Resilient Observation Selection in Adversarial Settings

<u>Aron Laszka¹</u>, Yevgeniy Vorobeychik², and Xenofon Koutsoukos²

¹ University of California, Berkeley
 ² Vanderbilt University

Monitoring Spatially-Distributed Systems

- To dynamically control a system, we must have accurate information about its evolving state
- · In a number of applications, such as electrical grids or traffic networks,
 - system to be monitored can extend over a vast area
 - there can be a large number of possible points of observation
 - Where should we place sensors for monitoring a system?

Cyber-Attacks Against Sensors

Example: in 2008, a major Turkish oil pipeline suffered a cyber-attack

- attackers disabled the pressure and flow sensors, which allowed them to super-pressurize the oil in the pipeline, causing an explosion
- control room did not learn of the blast for 40 minutes after it happened How can we improve the attack-resilience of monitoring?

Resilient Sensor Placement

Resilience:

even if some of the sensors are disabled by an attack, we are able to reliably estimate the state of the system

- Redundant placement
 - simply place more sensors
 - requires excessive spending
- Limited budget
 - limited number of sensors
- Resilient placement: placing sensors so that together they are resilient to attacks

Problem Formulation

Objective

- Gaussian-process based regression
 - kernel-based machine learning method
 - assumes that the joint distribution of the observations and the predictor variable is a Gaussian
 - has been used to predict various physical processes, e.g., road traffic
- Objective: variance of the predictor variable
 - depends only on the prior (i.e., where sensors are placed)
 - proportional to mean squared error or uncertainty
- Resilient sensor placement problem:

 $\min_{S \subset \mathcal{V}: |S| = N} \max_{\mathcal{A} \subset S: |\mathcal{A}| \le K} \sigma_{Z|(S \setminus \mathcal{A})}^{2 \checkmark}$

How much can we improve resilience through placement?

Numerical Results Based on Traffic Data

- Dataset
 - from the Caltrans Performance Measurement System (PeMS)
 - real-time data from sensors spanning across all major metropolitan areas of California
 - we used hourly traffic data from January 2015
- Setup
 - we selected 37 locations from the Bay Area as possible sensor locations
 - predictor variable is the average traffic over the area

Resilient and Non-Resilient Sensor Placements

N = 8 sensors and K = 1 attack size

Computational Complexity

- Exhaustive search over all subsets is not feasible in practice
- Can we find an optimal placement in polynomial time?

Theorem: The resilient sensor placement problem is **NP-hard**.

• Can we at least compute how resilient a given placement is (i.e., find an optimal attack)?

Theorem: Finding an optimal attack for a given placement is **NP-hard**.

- Polynomial-time algorithms for resilient sensor placement
 - 1. heuristic and approximation algorithms
 - 2. algorithms for special cases

Heuristic and Approximation Algorithms

• First, we propose a greedy heuristic for finding an attack:

Greedy Attack: Numerical Results

Less than 4% difference throughout numerous experiments

Greedy Algorithm for Resilient Sensor Placement

- Let *S* ← Ø
 While |*S*| < *K* + 1:

 Let *X* ∉ *S* be a variable minimizing σ²_{Z|{X}}
 Let *S* ← *S* ∪ {*X*}

 While |*S*| < *N*:

 Let *X* ∉ *S* be a variable minimizing *Obj*(*S* ∪ {*X*})
 Let *S* ← *S* ∪ {*X*}

 Let *S* ← *S* ∪ {*X*}
- Approximation guarantee:

Theorem: Let *OPT* be the difference between the prior variance and the optimal posterior. Then, the difference for the greedy selection is at least $(\sqrt{\gamma})^{N-K}$

$$OPT - OPT \cdot \left(1 - \frac{\gamma_{N,K}}{N}\right)^{N-K}$$

Greedy Sensor Placement: Numerical Results #1

Uncertainty in Case of an Attack

Greedy Sensor Placement: Numerical Results #2

Special Case: Tree Covariance Graphs

- Covariance graph
 - vertices: variables representing observations at potential sensor locations
 - edges: non-negligible covariance values between variables
- Special case: tree covariance graphs

Lemma: Greedy attack is always optimal.

Theorem: Optimal resilient sensor placement can be found in polynomial time using a bottom-up dynamic programming approach.

Conclusion

- We formulated a resilient sensor placement problem based on Gaussian-process based regression
- Using numerical results based on real-world data, we demonstrated that we can increase resilience significantly
- We proposed heuristic and approximation algorithms, and an optimal algorithm for a special case
- Open problems and future work
 - resilience to tampering attacks
 - arbitrary trade-off between resilience and accuracy without attack

Thank you for your attention!

Questions?

