)$
 - optimal prioritization strategy: $\min_{p,a \in BR(p)} EL(p,a)$

Challenge: finding an optimal probability distribution over a set of exponential size!

Theorem: Finding an optimal alert prioritization strategy is an **NP-hard** problem.

Computing Detection Probabilities

Probability of detecting an attack

$$PI(\boldsymbol{o},k) = \sum_{\substack{\boldsymbol{n}:\\C_{o_k} + \sum_{i=1}^{k} n_i \cdot C_{o_i} \leq B}} \left[\left(F_{o_k}^*(n_k) - F_{o_k}^*(n_k-1) \right) \cdot \prod_{i=1}^{k-1} \left(F_{o_i}(n_i) - F_{o_i}(n_i-1) \right) \right]$$

$$PD(\boldsymbol{o},a) = \sum_{\hat{T} \subseteq T} \prod_{i \in \hat{T}} R_{o,i} \prod_{t \in T \setminus \hat{T}} \left(1 - R_{a,t} \right) PI\left(\boldsymbol{o}, \min\{i \mid o_i \in \hat{T}\} \right)$$
exponential number of terms

Dynamic programming algorithm

Algorithm 1 Computing
$$PD(o, a)$$
Input: prioritization game, prioritization o , attack a 1: for $b = 0, 1, ..., B$ do2: $PD(o, a, |T|, b) \leftarrow R_{a,o|T|} \cdot F_{o|T|}^* (\lfloor b/C_{o|T|} \rfloor - 1)$ 3: end for4: for $i = |T| - 1, ..., 2, 1$ do5: for $b = 0, 1, ..., B$ do6: $PD(o, a, i, b) \leftarrow R_{a,o_i} \cdot F_{o_i}^* (\lfloor b/C_{o_i} \rfloor - 1) + (1 - R_{a,o_i} \sum_{j=0}^{\lfloor b/C_{o_i} \rfloor} (F_{o_i}(j) - F_{o_i}(j-1)) \cdot PD(o, a, b-j \cdot C_{o_i}, i+1)$ 7: end for8: end for9: Return $PD(o, a) := PD(o, a, 1, B)$

Finding an Optimal Alert Prioritization Strategy

Linear-programming based formulation

Problem: Finding an improving column (i.e., ordering) is an **NP-hard** problem.

Polynomial-time column generation approach

Algorithm 2 Greedy Column Generation

Input: prioritization game, reduced cost function \bar{c}

1:
$$\boldsymbol{o} \leftarrow \emptyset$$

2: while $\exists t \in T \setminus o$ do

3:
$$\boldsymbol{o} \leftarrow \boldsymbol{o} + \operatorname{argmax}_{t \in T \setminus \boldsymbol{o}} \bar{c}(\boldsymbol{o} + t)$$

- 4: end while
- 5: Return *o*

where

$$\bar{c}(\boldsymbol{o}) = PD(\boldsymbol{o}, a) + \sum_{a' \in A} y(\bar{O}, a')D(\boldsymbol{o}, a')$$

(i.e., reduced cost function)

Numerical Results - Synthetic Dataset

 $K_a = 0$, $C_t = 1$, B = 5|T|, D_a and G_a were drawn at random from [0.5, 1], each $R_{a,t}$ is either 0 (with probability 1/3) or drawn at random from [0, 1], and every F_t has a Poisson distribution whose mean is drawn at random from [5, 15].

Real-World Dataset: Electronic Medical Record System Alerts

- Access logs from the electronic medical record (EMR) system in place at Vanderbilt University Medical Center
 - integrated with human-resources data to document medical department affiliation, employment information, and home addresses

[1] Fabbri, D., and LeFevre, K. 2013. Explaining accesses to electronic medical records using diagnosis information. Journal of the American Medical Informatics Association 20(1):52–60.

Numerical Results - Real-World Dataset

- Data collected from five consecutive weeks of access logs from 2016
- 8,481,767 accesses made by 14,531 users to 161,426 patient records, leading to a total of 863,989 alerts
- Approximated the distributions of false alerts using Poisson distributions
- In order to find optimal strategies, we restricted the alerts to 12 randomly selected patients

Conclusion & Future Work

- Prioritization of alerts is of crucial importance to the effectiveness of intrusion and misuse detection
- Result highlights
 - introduced first model of alert prioritization against strategic adversaries
 - showed that finding an optimal prioritization strategy is NP-hard
 - proposed an efficient column-generation based approach
 - evaluated numerically using synthetic and real-world datasets
- Future work
 - constant approximation ratio algorithms
 - modeling multiple adversary types as a Bayesian Stackelberg game

Thank you for your attention!

Questions?

