Afiya Ayman¹, Juan Martinez, Philip Pugliese³, Abhishek Dubey², Aron Laszka¹

¹University of Houston, ²Vanderbilt University, ³Chattanooga Area Regional Transportation Authority

SMARTCOMP'22 June 21, 2022

This material is based upon work sponsored by the National Science Foundation under grants CNS-1952011, CNS-2029950, and *CNS-2029952 and by the Department of Energy under Award Number DE-EE0009212.*

Neural Architecture and Feature Search for Predicting the Ridership of **Public Transportation Routes**

Motivation

- Accurately predicting the occupancy of a scheduled transit-vehicle trip is crucial
- Higher prediction accuracy can be achieved by fine-tuning the hyper-parameters of machine-learning models for each transit route
- Designing a predictor for each route-direction combination is laborious
 Requires time and effort from machine learning experts
- We introduce a *Randomized Local Hyper-parameter Search* to fine tune <u>the hyper-parameters and predictor variables</u> of a deep neural network

Research Questions

<u>RO1</u>: Does fine-tuning the architecture and features for a specific task improve performance?

local search have on the end results?

trained for other tasks?

- **<u>RO2</u>**: How much impact does the starting architecture of the randomized
- **<u>RO3</u>**: How well does the optimized architecture of one task perform when

Data & Prediction Problem

Data:

- Automatic Passenger Count: Recordings on boarding and alighting events • Weather: temperature, humidity, etc. based on location and time
- <u>Input</u>: Aggregated information about each trip in a particular route-direction integrated with weather
- <u>Target</u>: Predicting <u>maximum occupancy for a future trip</u> on a particular route and in a particular direction
- based on time and a few recent trips from a model trained on historical data • Input consists of both non-sequential and sequential features

Non-Sequential Features

- Total number of stops in a trip
- <u>Time</u> Month, Time of day, Day of week (Mor Tuesday, ..., Sunday)
- <u>Weather</u> Temperature, Windspeed, Visibility

	Sequential Features							
nday,	<u>Maximum and median occupancy</u> of <i>n</i> preceding trips and <u>time difference</u>							
y, etc.	between them and the future trip							

Architecture Template for Occupancy Prediction

Neural Architecture and Feature Search for Occupancy Prediction

- We propose an *Architecture and Feature Search* to fine tune the feature set and architecture hyper-parameters
- **Objective:** Finding an architecture and set of features *A* that minimizes the prediction error l_{RMSE} and model complexity: $min_{A \in \Omega}(l_{RMSE} + \text{Model Complexity})$ (Weather, time, total stops, ...)
 (Weather, time, total stops, ...)
 (Weather, time, total stops, ...)
 (Weather, time, total stops, ...)

layers

Neural Architecture and Feature Search for Occupancy Prediction

•<u>Search Space</u>, Ω

Includes hyper-parameters, \mathcal{HP} for <u>both architecture and feature set</u>

Architecture hyper-parameter, h

- Number of layers, \mathcal{L} in different modules
- Number of neurons, \mathcal{N} in each layer of different modules

• Learning Rate, α for the model

Randomized Local Search

Neural Architecture and Feature Search: Estimating Prediction Loss

 $A' \rightarrow$ new Arch. from mutation

•Evaluation is based on both model loss and complexity

- •Loss = <u>RMSE</u> obtained with k-fold cross validation
- •Complexity = <u>number of trainable</u> <u>parameters</u>

- Randomized search will repeat for a fixed number of iteration
 - •architecture's hyper-parameter 75%
 - predictor variables 25%

Dataset

- •APC data for Chattanooga, TN
 - Trips in total 23 routes in both direction
- •Dataset timespan: 2 years (2019-2021)
- •Algorithm is evaluated on 10 diverse tasks,
- i.e., route-direction combination
 - •considering number of trips, average occupancy, variance, etc.

Architecture and Feature Search scores for all the tasks combined

<u>RO1</u>: Task-specific vs Generally Optimized Architecture

how have the stand

Fig: Comparison between architecture that were found by generic (yellow) and task-specific searches (blue) based on NAS score for each specific task

Results

Tasks

<u>RO2</u>: Starting Architecture of Task-Specific Search

Runtime

Runtime for finding the optimal architecture for different tasks from-

- Hand-designed start architecture (blue)
- Best generic architecture (purple)

Hand Designed avg. 68.6% **Optimized** avg. 65.3%

Results

Lower = better

Results

<u>RO3</u>: Comparison among Architectures Optimized for Specific Tasks

NAS Scores for Models Trained for Various Tasks using Architectures Optimized for Different Tasks

Task										
	4 Inbound	4 Outbound	1 Inbound	1 Outbound	9 Inbound	9 Outbound	2 Inbound	2 Outbound	7 Inbound	7 Outboun
Optimized Arch.										
4 Inbound	4.96	5.30	3.85	3.14	4.66	4.62	2.66	1.94	1.89	2.17
4 Outbound	4.91	5.09	3.98	3.14	4.39	4.33	2.68	1.95	1.89	2.19
1 Inbound	5.69	5.81	3.79	3.41	4.88	4.48	2.77	2.03	2.07	2.85
1 Outbound	4.94	5.24	3.91	3.03	4.37	4.58	2.66	1.94	1.88	2.14
9 Inbound	5.04	5.26	3.95	3.56	4.52	4.50	2.75	2.08	1.97	2.37
9 Outbound	5.12	5.42	3.97	3.42	4.64	4.50	2.58	2.03	1.96	2.37
2 Inbound	5.06	5.36	3.95	3.18	4.47	4.19	2.34	1.57	1.72	2.23
2 Outbound	4.96	5.27	3.81	3.07	4.28	4.21	2.41	1.72	1.56	2.15
7 Inbound	5.06	5.26	3.90	3.15	4.17	4.10	2.20	1.69	1.54	2.25
7 Outbound	5.58	5.91	3.81	3.38	4.71	4.73	2.64	1.91	1.93	2.07
Generic NAS	5.17	5.58	4.02	3.37	4.56	4.61	2.89	2.10	2.17	2.32

Darker red = worse performance **Darker green** = better performance **Diagonal cells** -> model scores trained for tasks using their corresponding optimized architecture

Conclusion

- route in each direction is possible
- •We proposed a framework for *neural- architecture and feature-set search*
 - •<u>Alleviates</u> the need for fine-tuning by machine-learning experts
 - •<u>Significantly reduces prediction error</u> and model complexity based on real-world data

Thank you for your attention!!

Questions?

•Improving prediction accuracy by fine-tuning machine-learning architectures for each transit

Afiya Ayman afiyaayman.uh@gmail.com

Aron Laszka alaszka@uh.edu

