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Malicious E-Mails

Spam 
• non-targeted


• usually just a nuisance 
(but can waste a lot of time 
and money in high volumes)

Spear-phishing 
• targeted


• potentially very high losses 
(even from a single attack)



Spear-Phishing Examples

• In 2014, a German steel mill suffered 
“massive” physical damage due to a 
cyber-attack 
• first step of the attack was spear-phishing 

http://www.wired.com/2015/01/german-steel-mill-
hack-destruction/

• In 2013, millions of credit and debit card 
accounts were compromised due to an 
attack against Target 
• first step of the attack was spear-phishing 

http://www.huffingtonpost.com/2014/02/12/
target-hack_n_4775640.html



Filtering Malicious E-Mails
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threshold• Threshold 
• too low → too many false positives (FP)


• too high → too many false negatives (FN)


• optimal value:  
minimizes FP rate × cost of FP + FN rate × cost FN 



Multiple Users

Cost of FP 
(potential loss from discarding 

non-malicious e-mail)

Cost of FN  
(potential loss 
from delivering 

malicious e-mail)



Personalized Thresholds
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targeting attacker may exploit 
the differences not only between 
the users but also between the 

personalized thresholds 

optimal personal thresholds 
should also take the attacker’s 

strategy into account 
→ game theory



Game-Theoretic Model

• for each user u, selects 
a false negative rate fu

• we assume that the 
feasible FP / FN rate 
pairs are given by a 
function FP(fu)

• selects a set of users A, 
and sends them targeted 
malicious e-mails


• can select at most A users 
(otherwise the attack is 
easily detected)

Defender Targeting attacker

fu

FP Non-targeting attacker(s)

• non-strategic (not a player)( )



Game-Theoretic Model (contd.)

Stackelberg (leader-follower) game 

1. defender selects a false negative rate fu for each user u  


2. attacker selects a set of users A


Attacker’s utility: 
 
Defender’s loss: 

Lu: potential loss from delivering targeted malicious e-mails


Nu: potential loss from delivering non-targeted malicious e-mails


Cu: potential loss from discarding non-malicious e-mails 

expected loss from 
non-targeted attacks

expected loss from 
targeted attacks

expected loss from 
from false positives



Characterizing Optimal Strategies

fuLu

A

optimal value for a user given that it is not selected by the attacker
optimal value for a user given that it is selected by the attacker

Λ



Finding an Optimal Strategy

• For a given value of Λ, we can find an 
optimal strategy using the following 
polynomial-time algorithm • Finally, we can find the 

optimal value of Λ using 
a simple binary search

Λ



Numerical Examples

• Datasets 
• UCI Machine Learning Repository: 4601 labeled e-mails with 57 features

• Enron dataset: 13,500 e-mails with 500 features


• Classifier: naive Bayes (note that this is just for the sake 
of example) 

• False positive / false negative rates:
UCI Enron



Numerical Examples - Results

• 31 users with parameter values following power-law distributions

optimal strategy
uniform threshold not expecting strategic attacker
uniform threshold expecting strategic attacker

UCI Enron

Number of users targeted A



Conclusion & Future Work

• Conclusion 
• filtering thresholds have received less attention in the past 

• we proposed a game-theoretic model for targeted and non-
targeted malicious e-mails 

• we showed how to find optimal strategies efficiently 

• numerical results show considerable improvement 

• Future work 
• non-linear losses from compromising multiple users



Thank you for your attention! 

Questions?


