Should Cyber-Insurance Providers Invest in Software Security?

<u>Aron Laszka¹ and Jens Grossklags²</u>

¹ University of California, Berkeley
 ² Pennsylvania State University

Software Vulnerabilities

- Most software products suffer from vulnerabilities
- Developers have little incentive to invest more into security
 - · developers are usually not held liable for incidents
 - investing into security increases costs and may impact time-tomarket or create backwards compatibility issues
 - customers rarely reward security immediately
- However, vulnerabilities in widely used software pose a severe risk

What can users do?

- Major technology companies may invest into key software products
 - e.g., Google and Samsung vulnerability reward programs
 - cover only a small set of products, which are critical for their own operations
 - cannot fully address the security risks related to the diverse landscape of widely used software products
- What about companies lacking the resources and/or expertise to effectively invest into security?

Cyber-Insurance

- A company may buy cyber-insurance to transfer its risk to an insurance provider
 - i.e., trading variable losses for a fixed premium
- Supply side of cyber-insurance: insurance provider
 - receives fixed premiums in exchange for variable claims
 - amount of claims to be paid is variable \rightarrow provider's risk
- How can an insurance provider account for this risk?
 Diversification: *if the provider's portfolio is large enough,* then the amount of claims to be paid is almost always close to its expected value

Insurance Claim Distributions

Independent incidents

Cyber incidents

Diversifiable and Non-Diversifiable Risks

Diversifiable risk

- caused by individual vulnerabilities (e.g., misconfiguration)
- diminishes as the size of the portfolio increases

Non-diversifiable risk

- caused (in part) by vulnerabilities in widely used software products
- does not diminish with the size of the portfolio
- both provide an incentive for companies to purchase insurance
- results in predictable insurance claims

 can cause significant fluctuations in the arrival of insurance claims

Possible Approaches for Insurance Providers

- Incentivizing customers to invest in security
 - for example, by offering premium reductions for investing in security
 - currently dominant practice
 - typical security investments, such as purchasing security products and hiring auditors, decrease diversifiable risks without decreasing nondiversifiable risks
- Investing in software security
 - for example, by financing vulnerability reward programs for popular software products used by their customers
 - decreases non-diversifiable risks

Can investing in software security be a viable approach?

Model

- Cyber-insurance model incorporating software vulnerabilities and security investments
- Elements:
 - monopolist insurance provider
 - companies that purchase insurance from the provider
 - software products that are used by the companies

Model: Vulnerabilities and Risks

Software products

$$V_i(d_i) = BV_i \cdot e^{-\gamma_i d_i}$$

- V_i : vulnerability level of software *i*
- d_i : insurance provider's security investment in software *i*
- BV_i : base vulnerability
- γ_i : efficiency of investment
- Companies

$$R_j = 1 - (1 - IR_j) \prod_{i \in \mathcal{S}_j} (1 - V_i)$$

- R_j : incident probability for company j
- IR_j : individual risk of company j
- S_j : set of software used by company j

Model: Demand-Side of Insurance

- Companies are risk-averse
 - utility for a given amount of wealth w is given by a Constant Relative Risk Aversion (CRRA) utility function:

$\ln(w)$

• Baseline utility (without insurance) of company *j*:

$$R_j \ln(W_j - L_j) + (1 - R_j) \ln(W_j)$$

- W_j : initial wealth
- L_j : loss in case of an incident
- Insured utility of company j:

$$\ln(W_j - p_j)$$

• p_j : premium paid by company j

from these, we can compute the insurance premiums for a monopolist provider

Model: Supply-Side of Insurance

- Insurance provider's income:
- Probability of ruin:
 - probability that the total amount of losses *TL* (i.e., total amount of claims to be paid) exceeds the provider's safety capital *S*

 $> p_j$

- we assume that the maximal probability of ruin ε is exogenous
- Insurance provider's expenditure:

$$\mathbf{E}[TL] + \sum_{i} d_i + A + I \cdot S$$

- E[TL] : expected total amount of losses
- d_i : security investments
- A : administrative costs
- *I* : interest rate
- S: minimal safety capital to keep the probability of ruin below ε

Analysis

- Computational complexity of our model
 - hidden complexity from computing the claim distributions
- Provider strategies for investing in security
- Numerical results for evaluating our model and investment strategies

Theorem 1. Given a safety capital *S* and a threshold probability of ruin ε , determining whether the probability of the total amount of losses *TL* exceeding *S* + E[*TL*] is greater than or equal to ε is NP-hard.

 consequently, it is hard to determine the minimal safety capital and, thus, compute the insurer's profit for a given set of investment values

Theorem 2. Let TL_1 , TL_2 , ..., TL_K be K independent random variables having the same distribution as TL, and let \hat{S} be the $(1 - \varepsilon)K$ -th smallest of these random variables. Then,

$$\Pr[TL > \hat{S}] \le \varepsilon + \frac{1}{K}$$

 in other words, we can approximate the minimal safety capital using random sampling

Finding Optimal Security Investments

- Investment strategy: given aggregate investment amount $\sum_i d_i$, divide this amount among the software products
- Uniform strategy: divide evenly among the software products
- Most-used strategy: invest into the software product used by the most companies
- Proportional strategy: invest into each software product proportionally to the number of companies using it
- Greedy strategy: distribute amount in multiple steps, in each step investing into a software product so that the increase in profit is maximal

Numerical Results

- We instantiated our model with exemplary values to illustrate the relative effect of the investment strategies
- We generated 15 software products with
 - base vulnerability BV_i randomly drawn from [0.09, 0.11]
 - investment efficiency γ_i randomly drawn from [0.9, 1.1]
- We generated 1500 companies with
 - individual risk IR_j randomly drawn from [0.4, 0.6]
 - base wealth W_j randomly drawn from [10, 20]
 - potential loss L_j randomly drawn from $[0.25W_j, 0.75W_j]$
- For each company, we choose 3 software products using popularitybased preferential-attachment

Insurance Claim Distribution without Investments

blue line: expected value

•

٠

red line: 99.9% quantile

Claim Distribution with Uniform Investments

• $d_i = 7.5$ for every software *i*

Investment Strategies: Uniform and Most-Used

- green line: income
- red line: expenditure
- **blue line**: profit

Investment Strategies: Proportional and Greedy

- green line: income
- red line: expenditure
- **blue line**: profit

Comparison of Investment Strategies

- red line: greedy
- solid line: proportional
- dashed line: uniform
- dotted line: most-used

Conclusion and Future Work

- Companies want to buy affordable insurance for cyber-risks, and insurers want to offer profitable insurance policies
 - non-diversifiable risks arising from software monocultures may result in prohibitively high safety capitals or insurance premiums
- Our results show that insurers may have the incentives to invest in software security and thereby reduce non-diversifiable risks
 - in contrast to other approaches which have gained limited traction (e.g., software liability, government involvement)
- Future work:
 - numerical evaluations based on real-world datasets
 - modeling multiple, competitive insurance providers
 - studying positive spillover effects for uninsured entities

Thank you for your attention!

Questions?

