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Abstract

Bug-bounty programs have the potential to harvest the effort and diverse knowl-
edge of thousands of independent security researchers, but running them at scale
is challenging due to misaligned incentives and misallocation of effort. In our
research, we discuss these challenges in detail and present relevant empirical data.
We develop an economic framework consisting of two models that focus on eval-
uating different policies for improving the effectiveness of bug-bounty programs.
Further, we discuss regulatory-policy challenges and questions related to vulnera-
bility research and disclosure, such as mandatory bug bounties and the relation to
other cyber-security policies.
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1 Introduction
Despite significant progress in software-engineering practices, software utilized for
desktop and mobile computing remains insecure. At the same time, the consumer and
business information handled by these software products is increasing in its richness
and monetization potential, which triggers significant privacy and security concerns.

Numerous challenges stand in the way of secure code. Feature-rich complex soft-
ware products are inherently difficult to develop securely, in particular, if time-to-market,
outdated legacy code bases, and other business realities impede careful engineering
practices.1 Instead, companies are increasingly harvesting the potential of external
(ethical) security researchers to crowdsource efforts to find and ameliorate security vul-
nerabilities.2 These so-called white-hat researchers are often rewarded with monetary
payments (i.e., bounties) and publicly recognized.

1. Ross Anderson, “Security in Open versus Closed Systems – The Dance of Boltzmann, Coase and
Moore,” in Proceedings of Open Source Software: Economics, Law and Policy (2002); Robert Hahn and
Anne Layne-Farrar, “The Law and Economics of Software Security,” Harvard Journal of Law & Public
Policy 30, no. 1 (2006): 283–353.

2. Matthew Finifter, Devdatta Akhawe, and David Wagner, “An empirical study of vulnerability rewards
programs,” in USENIX Security Symposium (2013); Mingyi Zhao, Jens Grossklags, and Peng Liu, “An
empirical study of web vulnerability discovery ecosystems,” in 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS) (2015).
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Broadening the appeal of crowdsourced security, several commercial bug-bounty
platforms have emerged (e.g., HackerOne3, BugCrowd4, Cobalt5) and successfully
facilitate the process of building and maintaining bug-bounty programs for companies
and organizations. For example, on HackerOne, over 44,000 security vulnerabilities
have been reported and fixed for hundreds of organizations. Contributions came from
over 5000 different white-hat hackers, and paid bounties have surpassed the US$10M
threshold (data from May 2017).

Recently, researchers have begun to systematically study these platforms from an
empirical perspective to evidence their growing popularity and practical contributions
to the security of deployed code.6 In particular, researchers found that vulnerabilities
are increasingly hard to find in the code of participating companies. This implies that
bug-bounty programs make a significant contribution to code security, and that these
companies are less likely to fall victim to cybercriminals and nation-state sponsored
security compromises as a result of zero-day exploits.

The problem area we are addressing with our work is how to scale the promise of
crowdsourced security to a more significant number of companies and white-hats. To
achieve this goal, it is important to design effective policies for bug-bounty, and we will
discuss two classes of policies, engagement policy and regulatory policy. Engagement
policies are developed and enforced by bug-bounty programs and platforms to encourage
white-hats to make valuable contributions to organizations, whereas regulatory policies
shape the bug-bounty ecosystem from the outside.

As a major part of our work, we discuss several key challenges in the bug-bounty
ecosystem which we are addressing by designing and evaluating engagement policies.
First, a major obstacle to scaling bug-bounty platforms to a larger number of white hats
is inherent in the concept of crowdsourced security. White-hat security researchers are
interested in receiving as many bounties as possible while minimizing effort. However,
these efforts include the validation of findings before reporting them to companies; a
lack thereof results in a higher number of invalid reports which significantly burden
participating organizations. The percentage of invalid reports is currently significant,
ranging from 35% to 55% on different platforms.

To address this first problem area, we devise a theoretical model for evaluating ap-
proaches for reducing the number of invalid reports. We then investigate the strengths
and weaknesses of canonical approaches taken by bug-bounty platforms. These
existing policies increase reports quality by restricting participation. However, such
policies might “backfire" and actually deter hackers from dedicating time to vulnerabil-
ity discovery. We introduce a novel validation-reward policy, aiming to further improve
efficiency by enabling different white hats to exert validation effort at their individually
optimal levels.

3. https://hackerone.com/
4. https://bugcrowd.com/
5. https://cobalt.io/
6. Mingyi Zhao, Jens Grossklags, and Kai Chen, “An Exploratory Study of White Hat Behaviors in a Web

Vulnerability Disclosure Program,” in 2014 ACM CCS Workshop on Security Information Workers (2014);
Zhao, Grossklags, and Liu, “An empirical study of web vulnerability discovery ecosystems”; ThomasMaillart
et al., “Given Enough Eyeballs, All Bugs are Shallow? Revisiting Eric Raymond with Bug Bounty Markets,”
in Workshop on the Economics of Information Security (WEIS) (2016).
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Second, with a growing number of participating companies, the problem of ef-
ficiently allocating and distributing the valuable, but scarce effort, of white-hat re-
searchers is becoming paramount. On the one hand, it is self-evident that newly joined
organizations harbor the greatest potential for security improvements. On the other
hand, organizations who already benefited from crowdsourced security wish to con-
tinue reaping the benefits of white hats’ scrutiny even though finding new vulnerabilities
becomes increasingly difficult.7 The need arises to devise sophisticated economic poli-
cies to manage this trade-off with various measures, including optimal adjustments to
monetary bounties.

Responding to this second challenge, we introduce an economic model to study the
allocation of hackers in bug-bounty programs. Our model captures the vulnerability
discovery process by hackers with an emphasis on capturing the diversity of hackers’
capability in identifying vulnerabilities. The model illustrates why more participation
is not always better, and how bug bounty programs can design more effective hacker
allocation plans.

In addition to engagement policies, bug-bounty programs can potentially benefit
from clear regulatory policies of vulnerability research and disclosure. We discuss
several challenges for creating such regulatory policies. We also discuss how exist-
ing policies, such as the Wassenaar arrangement, could potentially affect bug-bounty
negatively.

Roadmap: Weproceed as follows. In Section 2, we further illustrate the highlighted
challenges to bug bounty platforms with selected data. We develop and analyze the
model to evaluate policies for incentivizing validation efforts in Section 3. We then
present our model to evaluate policies for allocating discovery efforts in Section 4. In
Section 5, we discuss regulatory challenges faced by bug bounty programs. We discuss
related work in Section 6. We summarize our results and offer concluding remarks in
Section 7.

2 Engagement Policy Challenges
2.1 Bug-bounty Rules
Bug-bounty is often perceived as a risky approach for improving security, because an
organization is asking largely anonymous and independent hackers from all over the
world to probe and test its software systems remotely. Organizations could worry that
some white-hats might damage the production system or steal user data when doing
vulnerability research, or disclose vulnerabilities found to other parties, or even to the
public. On the other hand, white-hats would also worry that they might face legal
charges for vulnerability research and disclosure. One might expect to have regulatory
policies to control the risk. However, as of today, regulatory policies for bug-bounty
are a murky area, and we will discuss them in more detail in Section 5.

At present, bug-bounty programs, or bug-bounty platforms that host individual
programs, enforce several types of engagement policies for bug-bounty participants to

7. Zhao, Grossklags, and Liu, “An empirical study of web vulnerability discovery ecosystems”; Maillart
et al., “Given Enough Eyeballs, All Bugs are Shallow? Revisiting Eric Raymond with Bug Bounty Markets.”
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reduce risk. The most common form of engagement policy is the development of bug-
bounty rules. These rules specify which part of the software system can be assessed,
and what kind of actions are permitted.8 For example, some organizations will exclude
websites that belong to newly acquired subsidiaries, andmany organizations prohibit the
usage of automated vulnerability scanners which could affect normal business traffic.
In addition, the program rules also state that if white-hats comply with the program
policy during vulnerability research, the organization will not take legal action against
the white-hats. In other words, bug-bounty programs become a safe(r) harbor for
white-hats to conduct vulnerability research.

The intention of having bug-bounty rules is not only to reduce risk, but also to
improve the quality of reports submitted by white-hats. By clearly stating what scope
and what types of security issues are of interest, organizations can better concentrate
white-hats’ valuable manpower on the most important areas of its attack surface. How-
ever, the effect of bug-bounty rules on report quality is rather unclear, andmore research
is needed. If we look at some data from today’s bug bounty program in Figure 1, we can
easily see two major challenges: a high percentage of invalid reports, and a significant
amount of duplicated effort. To address these challenges, organizations and bug-bounty
platforms have designed and implemented additional kinds of engagement policies. We
will discuss these engagement policies in the remainder of this section.

2.2 Incentive Policies and Invalid Reports
In addition to defining rules, bug-bounty programs also enforce various kinds of in-
centive policies to motivate white-hats. For example, a bug bounty program usually
gives out rewards in proportion to the severity of the vulnerability found, in order to
encourage white-hats to search for more important issues. Rewards could be money,
reputation points, or a place in the hall of fame.

Previous research has found that the average (monetary) bounty amount is positively
correlated with the number of valid reports received.9 However, at the same time,
organizations that run bug-bounty programs could be easily overwhelmed by invalid
reports (also referred to as noise), which include spam (i.e., completely irrelevant
reports), false positives (i.e., issues that do not actually exist or have no security
impact), and out-of-scope reports (i.e., issues that do exist but are explicitly excluded by
bug-bounty program rules, for example, such as bugs in software products from recently
acquired companies or affiliates). In fact, bug-bounty platforms acknowledge that the
key challenge “companies face in running a public program at scale is managing noise,
or the proportion of low-value reports they receive”.10

In practice, the number of invalid reports is significant. Figure 1 shows some relevant
statistics of two independent bug-bounty programs run by Facebook11 and Google,12

8. See, for example, the bug-bounty rules for Twitter on the HackerOne platform: https://hackerone.
com/twitter.

9. Zhao, Grossklags, and Liu, “An empirical study of web vulnerability discovery ecosystems.”
10. HackerOne, Improving Public Bug Bounty Programs with Signal Requirements, HackerOne Blog,
https://hackerone.com/blog/signal-requirements, March 2016.
11. Facebook, 2015 Highlights: Less Low-Hanging Fruit, https://www.facebook.com /notes/
facebook-bug-bounty/2015-highlights-less-low-hanging-fruit/1225168744164016, 2016.
12. Google, Statistics and Charts of Google VRP, https://sites.google.com/site/bughunteruni
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and two bug-bounty platforms, HackerOne and BugCrowd.13 We can observe that the
percentage of valid reports is lower than 25% for all programs and platforms. The
value is particularly low for the independent bug-bounty programs ran by Facebook
and Google, and higher for bug-bounty programs hosted on the platforms. One rea-
son behind this difference is that the platforms have better identification practices for
participants, accumulate rich data about white-hat researchers, and can thus enforce
various kinds of quality-control policies. In addition, some bug-bounty programs on
these platforms are private, meaning that they are only open to well-established and
experienced white-hats, who are more likely to submit valid reports.

Figure 1: Comparing the percentages of valid reports and duplicate reports across
different bug-bounty programs and platforms. The percentage of duplicate reports for
Facebook is unknown. The percentage of duplicates obtained from HackerOne might
be underestimated, because program administrators are not required to mark a report
as duplicate.

We also worked with HackerOne to obtain additional data of its public bug-bounty
programs and private programs. Figure 2 shows that private programs have a much
higher percentage of valid reports (around 45%). However, private programs are not
designed to efficiently utilize the wider crowd of white-hats, which has also been shown
to be a valuable contributor of vulnerability discoveries with higher severity levels.14
For that reason, even though the public bug-bounty programs of Facebook and Google
have a low signal percentage (i.e., percentage of valid reports), the absolute number
of valid reports submitted to their programs is high. Therefore, these companies have
been strongly supporting bug-bounty in the past several years. Figure 2 also shows that
since April 2015, there is a continuous decrease of noise (from 52% to 30% in public
programs, and from 23% to 10% in private programs), and an increase of valid reports
(from 13% to 20% in public programs, and from 35% to 52% in private programs)

versity/behind-the-scenes/charts/2014, 2014.
13. Bugcrowd, The State of Bug Bounty, June 2016.
14. Zhao, Grossklags, and Liu, “An empirical study of web vulnerability discovery ecosystems.”
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on HackerOne. A main reason behind this trend is HackerOne’s constant effort in
improving the signal-to-noise ratio.15 Nevertheless, we see that there is still ample
space for improvements, particularly for public programs.

(a) Public

(b) Private

Figure 2: Trend of report types for public programs and private programs onHackerOne.
In our paper, we consider noise and so-called informative reports as invalid reports.

Invalid reports may be the result of imprecise research approaches or lack of thor-
ough validation by white-hats. For example, some hackers utilize automated vulnera-
bility scanners in the discovery process, which typically have high false-positive rates.16

15. HackerOne, Improving Signal Over 10,000 Bugs,HackerOne Blog, https://hackerone.com/blog/
improving- signal- over- 10000- bugs, July 2015; HackerOne, Expanding Reputation: Introducing
Signal and Impact, HackerOne Blog, https://hackerone.com/blog/introducing-signal-and-
impact, December 2015; HackerOne, Improving Public Bug Bounty Programs with Signal Requirements.
16. Adam Doupé, Marco Cova, and Giovanni Vigna, “Why Johnny can’t pentest: An analysis of black-box

web vulnerability scanners,” in Detection of Intrusions and Malware, and Vulnerability Assessment (2010).
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Since filtering out false positives is costly, some hackers may prefer to send the outputs
of an automated scanner to the bug-bounty program, hoping that some of them may be
recognized with a reward. Further, some discoveries may initially appear to be valid,
but after further inspection they may fail to prove a genuine security vulnerability.
Another important facet is that the hacker should clearly explain in the report what the
discovered flaw is, and how it can lead to a security problem. Failure of articulating the
issue could result in the report being marked as invalid, or the report being accepted
only after many rounds of communication between the hacker and an organization’s
security team. However, writing a clear report takes time and effort from the hackers,
who might not be willing to spend the effort.

As a direct response, bug-bounty platforms have started to offer different incentive
policies that participating organizations can use for reducing the number of invalid
reports. For example, HackerOne has introduced “Signal Requirements” and “Rate
Limiter” mechanisms, which organizations can use to increase the quality of reports.17
The former allows only those hackers to submit reports who maintain a given ratio of
valid to invalid submissions, while the latter limits the number of reports that a hacker
can make in some time interval. These policies aim to incentivize hackers to engage in
consistent efforts to validate their reports. According to HackerOne,18 these measures
together have decreased the percentage of noise to around 25%.

Unfortunately, policies may also prevent some hackers, who could contribute valid
reports, from participating and may force others to waste effort by being overly metic-
ulous. Consequently, strict policies will result not only in a reduced number of invalid
reports, but also in a lower number of valid reports. In summary, finding the right
policies and their optimal configuration is a challenging problem since white-hat hack-
ers need to be incentivized to produce and submit valid reports, but at the same time,
discouraged from submitting invalid reports.

2.3 Allocation Policies and Duplicate Reports
Another type of engagement policy is allocation (or invitation) policy, which deter-
mines which white-hats can participate in a given bug-bounty program. Some leading
organizations in adopting bug bounty, such as Yahoo, Facebook and Google, allow ev-
eryone to participate. We will refer to such programs as public programs. However, for
many other organizations, running a public program might provide an overwhelming
number of reports that they cannot handle. For some other organizations, such as the
U.S. Department of Defense,19 only certain types of white-hats (e.g., U.S. citizens),
are allowed. Therefore, these organizations will run private programs that are only
open to a subset of all white-hats. Currently, HackerOne randomly selects white-hats
into private programs, with selection probability determined by white-hats’ previous
performance.20
17. HackerOne, Improving Public Bug Bounty Programs with Signal Requirements.
18. Ibid.
19. ShannonCollins,DoDAnnounces ’Hack the Pentagon’ Follow-Up Initiative,DoDNews, DefenseMedia

Activity, https://www.defense.gov/News/Article/Article/981160/dod-announces-hack-the-
pentagon-follow-up-initiative, October 2016.
20. HackerOne, Fair and Transparent Hacker Invitations, HackerOne Blog, https://hackerone.com/
blog/fair-and-transparent-hacker-invitations, March 2016.
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Our observation is that existing allocation policies have significant inefficiencies in
utilizing the manpower of white-hats. Such inefficiencies are demonstrated in one key
challenge for bug-bounty programs: duplicate reports. After a bug is first reported
to an organization, it usually takes 1 - 2 months for the organization to fix the issue.
Therefore, before the fix is completed, other white-hats might spend effort to discover
and report the same issue. However, according to the predominantly used program
rules, only the first discoverer will be rewarded, while other reporters’ efforts are not
properly compensated (and may only receive some small form of recognition). In
addition, the organization also needs to spend effort triaging these duplicated reports,
and interacting with the reporting (frustrated) white-hats.

The percentage of duplicates is quite high for bug-bounty programs, as we can
seen in Figures 1 and 2. For Google and BugCrowd, the percentage of duplicates is
higher than the percentage of valid reports. The duplicate rate is lower on HackerOne.
However, since marking a report as duplication is not mandatory, it is possible that the
reported number underestimates the true magnitude of the problem. Unfortunately, we
do not know the duplicate rate of Facebook’s bug-bounty program. But Facebook re-
ported one interesting case in an annual report:21 when messenger.comwas launched,
within minutes, 15 hackers filed a report for the same Cross-site Request Forgery issue.
While this case shows how powerful bug-bounty programs are in finding vulnerabilities
quickly, it also demonstrates the inefficiency in utilizing hacker’s valuable manpower.

One obvious way of reducing the number of duplicates is to shorten the timewindow
between a bug being reported and the same bug being fixed. Such effort also reduces
the length of time window for exploiting the vulnerability, and generally increases the
speed of hackers receiving rewards.

Most bug bounty programs today are created after releasing the software product.
However, developing and deploying a patch of the product usually requires multiple
steps, and coordination between multiple departments of the affected organization.
Considering these factors, it would be hard to expect an organization, particularly a
larger one, to fix bugs very rapidly. HackerOne has reported several statistics about
how long it takes for organizations to respond and fix a bug,22 shown in Table 1. As we
can see, the median time to address a vulnerability is 21 days, and the 75th percentile
is more than 2 months. Within the time period, it is not unlikely for other hackers to
find the same bug, particularly if the incentives are high, like in the case of Facebook,
which paid more than $1700 per bug on average in 2015.23

We also want to point out that, despite the negative impact of duplicated reports,
they also provide some value to bug-bounty. For example, duplicated reports can help
bug-bounty programs to further understand and verify certain issues, and to get a sense
of which fixes to prioritize based on discovery frequency. In addition, the organization
and the bug-bounty platform can gain a better understanding of researcher expertise
based on duplicated reports. How to utilize the duplicated vulnerability discovery effort
more effectively is left as a future work.

21. Facebook, 2015 Highlights: Less Low-Hanging Fruit.
22. HackerOne, The HackerOne Success Index - Response Efficiency, HackerOne Blog, https://hacke
rone.com/blog/response-efficiency, February 2016.
23. Facebook, 2015 Highlights: Less Low-Hanging Fruit.
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25th 50th 75th
First Response 0.1 0.8 4.1
Triage 0.4 1.8 7.1
Bounty 4.6 16.7 52.7
Fix 4.7 20.9 66.6

Table 1: Percentiles of organizations’ response efficiency on HackerOne (in days).

2.4 Summary
In this section, we discussed three types of engagement policies for bug-bounty: bug-
bounty rules, incentive policies and allocation policies. We also discussed two major
challenges, invalid reports and duplicate reports, that are associated with engagement
policies. In Section 3 and 4, we will analyze existing policies, and then propose and
evaluate several new policy approaches, using the methodology of economic modeling.

3 Policies for Incentivizing Validation Effort
In this section, we study policies for incentivizing hackers to validate their discoveries
before submitting them, thereby reducing the ratio of invalid reports. We first consider
two canonical policies, called accuracy threshold and rate threshold. These policies
model real-world mechanisms available on HackerOne, called “Signal Requirements”
and “Rate Limiter.” Then, we propose a novel policy, called validation reward, which
aims to align the incentives of hackers with the organization. To analyze these policies,
we introduce a mathematical model of discovery and validation, which we use to
characterize the hackers’ behavior. Finally, we present numerical results comparing the
policies. The key findings of our analysis are summarized in Section 3.4.

This section is organized as follows. In Section 3.1, we introduce our economic
model of valid and invalid reports in bug-bounty programs. In Section 3.2, we study a
set of canonical policies for decreasing the number of invalid reports. In Section 3.3, we
present numerical results on these policies. Finally, in Section 3.4, we offer concluding
remarks on this problem area and outline future work.

3.1 Model
In this section, we introduce the economic model that we use to study incentivizing
validation effort in bug-bounty programs. Note that wewill focus exclusively on features
that are relevant to invalid reports and policies for limiting them. A list of symbols used
throughout Section 3 can be found in Table 2.

Notation

We use uppercase letters to denote constants (e.g., V) and functions (e.g., Di(ti)),
lowercase letters to denote variables (e.g., b), and bold font to denote vectors (e.g., t).
We use Lagrange’s notation (i.e., the prime notation) for derivatives of single variable
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functions (i.e., D′i(ti) denotes the first derivative of Di(ti)). For multivariable functions,
we use Leibniz’s notation (e.g., d

dbUO(b, t, v) denotes the first derivative of UO(b, t, v)
with respect to b). Finally, we use −1 to denote the inverse of a function (e.g., D−1i (ti)
is the inverse of function Di(ti)).

Table 2: List of Symbols in Section 3

Symbol Description
Constants and Functions

V average value of a valid report for the organization
C average cost of processing a report for the organization
Wi value of time for hackers of type i
Φi fraction of discoveries by hackers of type i that are valid vulnerabilities

Di(ti) number of potential vulnerabilities discovered by hackers of type i
Ii(vi) number of discoveries validated by hackers of type i

Variables
b average bounty paid for a valid report
ti time spent on vulnerability discovery by hackers of type i
vi time spent on validating discoveries by hackers of type i
α accuracy threshold imposed on participating hackers
ρ report-rate threshold imposed on participating hackers
δ validation reward for participating hackers

In our model, we consider an organization that runs a bug-bounty program and
hackers that may participate in the program. We group hackers who have the same
productivity and preferences together into hacker types. Since hackers of the same type
will respond in the same way to the policies set by the organization, we study their
choices as a group instead of as individuals.

The number of potential vulnerabilities discovered by hackers of type i is

Di(ti), (1)

where ti is the amount of time hackers of type i spend on discovery. We assume that
Di(0) ≡ 0 and that Di is a non-negative, increasing, and strictly concave function of ti .
That is, we assume that the marginal productivity of discovery is decreasing, which is
supported by experimental results and existing models (e.g.,24).

On average,Φi ·Di(ti) of these discoveries are actual vulnerabilities and (1−Φi)Di(ti)
of them are invalid (0 < Φi < 1). The number of potential vulnerabilities that are
validated (i.e., verified to be valid or to be invalid) by hackers of type i is

Ii(vi), (2)
24. Mingyi Zhao and Peng Liu, “Empirical Analysis and Modeling of Black-Box Mutational Fuzzing,” in

International Symposium on Engineering Secure Software and Systems (ESSoS) (2016); Omar Alhazmi and
Yashwant Malaiya, “Modeling the vulnerability discovery process,” in 16th IEEE International Symposium
on Software Reliability Engineering (ISSRE) (2005); Robert Brady, Ross Anderson, and Robin Ball,Murphy’s
law, the fitness of evolving species, and the limits of software reliability, technical report 471 (University of
Cambridge, Computer Laboratory, 1999).
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where vi is the amount of time hackers of type i spend on validating their discoveries.25
We assume that Ii(0) ≡ 0 and that Ii is a non-negative, increasing, unbounded, and
strictly concave function of vi . The rationale behind the concavity assumption is that
some discoveries are easier to validate, and a rational, utility-maximizing hacker starts
validation with the easier ones. Finally, we obviously have that

vi ≤ I−1i (Di(ti)) . (3)

That is, a hacker will not waste time on validation once he has finished with all of his
discoveries.

After validating his Ii(vi) discoveries, the hacker will report allΦi · Ii(vi) discoveries
that he has confirmed to be valid vulnerabilities. Further, he will also report all
Di(ti) − Ii(vi) non-validated discoveries, of which Φi · (Di(ti) − Ii(vi)) are valid and
(1−Φi) (Di(ti) − Ii(vi)) are invalid. Hence, the number of valid reports made by hackers
of type i is

Φi · Di(ti), (4)

while the number of invalid reports is

(1 − Φi) (Di(ti) − Ii(vi)) . (5)

The utility of hackers of type i is

UHi (b, ti, vi) = b · Φi · Di(ti) −Wi · (ti + vi), (6)

where b is the average bounty that the organization pays for a valid report, and Wi > 0
is the hacker’s utility for spending time on other activities. In other words, Wi is the
opportunity cost of the hacker’s time. In practice, the constant Wi can be estimated
using the average hourly wage of a hacker of type i (e.g., hourly wage taking into account
typical expertise and qualifications).

The organization’s utility is

UO(b, t, v) =
∑
i

(V − b)ΦiDi(ti)︸             ︷︷             ︸
net value of valid reports

−C ·
(
ΦiDi(ti)︸   ︷︷   ︸
valid reports

+ (1 − Φi) (Di(ti) − Ii(vi))︸                         ︷︷                         ︸
invalid reports

)
︸                                                 ︷︷                                                 ︸

cost of processing reports

, (7)

where V > 0 is the average value of a valid report for the organization, and C > 0 is the
average cost of processing a report. Note that V can incorporate a variety of factors,
such as a difference between the processing costs of valid and invalid reports, cost of
patching a vulnerability, etc.

25. Validation is actually a multiple-step process, which includes verifying that the discovery is an actual
vulnerability, that it is within the scope of the program, etc. We let Ii (vi ) denote the number of vulnerabilities
that are completely verified by the hacker. We consider the other Di (ti ) − Ii (vi ) discoveries to be non-
validated.
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3.2 Policies
In this section, we provide theoretical results on our bug-bounty model, and study how
hackers respond to various policies. First, as a baseline case, we study themodel without
any policy against invalid reports. Then, we study two policies, accuracy threshold and
report-rate threshold, which model existing practical approaches for limiting invalid
reports. Finally, we propose a novel policy, validation reward, which incentivizes
hackers to validate their discoveries instead of imposing strict limits on their actions.

3.2.1 Without an Invalid-Report Policy

First, we consider a baseline case, in which the organization does not have a policy for
limiting invalid reports. In this case, the organization’s choice is restricted to adjusting
the bounty paid for valid reports. The following proposition characterizes the hackers’
response to the bounty value chosen by the organization.

Proposition 1 (26). Suppose that the organization institutes no policy for limiting invalid
reports. Then, if the marginal utility of vulnerability discovery at ti = 0 is less than or
equal to zero (i.e., b ·Φi · D′i(0) −Wi ≤ 0), hackers of type i will not spend any time on
vulnerability discovery. Otherwise, they will spend

(
D′i

)−1 (
Wi

b ·Φi

)
time on vulnerability

discovery, but they will not spend any time on validating their discoveries.

In other words, if the organization chooses a bounty value lower than Wi

Φi ·D
′
i (0)

, then
it will not receive any reports from hackers of type i. If it chooses a higher bounty
value, it will receive some reports, but the ratio of valid reports will be only Φi .

3.2.2 Accuracy Threshold

Second, we consider programs that accept reports only from those hackers whomaintain
a sufficiently high ratio of valid reports (e.g., invitation-only programs or the “Signal
Requirements” mechanisms of HackerOne27). We model these programs using a policy
that imposes a restriction on the participating hackers’ accuracy. We define accuracy
formally as the following ratio:

number of valid reports
number of valid reports + number of invalid reports

. (8)

Based on the above definition of accuracy, we formalize the accuracy-threshold
policy as follows.

Definition 1 (Accuracy-Threshold Policy). Under an accuracy-threshold policy with
threshold α ∈ [0, 1], the hackers’ choices must satisfy

Φi · Di(ti)
Di(ti) − (1 − Φi)Ii(vi)

≥ α. (9)

26. Aron Laszka, Mingyi Zhao, and Jens Grossklags, “Banishing Misaligned Incentives for Validating Re-
ports in Bug-Bounty Platforms,” in 21st European Symposium on Research in Computer Security (ESORICS)
(2016), 161–178.
27. HackerOne, Improving Public Bug Bounty Programs with Signal Requirements.
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The following proposition characterizes the hackers’ responses to the accuracy-
threshold policy.28

Proposition 2 (29). Suppose that the organization institutes an accuracy-threshold
policy with threshold α > Φi . Then, if b · Φi · D′i(0) ≤ Wi

(
1 + D′i(0)

1
I ′i (0)

α−Φi

α ·(1−Φi )

)
,

hackers of type i will not spend any time on vulnerability discovery. Otherwise, they
will spend t̃i time on vulnerability discovery and I−1i

(
Di(t̃i)

α−Φi

α ·(1−Φi )

)
time on validation,

where t̃i is the unique solution to30

D′i(t̃i)
©­­«b · Φi −Wi

1

I ′i
(
I−1i

(
Di(t̃i)

α−Φi

α ·(1−Φi )

)) α − Φi

α · (1 − Φi)

ª®®¬ = Wi . (10)

In sum, using an accuracy-threshold policy, an organization can ensure a higher
ratio of valid reports. However, in exchange, the organization must also choose a higher
bounty value to incentivize participation, as theminimumbounty can bemuch higher for
an accuracy-threshold policy

(
b ≥

Wi(1+D′i (0)...)
Φi ·D

′
i (0)

)
than without a policy

(
b ≥ Wi

Φi ·D
′
i (0)

)
.

3.2.3 Report-Rate Threshold

Next, we consider programs that limit the number of reports that each hacker can submit
in some fixed time interval (e.g., the “Rate Limiter” mechanism of HackerOne31). We
model these programs using a policy that imposes a restriction on the participating
hackers’ submission rate Di(ti) − (1 − Φi)Ii(vi). In practice, programs impose these
limitations on each hacker individually. Tomodel this, wewill assume in this subsection
that each hacker type contains only a single hacker. Note that scaling up the analysis to
a multitude of hackers is trivial, since hackers having the same parameters will make
the same choices, so we can simply add their report numbers together.

We define the rate-threshold policy as follows.

Definition 2 (Rate-Threshold Policy). Under a rate-threshold policy with threshold
ρ > 0, the hackers’ choices must satisfy

Di(ti) − (1 − Φi)Ii(vi) ≤ ρ. (11)

The following proposition characterizes the hackers’ responses to the rate-threshold
policy.

28. Note that we only consider the case when the accuracy threshold α is higher than the ratio Φi of
discoveries that are valid. When α ≤ Φi , the hackers’ responses are obviously the same as without a policy.
29. Laszka, Zhao, and Grossklags, “BanishingMisaligned Incentives for Validating Reports in Bug-Bounty

Platforms.”
30. Note that even though we cannot express the solution of Equation (10) in closed form, it can be found

easily numerically since the left-hand side is strictly decreasing or negative. Furthermore, this also holds for
the remaining propositions (Propositions 3 and 4).
31. HackerOne, Improving Public Bug Bounty Programs with Signal Requirements.
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Proposition 3 (32). Suppose that the organization institutes a rate-threshold policy with
threshold ρ. Then, if the marginal utility of vulnerability discovery at ti = 0 is less
than or equal to zero (i.e., b · Φi · D′i(0) −Wi ≤ 0), hackers of type i will not spend
any time on vulnerability discovery. Otherwise, they will spend t̃i time on vulnerability
discovery, where t̃i is the unique solution to d

dti
UHi = 0 subject to the rate-threshold

policy. In this case, they will also spend I−1i
(
Di (t

∗
i )−ρ

1−Φi

)
time on validation if Di(t̃i) ≤ ρ;

otherwise, they will not spend any time on validation.

With respect to bounty values, rate thresholds can be viewed as a cheaper alterna-
tive to accuracy thresholds, as the minimum bounty value for participation with rate
thresholds is the same as without a policy. On the other hand, rate thresholds can also
be less effective than accuracy thresholds, since some hackers may participate without
spending any time on validating their discoveries.

3.2.4 Validation Reward

One of the primary reasons for the large number of invalid reports is the misalignment
of incentives: hackers are only interested in increasing the number of valid reports,
while organizations are also interested in decreasing the number of invalid reports.
Existing approaches try to solve this problem by imposing constraints on the hackers’
choices (e.g., imposing a threshold on their accuracy or on their report rate). Here, we
propose a novel, alternative approach, which incentivizes hackers to reduce the number
of invalid reports by rewarding their validation efforts. The advantage of this approach
is that it does not impose strict constraints on the hackers’ choices, but instead aligns
their incentives with those of the organization, and allows the hackers to optimize their
productivity.

A validation-reward policy can be formulated in multiple ways. For example, the
organization could slightly lower bounties for valid reports, but give a bonus based on
the submitter’s accuracy. Alternatively, it could raise bounties, but deduct from the
payment based on the submitter’s rate of invalid reports. Here, we will study the latter
approach since it allows us to align the hackers’ incentives with those of the organization
in a very straightforward way.

In practice, this policy can be easily implemented in the same way as an accuracy
or rate threshold, by keeping track of each hacker’s valid and invalid reports. Similar to
the rate-threshold policy, we will assume for ease of presentation that each hacker type
contains only a single hacker.

We define the validation-reward policy as follows.

Definition 3 (Validation-Reward Policy). Under a validation-reward policy with incen-
tive δ > 0, a hacker’s utility is

UHi (b, δ, ti, vi) = b · Φi · Di(ti) −Wi · (ti + vi) − δ · (1 − Φi)(Di(ti) − Ii(vi)), (12)

32. Laszka, Zhao, and Grossklags, “BanishingMisaligned Incentives for Validating Reports in Bug-Bounty
Platforms.”
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and the organization’s utility is

UO(b, δ, t, v) =
∑
i

(V − C − b)Φi · Di(ti) − (C − δ)(1 − Φi) (Di(ti) − Ii(vi)) . (13)

The following proposition characterizes the hackers’ responses to the validation-
reward policy.

Proposition 4 (33). Suppose that the organization institutes a validation-reward policy
with incentive δ, and let the desired validation effort v̂i of type i hackers be

v̂i =

{
0 if I ′i (0) ≤

Wi

δ ·(1−Φi )(
I ′i
)−1 (

Wi

δ ·(1−Φi )

)
otherwise.

(14)

Then, hackers of type i will not spend any time on vulnerability discovery if v̂i = 0 and
b·Φi ·D′i(0) ≤ Wi+δ ·(1−Φi)·D′i(0) or if v̂i > 0 and b·Φi ·D′i(0) ≤ Wi

(
1 + D′i(0)I

′
i (0)

)
.

Otherwise, they will spend t̃i time on vulnerability discovery, where t̃i is the unique
solution to d

dti
UHi = 0. In addition, they will spend v̂i or I−1i (Di(t∗i )) time on validation,

whichever one is lower.

3.3 Numerical Results
In this section, we present numerical results on our bug-bounty model in order to
evaluate and compare the policies introduced in Section 3.2. First, in Section 3.3.1, we
consider homogeneous hackers by instantiating our model with a single hacker type, and
we study the hackers’ responses. Second, in Section 3.3.2, we consider heterogeneous
hackers and evaluate policies based on the organization’s utility.

3.3.1 Homogeneous Hackers

For the vulnerability-discovery function D(t), we use an instance of Anderson’s ther-
modynamic model:34 D(t) = ln(10 · t + 1). Note that we added 1 to the argument
so that D(0) = 0. We instantiate the remainder of our model with the following pa-
rameters: V = 10, C = 1, and a single hacker type with W1 = 1, Φi = 0.2, and
I1(v1) = ln(20 · v1 + 1). Notice that these hackers are assumed to be relatively good
at validating their discoveries since I1 grows faster than D. Finally, note that we have
experimented with other reasonable parameter combinations as well, and found that the
results remain qualitatively the same.

Figure 3 shows the hackers’ responses to various policies and the resulting utilities
for the organization and the hackers. First, Figure 3(a) shows that without any policy,
the organization attains maximum utility at b = 2.07: with lower bounties, hackers
dedicate significantly less time to vulnerability discovery (zero time when b < 0.31),
while with higher bounties, the cost of running the program becomes prohibitively high.

33. Laszka, Zhao, and Grossklags, “BanishingMisaligned Incentives for Validating Reports in Bug-Bounty
Platforms.”
34. Anderson, “Security in Open versus Closed Systems – The Dance of Boltzmann, Coase and Moore.”
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Figure 3: The organization’s and the hackers’ utilities (dashed and dotted lines) and
the times spent on vulnerability discovery and validation (solid and dash-dotted lines)
under various policies as functions of the bounty value.

In Figures 3(b), 3(c), and 3(d), we set the bounty value to b = 2.07 and study the effects
of varying the policy parameters.

Figure 3(b) shows that the accuracy-threshold policy is very effective and robust: the
organization’s utility increases steeply with the threshold α, reaches a 70% improvement
at α = 0.74, and declines negligibly after that. In contrast, the rate-threshold policy
is considerably less reliable (Figure 3(c)): the organization’s utility is improved by
55% at ρ = 0.2, but it decreases rapidly as the threshold decreases or increases, and
it may reach significantly lower values than without a policy. Thus, the organization
must implement this policy with great care in order to avoid suppressing productivity.
Finally, Figure 3(d) shows that the validation-reward policy is robust: even though the
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organization’s utility does not increase until the threshold reaches δ < 0.66, it increases
steeply after that, reaching and maintaining a 69% improvement.

3.3.2 Heterogeneous Hackers

Now, we add a second type of hackers, who are worse at validating their discoveries,
which we model by letting I2(v2) = ln(2.5 · v2 + 1) (all other parameters are the
same as for the first type). Since we now have multiple hacker types, who may have
different responses and utilities, we will plot only the organization’s utility for clarity
of presentation.
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Figure 4: The organization’s utility under various policies as a function of the bounty
value and policy parameter.

Figure 4 shows the organization’s utility under various policies with two types
of hackers. Similar to Figure 3(c), Figure 4(b) shows that the rate-threshold policy
must be implemented carefully since overzealous limiting may significantly decrease
the organization’s utility, while lenient limiting is ineffective. On the other hand, the
accuracy-threshold and validation-reward policies (Figures 4(a) and (c)) have large
“plateaus” around the optimal values, which make them more robust to changes in
configuration or parameter values. Nonetheless, if the bounty value is very low, even
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these policies – especially the validation-reward policy – may be too strict and deter
hackers from participating.
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Figure 5: The organization’s maximum attainable utility under various policies as a
function of the bounty value

.

Figure 5 shows the organization’s maximum attainable utility under various policies
with two types of hackers. For each policy and bounty value, we searched over possible
values of the policy parameter space (i.e., α = 0.2, 0.21, . . . , 1; ρ = 0, 0.05, . . . , 5;
or δ = 0, 0.012, . . . , 1.2) and plotted the maximum utility. Since the two hacker types
differ only in their validation performance, the utility values without a policy shown
by Figure 5 are proportional to the values shown by Figure 3(a), and the maximum is
again attained at b = 2.07. Compared to this baseline, the accuracy-threshold, rate-
threshold, and validation-reward policies can attain 31%, 13%, and 52% improvement,
respectively. However, if the bounty value is not high enough, none of the policies
can improve the organization’s utility. Finally, offering validation rewards outperforms
the other policies significantly, since it is able to incentivize heterogeneous hackers to
operate at their individual maxima instead of forcing them towards a uniform strategy.

3.4 Summary
In this section, we provided the first theoretical framework for modeling policies for
reducing the number of invalid reports in bug-bounty programs. Using our framework,
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we investigated a set of canonical policies, and studied the hackers’ responses to these
policies, showing that each type has a unique response to each policy. In addition
to studying existing policies, we also proposed a new policy that incentivizes hackers
without restricting their actions.

Based on numerical analyses, we found that all of the considered policies may
substantially improve an organization’s utility, which explains their widespread use.35
However, their effectiveness and reliability vary significantly. We found that the rate-
threshold policy is not only less effective than the other two, but it must also be
configured more carefully. In contrast, the accuracy-threshold and validation-reward
policies are less sensitive to changes in parameter and configuration values, and they can
also be more effective. However, without adequate bounties, even these policies might
“backfire” and actually deter hackers from dedicating time to vulnerability discovery.
Finally, we found that the validation-reward policy may significantly outperform the
other two when hackers are not homogeneous, since it allows hackers to operate at their
individual optima.

In future work, we plan to extend this model and analyses by considering combina-
tions of policies. In other words, wewill consider organizations that implementmultiple
policies at the same time. Building on our current analysis, we will study how hackers
respond to various policy-combinations, and we will explore which combinations are
the most effective and robust.

4 Policies for Allocating Discovery Effort
In this section, we study policies for allocating hackers to bug-bounty programs, fo-
cusing on maximizing the number of unique reports and minimizing the number of
duplicate reports. We first introduce a formal model of bug-bounty programs, which
captures the non-deterministic vulnerability-discovery process and the diversity of the
hackers’ expertise. Based on our framework, we formalize two canonical policies,
which model public and private bug-bounty programs in practice. Then, we study opti-
mal allocations, which maximize the organization’s utility while ensuring that hackers’
have incentives to participate. Finally, we present a numerical illustration based on
our framework, which shows how utilities are affected by the number of participating
hackers.

This section is organized as follows. In Section 4.1, we introduce our economic
model of unique and duplicate vulnerability reports in bug-bounty programs. In Sec-
tion 4.2, we discuss a set of canonical policies for allocating hackers to a bug-bounty
program. In Section 4.3, we present a numerical illustration and discuss our findings.
Finally, in Section 4.4, we offer concluding remarks on this problem area and outline
future work.

4.1 Model
Now, we introduce our economic model that we use to study the allocation of hacker
in bug-bounty programs. A list of symbols used throughout Section 4 can be found in

35. HackerOne, Improving Public Bug Bounty Programs with Signal Requirements.

19



Table 3.

Table 3: List of Symbols in Section 4

Symbol Description
Constants and Functions

V average value of a valid report for the organization
CO average cost of processing a report for the organization
CH average cost of finding and reporting a bug for a hacker
B average bounty paid for the first report of vulnerability
H set of hackers
S set of vulnerability types
Pi discovery probability of vulnerability i
Qs probability that a vulnerability is of type s ∈ S
Sh set of vulnerability types that hacker h ∈ H can discover

Variables
Ht set of hackers working on the program in time step t
rt total number of reports in time step t
ut number of unique discoveries in time step t

We assume that time is discrete, and we number the time steps of our model 1, 2, . . ..
At the beginning (i.e., at the start of time step 1), there are a large number of unknown
bugs36waiting to be discovered in a software product (e.g., a website). The organization
responsible for this product creates a bug bounty program. It then invites participants
from a set of hackers H at the start of each time step t = 1, 2, . . .. We assume that the set
of hackers H whom may be invited to participate is constant. We define an allocation
plan A as a vector A = {H1,H2, . . .}, where Ht ⊆ H is the set of hackers invited for
time step t.

At the end of each time step t, invited hackers submit rt bug reports in total to the
program. Among these reports, some are duplicates because multiple hackers could
find the same issue. However, the organization is interested only in unique discoveries,
whose number is denoted by ut , and obviously ut ≤ rt . The numbers rt and ut are
generated using the vulnerability-discovery model, which we will discuss shortly. The
organization rewards each unique bug discovery with bounty B (e.g., average around
$424 in 201537), and fixes all discovered bugs at the end of each time step. The
organization also incurs cost CO for processing each submitted report. Finally, we
assume that the organization gains value V from fixing each unique bug.38 However,
the value of fixing a bug decreases over time since the later the bug is fixed, the more
likely it is that malicious parties will find and exploit the bug before it is fixed. We use
a time-discounting factor δ ∈ (0, 1) to model this temporal preference.

36. Usually, bug bounty programs only focus on security bugs, or vulnerabilities. For brevity, we will use
the more general word “bug” interchangeably with “vulnerability.”
37. Zhao, Grossklags, and Liu, “An empirical study of web vulnerability discovery ecosystems.”
38. We assume that all bugs have equal impact for now. This assumption will be relaxed in future work.
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We can write the utility function of an organization from bug bounty as

UO =

∞∑
t=1

(
(δt−1V − B)ut − Cort

)
. (15)

Next, we assume that it costs CH for a hacker to find and report a vulnerability. Note
that CH can be determined by dividing the total amount of effort spent by hackers with
the number of vulnerabilities reported. In other words, the constant CH is the unit cost
of reporting a vulnerability, which includes the effort spent on finding and validating
the vulnerability as well as the effort spent on writing and submitting the report. Then,
the utility function of all invited hackers is

UH =

∞∑
t=1

(But − CHrt ). (16)

4.1.1 Vulnerability-Discovery Model

Now, we will introduce our bug discovery model, which generates the numbers rt
and ut . Each bug can be represented as a single input (or a group of inputs) that
triggers a specific error in the software or hardware system. Since the input space of
any non-trivial system is prohibitively large, a hacker usually discovers bugs based on
tools with randomization (e.g., fuzzing), heuristics, experiences, and luck. Based on
these observations, we propose the following bug discovery model. We assume that
each bug i is discovered by an invited hacker in a single time step with probability
Pi , independently of the other hackers and other bugs, as long as bug i has not been
discovered in an earlier time step. Probability Pi not only models the randomness of
bug discovery, but also captures the difficulty of discovering a bug.

Previous research has shown that bugs have different discovery difficulty in prac-
tice.39 More specifically, it was observed that if bugs are numbered i = 1, 2, . . ., then
their probabilities Pi follow a discrete power law distribution:40

Pi =
i−α

ζ(α)
, (17)

where α is a scaling factor and ζ is the Riemann Zeta function. The factor α reflects the
size of the system’s attack surface and the security quality of the system. In practice,
this factor can potentially be estimated from characteristics like codebase size, maturity
of the security development life cycle, etc..41

39. Brady, Anderson, and Ball, Murphy’s law, the fitness of evolving species, and the limits of software
reliability; Zhao and Liu, “Empirical Analysis and Modeling of Black-Box Mutational Fuzzing.”
40. Zhao and Liu, “Empirical Analysis and Modeling of Black-Box Mutational Fuzzing.”
41. Katie Moussouris, A Maturity Model for Vulnerability Coordination, HackerOne Blog, 2015; OWASP,

Software Assurance Maturity Model v1.1, https://www.owasp.org/index.php/OWASP_SAMM_Project,
2016.
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Figure 6: Illustration of the diversity model.

4.1.2 Hacker-Diversity Model

Existing literature has revealed that hackers have diverse expertise, use different tools,
etc., so they are good at discovering different types of bugs.42 Now, we introduce a
model that captures this diversity.

First, each bug belongs to one type from a set of vulnerability types S.43 We
assume that the probability of a bug belonging to type s is Qs , where Qs is exogenous
and known, and obviously

∑
s∈S Qs = 1. The probability Qs can be estimated from

earlier bug discovery data, obtained through internal security testing or from similar
organizations. Second, we let Sh be the set of vulnerability types that hacker h ∈ H can
discover. Sh can be obtained from data accumulated on bug bounty platforms. Figure 6
illustrates the relationships between the elements of our model.

By combining this with our discovery model, we have that the probability that
hacker h discovers bug i is Pi if s ∈ Sh , where s is the type of bug i, and the probability
is 0 if s < Sh .

4.2 Policies and Computational Complexity
Now, we study various policies for choosing an allocation plan. First, in Section 4.2.1,
we formulate two canonical policies, which model public and private bug-bounty pro-
grams in practice, as well as formulate a policy that finds an optimal allocation. Then,
in Section 4.2.2, we prove that finding an optimal allocation plan is a computationally
hard problem.

42. Anne Edmundson et al., “An empirical study on the effectiveness of security code review,” in En-
gineering Secure Software and Systems (2013); Zhao, Grossklags, and Liu, “An empirical study of web
vulnerability discovery ecosystems”; Munawar Hafiz and Ming Fang, “Game of detections: How are secu-
rity vulnerabilities discovered in the wild?,” Empirical Software Engineering 21, no. 5 (2016): 9021–1959;
Keman Huang et al., “Poster: Diversity or Concentration? Hackers’ Strategy for Working Across Multiple
Bug Bounty Programs,” in 37th IEEE Symposium on Security and Privacy (S&P) (2016).
43. Zhao, Grossklags, and Liu, “An empirical study of web vulnerability discovery ecosystems.”
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4.2.1 Policies

We consider three policies for choosing the allocation plan A = {H1,H2, . . .}:

• public program

• private program

• optimal time-variant allocation.

Public ProgramPolicy Apublic program allows any hacker to participate and submit
reports. Since the set of all hackers in our model is H, we can formulate this policy as

A = {H,H, . . .},

that is, letting Ht = H for every time step t. The advantage of this policy is that it
minimizes the expected time until a bug is discovered and, hence, maximizes security.
Unfortunately, it also maximizes the number of duplicate reports, which may result in
overwhelming processing costs for the organization.

Private Program Policy On the other hand, private programs allow only a selected
group of hackers to participate and submit reports. We formulate a simple policy that
models private programs as follows: first select a set of hackers H∗, and then invite
them by letting

A = {H∗,H∗, . . .},

that is, letting Ht = H∗ for every time step t. The set of invited hackers H∗ is typically
chosen to include the most skillful individuals. For example, we can select hackers who
are capable of discovering at least σ different types of bugs:

H∗ = {h ∈ H | |Sh | ≥ σ} . (18)

Compared to public programs, the advantage of this policy is that it decreases the
number of duplicate reports by limiting the set of participating hackers. However, it
also increases the expected time until a bug is discovered and, hence, increases the risk
of a malicious party discovering and exploiting a bug before it could be fixed.

Optimal Time-Variant Allocation Finally, we consider the policy that always selects
an optimal allocation plan, which maximizes the organization’s expected utility. In
Section 4.2.2, we will show that finding an optimal allocation is computationally hard.
Consequently, implementing this policy in practice is quite difficulty, and we may have
to use heuristic approaches instead.

An optimal allocation can plan can be expressed simply as

max
A

E[UO].

However, in order to make the bug-bounty program feasible, we also need to ensure that
participating hackers actually have an incentive to spend time and effort on discovery.
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That is, we need to ensure that the hackers’ expected utility is non-negative despite the
fact that duplicates, which are due to competition between hackers, cannot be rewarded
and that discovering bugs becomes harder over time. Assuming that the bounty B paid
by the organization is fixed, we can formulate this problem as

max
A: E[UH ]≥0

E[UO].

More generally, if we allow the organization to adjust the bounty B, we can formulate
this problem as

max
A,B: E[UH ]≥0

E[UO].

4.2.2 Computational Complexity of Finding an Optimal Allocation

Next, we study the computational aspects of optimal time-variant allocation. Finding an
optimal allocation is a challenging problem because the number of possible allocations
to choose from is an exponential function of the number of hackers, which means that
considering all possible allocations is computationally infeasible in practice. Indeed,
we prove that this problem is NP-hard, which implies that there exist no efficient (i.e.,
polynomial-time) algorithm for finding an optimal allocation as long as the conjecture
P , NP holds. We remark for the benefit of those unacquainted with algorithmic
complexity theory that P , NP is a very widely accepted conjecture; if this were not
true, then there would be a polynomial-time algorithm for every NP-hard problem.
Consequently, practical policies must be based on heuristic approaches for finding
allocations.

For ease of presentation, we consider the problem of finding an optimal set of
hackers for a private program. The hardness of finding an optimal allocation that may
use different sets of hackers for each time step follows readily from the hardness of
this problem. To prove computational complexity, we first formulate the problem as a
decision problem.

Definition 4 (Hacker Allocation Problem). Given an instance of our model and a
threshold utilityU∗O, determine if there exists a set of hackers H∗ such that the expected
utilityUO for allocation A∗ = {H∗,H∗, . . .} is greater than or equal toU∗O.

Theorem 1. The Hacker Allocation Problem is NP-hard.

We prove computational complexity by reducing a well-known NP-hard problem,
the Exact Cover Problem, to the Hacker Allocation Problem. The Exact Cover Problem
is defined as follows.

Definition 5 (Exact Cover Problem). Given a base set X and a family F of subsets of X
(i.e., each F ∈ F is a subset of X), determine if there exists a subfamily C of F such
that each element of X is contained by exactly one subset in C.

Proof sketch. (Theorem 1). Given an instance of the Exact Cover Problem (i.e., a base
set X and a familyF of subsets), we create an instance of theHacker Allocation Problem
as follows:

24



• Let the set of vulnerability types be S = X and the set of hackers be H = F .

• For each hacker h ∈ H = F , let the set of vulnerability types that the hacker can
discover be Sh = h (i.e., the vulnerability types corresponding to the elements of
X that are in the subset corresponding to h).

• For each vulnerability type s ∈ S, let Qs =
1
|S | .

• Let V = 3, CO = 1, CH = 0, B = 1, δ = 0.1, and Pi = 1 for every i.

It is clear that the reduction can be performed in polynomial time. Further, it is also
clear that the organization’s expected utility attains its maximum when the set hackers
H∗ forms an exact cover of X . Hence, by setting the threshold utility to this maximum,
we can show that the Hacker Allocation Problem has a solution iff the Exact Cover
Problem does. �

4.3 Numerical Illustration
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Figure 7: Expected utilities with different numbers of hackers invited. Parameters used:
V = 20, B = 5, δ = 0.99, Co = Ch = 1, α = 2.

The practical goal of our work is to help organizations optimize their bug bounty
programs. A basic, but often voiced idea is to attract as many hackers as possible, which
corresponds to a public program policy. We evaluate this notion using our model and
data collected from a bug bounty platform, Wooyun.44 Figure 7 shows that the expected

44. Zhao, Grossklags, and Liu, “An empirical study of web vulnerability discovery ecosystems.”
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utilities of the inviting organization and the invited hackers exhibit inverted U-shapes,
and do not scale linearly with the number of hackers. Rather, they start to decrease
after a certain number of hackers have joined. The reason is that as more hackers are
invited, the number of duplicates increases, which raises the cost of processing reports
by the organization, and also decreases the expected bounty received by hackers. This
result suggests that for bug bounty programs, more participation is not always better.
Instead, the bug bounty program should carefully design its allocation plan to control
the competition among participants and to diversify its workforce.

4.4 Summary
In this section, we introduced the first theoretical framework for modeling the allocation
of hackers to bug-bounty programs, focusing on the number of unique and duplicate
reports. To capture how hackers discover vulnerabilities with their diverse set of
expertise, we built our framework on a detailed vulnerability-discovery model and
a hacker-diversity model. Our vulnerability discovery model is based on our prior
experimental work,45 which showed that discovery can be modeled as a relatively basic
stochastic process.

Based on our framework, we first formalized two canonical policies, which modeled
public and private bug-bounty programs. Then, we studied optimal time-variant hacker
allocations, and showed that finding an optimal allocation is a computationally hard
problem. The significance of this result is that practical allocation policiesmust be based
on efficient heuristics instead of optimal allocations, since finding optimal allocations
is computationally infeasible if the number of hackers is not very small. Finally,
we presented numerical results on the organization’s and the hackers’ utilities in a
typical bug-bounty program. Our results showed that the optimal number of invited
hackers must be carefully chosen as increasing participation may decrease both the
organization’s and the hackers’ utilities, which explains the growing popularity of
private programs.

In future work, we plan to study more elaborate hacker-allocation policies, and
devise effective heuristics algorithms for finding near-optimal allocations. In addition,
we will carry out a more extensive numerical study comparing public and private
programs, based on real-world data on unique and duplicate vulnerability reports.

5 Regulatory Policy Challenges
In the previous sections, we have discussed challenges for creating effective engagement
policies between organizations and white-hats. In this section, we expand the scope of
our discussion to regulatory policy challenges for bug-bounty approaches. We discuss
how governments can create regulatory policies to better utilize bug-bounty to improve
information security of the private sector and the public sector. We first focus on
challenges related to creating regulatory policies for reducing risk and conflict associated
with vulnerability research and disclosure. We then discuss whether governments

45. Zhao and Liu, “Empirical Analysis and Modeling of Black-Box Mutational Fuzzing.”
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should make bug-bounty mandatory for organizations. Finally, we discuss regulatory
challenges that arise from potential conflict between bug-bounty and other policies
related to cyber-security.

5.1 Protect Legitimate Vulnerability Research
To find security vulnerabilities that are eligible for bounties, white-hats have to conduct
various security assessments against the target software system. However, there is a
lack of clear regulatory policies on what vulnerability research activities are acceptable.
The bug-bounty rules discussed in Section 2.1 can be considered as contracts between
organizations and white-hats that permit limited vulnerability research. For example,
Facebook’s bug-bounty program explicitly states that “If you comply with the policies
below when reporting a security issue to Facebook, we will not initiate a lawsuit or law
enforcement investigation against you in response to your report.".46 However, there
will be times when white-hats and organizations disagree on the interpretation of those
rules.47

Having clear regulatory policies on legal vulnerability research can reduce risks and
uncertainties to both organizations and white-hats, and encourages wider collaboration
between them. Organizations would want to make sure that vulnerability research
will not damage its systems’ integrity and availability, nor harm its data confidential-
ity. While white-hats also want to be protected from (unreasonable) legal threats and
penalties. However, the first challenge of creating such regulatory policies is that it
is hard to separate vulnerability research from malicious hacking. After all, both of
them typically include collecting information about the system, reverse-engineering a
piece of software, sending exploit payload through different input vectors, attempting
to escalate privilege to access critical data, etc. Loose regulations, therefore, might
reduce the legal risk of malicious hacking and might encourage more cybercrimes.

In addition, it is also common that security researchers discover vulnerabilities in
software products and systems without associated bug-bounty programs by organiza-
tions. Such efforts can lead to fixes of severe security flaws that impact a large user
base. However, they could be considered as illegal cyber-attacks. In a recent case, a
Chinese online dating company reported a white-hat to the police, who then arrested
the white-hat based on the charge of illegal intrusion and acquisition of user data.48 In
addition to organization-level legal actions, governments might also take actions against
bug-bounty organizers and white-hats. Wooyun, the oldest and largest bug-bounty plat-
form in China, was abruptly shut down in Summer 2016, followed by the arrest of its
key members.49

46. Facebook, Responsible Disclosure Policy, https://www.facebook.com/whitehat, 2016.
47. Michael Mimoso, Facebook, Researcher Spar over Instagram Vulnerabilities, Threatpost; https:
//threatpost.com/facebook-researcher-spar-over-instagram-vulnerabilities/115658/,
December 2015.
48. Lin Zizhen and Saga McFarland, Are China’s ‘Ethical Hackers’ Cyber Heroes or Criminals?, Caixi-

nOnline, http://english.caixin.com/2016-10-17/100997728.html, October 2016.
49. Samuel Wade, Internet Security Platform Closed; Founder Arrested, China Digital Times; http://c
hinadigitaltimes.net/2016/08/internet-security-platform-closed-founder-arrested/,
August 2016.
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Moreover, a recent report published by the U.S. National Communications and
Information Administration (NTIA) shows that less than one in five surveyed companies
currently make use of bug-bounties.50 The rest of the organizations could argue that
not participating in bug-bounty approaches avoids risks associated with vulnerability
research. But, at the same time, these organizations, who may be part of different
industry sectors such as government, finance, education, could harbor a significant
amount of vulnerabilities, which pose serious threats to the privacy, property or even
safety of consumers and these organizations’ interests. In fact, previous research
has shown that white-hats are able to discover a wide range of severe vulnerabilities at
organizations who have no formal bug-bounty programs.51 Onemay postulate that most
of these organizations, compared with organizations that have bug-bounty programs,
are actually less secure, and are in more need of help from white-hats.

Therefore, we argue that future regulatory policy effort should aim to protect legit-
imate vulnerability research (see, for example, the recent temporary DMCA security
research exemption for consumer devices52). Such exemptions shall specify what kind
of vulnerability research is allowed (e.g., no user data will be exported), even if there is
an absence of organization-wide bug-bounty rules.

5.2 Guidance for Vulnerability Disclosure
Another important question regarding bug-bounty and vulnerability research in general
is how to manage disclosure. There are two main types of vulnerability disclosure
approaches,53 full disclosure and coordinated disclosure. Full disclosure is the policy of
publishing the discovery as early as possible, so that the security community and affected
users can immediately scrutinize the issue and take mitigation actions. However, it
also enables malicious attackers to take advantage of the vulnerability information
before mitigation measures are fully deployed. Coordinated disclosure (also known as
responsible disclosure) requires that the white-hat shall first disclose the vulnerability
only to the affected organization, and give the organization enough time to fix the flaw.
Under coordinated disclosure, the risk of the vulnerability information being misused
is reduced. However, if the vulnerability is also discovered by attackers, then all users
of the product or system are still exposed to security risk, before the patch is available.

There has been a long debate in the security community regarding which disclosure
approach is more favorable. In practice, such disagreements often lead to severe
conflicts between white-hats and organizations. In a recent example, German firm
ERNW discovered several serious vulnerabilities in the products of FireEye. However,
FireEye and ERNW failed to reach an agreement on what can be shared with the public,
and FireEye filed an injunction in German court to prevent ERNW from disclosing
certain information for intellectual property protection reason.54

50. NTIA Awareness and Adoption Group, Vulnerability Disclosure Attitudes and Actions, https://
www.ntia.doc.gov/files/ntia/publications/2016_ntia_a_a_vulnerability_disclosure_
insights_report.pdf, 2016.
51. Zhao, Grossklags, and Liu, “An empirical study of web vulnerability discovery ecosystems.”
52. Aaron Alva, DMCA security research exemption for consumer devices, Tech@FTC, 2016.
53. Hasan Cavusoglu, Huseyin Cavusoglu, and Srinivasan Raghunathan, “Emerging Issues in Responsible

Vulnerability Disclosure,” in Workshop on the Economics of Information Security (WEIS) (2005).
54. FireEye, Bug bounties, (non) lawsuits and working with the research community, https://security.
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Regulatory policies for vulnerability disclosure that specify the best disclosure
decision under different scenarios not only reduce conflicts, but also increase the positive
impact of bug-bounty on improving cyber-security. The key challenge here is to balance
the trade-off between the benefit and risk of vulnerability disclosure. Although, there
has been plenty research on vulnerability disclosure in the past,55 we think that more
research is required to understand this trade-off, and to create actionable guidelines
for vulnerability disclosure decisions. Future analyses could consider indirect benefits
of vulnerability disclosure as well, such as the facilitation of more effective legitimate
vulnerability research, and an increase of the security awareness of consumers.

5.3 Make Bug-bounty Mandatory
The benefits of bug-bounty lead to proposals to further widen the application of the
approach. As a first step, regulatory agencies can include bug-bounty as one solution to
satisfy certain security compliance requirements. For example, bug-bounty could serve
as an alternative to penetration testing in the PCI DSS Requirement 11.3.56 Academics
and security researchers have also proposed to make bug-bounty programs manda-
tory. For example, Barnes advocates for this “low-cost” approach.57 Likewise, Hahn
and Layne-Farrar see mandatory bounty programs as a solution to software security
problems since they “cost little to establish, only pay out when a benefit is achieved,
and can be set at a level that guarantees that benefits exceed any costs”.58 Other
researchers go one step further to discuss the feasibility of a national or international
vulnerability purchase program to absorb zero-day vulnerabilities from white-hat and
black hat researchers worldwide.59 Regulatory agencies also appear to move in the
direction of requiring bug-bounty programs. For example, the Federal Trade Com-
mission issued a penalty in the HTC America case also in part since the company did
not have a process for receiving and addressing security vulnerabilities reports.60 In
addition to receiving vulnerability reports, bug-bounty programs could also indirectly
and positively influence cyber-security. For example, bug-bounty data such as bounty
levels, vulnerability statistics, and participation trends could potentially alleviate the
market for lemons problem for security,61 and enable consumers to select more secure

googleblog.com/2013/05/disclosure-timeline-for-vulnerabilities.html.
55. Hasan Cavusoglu and S Raghunathan, “Efficiency of vulnerability disclosure mechanisms to dissemi-

nate vulnerability knowledge,” IEEE Transactions on Software Engineering 33, no. 3 (2007); Ashish Arora,
Rahul Telang, and Hao Xu, “Optimal policy for software vulnerability disclosure,” Management Science
54, no. 4 (2008): 642–656; Ashish Arora et al., “An empirical analysis of software vendors’ patch release
behavior: impact of vulnerability disclosure,” Information Systems Research 21, no. 1 (2010): 115–132.
56. PCI Security Standards Council, Information Supplement: Penetration Testing, March 2008.
57. Douglas Barnes, “Deworming the internet,” Texas Law Review 83, no. 1 (2004).
58. Hahn and Layne-Farrar, “The Law and Economics of Software Security.”
59. Stefan Frei and Francisco Artes, International Vulnerability Purchase Program: Why buying all vul-

nerabilities above black market prices is economically sound, NSS Labs, Analyst Brief, 2013; Stephen M.
Maurer, A market-based approach to cyber defense: Buying zero-day vulnerabilities, Bulletin of the Atomic
Scientists, 2017.
60. Federal Trade Commission, Start with Security: A Guide for Business, FTC Website; https://
www.ftc.gov/tips-advice/business-center/guidance/start-security-guide-business#
current, June 2015.
61. Ross Anderson, “Why information security is hard-an economic perspective,” in Computer security

applications conference, 2001. acsac 2001. proceedings 17th annual (IEEE, 2001), 358–365.
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information services.
However, there are several challenges for creating such regulatory policies. First,

due to the invalid report issue discussed in Section 2, the cost of establishing and
managing a bug-bounty programmight be higher than it appears to be initially. Second,
previous research has shown that many organizations, particularly smaller ones, are not
well-prepared to handle vulnerability reports.62 Under delayed disclosure policy, their
vulnerability reports could be exposed to the public, and thus significantly increase
the risk of security attacks. Therefore, we believe that it is important to establish
regulatory policies for vulnerability research and disclosure before pushing for a wider
application of bug-bounty. Also, such policies can consider utilizing third-parties,
such as HackerOne and CERT, to handle reports for the majority of organizations with
small and inexperienced security teams.

Another challenge for fulfilling these visionary ideas is the limited manpower of
white-hats. Please note that these factors are interrelated since high-quality white-hat
contributions and work efforts are a scarce and valuable resource which needs to be
efficiently allocated and distributed to a growing number of participating companies.
To illustrate the current limits to growing white-hat contributions consider the recently
released results from HackerOne’s Bug Bounty Hacker Report.63 The report indicates
that researchers come from all walks of life (e.g., 39% work for a security company),
and 70% of the surveyed population are either full-time employees or full-time students
which limits the time which can be expended for vulnerability discovery. Further, only
3.4% reported to have learned the necessary skills from classes or certificate programs,
while all others were either self-taught hackers or benefited from informal learning
within their own social networks of colleagues or friends. These findings suggest a
need to find new approaches to scale the available workforce to accommodate a much
larger number of programs. For example, rather than merely waiting for more security
professionals to join, bug-bounty platforms or other organizations can create online
education and crowdsourcing programs to teach less experienced or new participants
the knowledge and skills to do ethical security research. Such efforts will lower the bar
of participation and enlarge the workforce.

Conceivably, substantially higher bounty rewards as, for example, advocated by
Frei and Artes may increase the supply of labor to bounty platforms and potentially
redirect some labor (and trading of vulnerabilities) from cybercriminal marketplaces;64
otherwise, it is likely that we would merely observe a redistributive effect of a relatively
constant overall work effort to higher paying programs. Our allocation model in
Section 4 can be viewed as a first step to solve this challenge.

5.4 Bug-bounty and Other Cyber-security Policies
There are also challenges to reconcile bug-bounty with other cyber-security policies.
At present, the white-hat community is very international. For example, HackerOne,

62. Zhao, Grossklags, and Liu, “An empirical study of web vulnerability discovery ecosystems.”
63. HackerOne, The 2016 Bug Bounty Hacker Report, HackerOne Blog, https://hackerone.com/
blog/bug-bounty-hacker-report-2016, 2016.
64. Frei and Artes, International Vulnerability Purchase Program: Why buying all vulnerabilities above

black market prices is economically sound.
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the leading bug-bounty platform in U.S., reported that only 19% of the hackers are
self-identified as U.S.-based, and hackers come from more than 70 countries65 (please
also note data from Facebook and Bugcrowd66). Therefore, for bug-bounty platforms
to run smoothly, a large share of vulnerability reports have to flow across international
borders. In contrast, a broad coalition of countries (including Western nations and
former Warsaw Pact countries) are regulating the export of intrusion software through
the Wassenaar Arrangement. The relevant terms have been introduced in the text of
the arrangement in 2013, but are undergoing incremental changes with each revision
of the arrangement. While the intended goal of the provisions is to prevent repressive
regimes from exploiting such software, the security research community considers the
definition of intrusion software as overly broad67 and remains concerned about negative
(chilling) effects on the vulnerability discovery ecosystem, which are difficult to observe.
Further, the Wassenaar Arrangement may expand to include other nations known for
contributions to bug-bounty platforms such as India, which would further sharpen these
concerns. In addition, such arrangements may have further unintended consequences
including the misuse of vulnerability information. For example, if white-hats are (or
feel) subjected to export control procedures and request an export license from their
government, then a self-interested government might reject the request, and secretly put
the report in its cyberweapons arsenal.

Another angle is related to government purchasing and stockpiling of zero-day
vulnerabilities for offensive purposes. Government agencies or their brokers often pay
much higher rewards compared to bug-bounty programs. For example, Apple’s recently
launched bug-bounty program is expected to pay up to $200,000,68 while Zerodium, a
vulnerability broker company whose clients are said to include government agencies,
offers up to $1.5M for top iOS vulnerabilities.69 Such programs, however, are in conflict
with the goal of bug-bounty because they not only prevent issues from being disclosed
and fixed, but might also drain manpower away from bug-bounty programs.

5.5 Summary
At present, bug-bounty, or vulnerability research and disclosure in general, is not
regulated by clear policies. Such uncertainty hinders a wider collaboration between
organizations andwhite-hats to enhance system security and protect user data. We argue
that it is necessary to spend more effort on researching and constructing regulatory
policies for vulnerability research and disclosure. We also think there are benefits to
enforce certain forms of mandatory bug-bounty, yet more research effort is needed to
understand their impact, and to build more efficient mechanisms to engage white-hats

65. HackerOne, The 2016 Bug Bounty Hacker Report.
66. Facebook, Bug Bounty Highlights and Updates, 2014; Bugcrowd, The State of Bug Bounty, July 2015.
67. Eric Chabrow, US-Backed Effort to Ease Software Export Limits Fails, http://www.govinfose
curity.com/us- backed-effort- to-ease- software-export- limits-fails- a-9598; Katie
Moussouris, You Need to Speak Up For Internet Security. Right Now., Wired, 2015.
68. Kate Conger, Apple announces long-awaited bug bounty program, Tech Crunch, https://techcrun
ch.com/2016/08/04/apple-announces-long-awaited-bug-bounty-program/, August 2016.
69. Lily Hay Newman, A Top-Shelf iPhone Hack Now Goes for $1.5 Million, Wired, https://www.
wired.com/2016/09/top-shelf-iphone-hack-now-goes-1-5-million/, September 2016.
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and organizations. Finally, we think that policy makers of new cyber-security initiatives
shall consider the potential impact on bug-bounty.

6 Related Work
There has been a long-standing interest for using market approaches to address software
security problems. Böhme established a terminology for organizational principles
of vulnerability markets by comparing bug bounties, vulnerability brokers, exploit
derivatives and cyber-insurance.70 Among these market approaches, bug bounties
have received strong attention from both industry and academia. Schechter proposed
a testing competition in which multiple testers report security defects to a software
company for reward.71 Ozment further extended Schechter’s testing competition into
a vulnerability auction to improve its efficiency and better defend against attacks.72 In
both mechanisms, the amount of reward grows linearly with time, and resets to the
initial value every time a report is accepted. This reward policy enables the firm to
minimize the cost while still offering a fair price for the vulnerabilities discovered by
the testers. The reward level at a given time can also serve as a measurement of software
security. However, these two mechanisms did not account for the problem of invalid
reports, which cause high cost for today’s bug-bounty programs and the participating
organizations. Schechter proposed to require testers to pay the transaction costs of
processing reports.73 However, this idea would prevent many hackers from submitting
reports and thus is not implemented in reality. Our research focuses on real bug-bounty
programs and their policies, thus complements these early proposed mechanisms.

In recent years, researchers have conducted multiple empirical analyses on bug-
bounty programs. Finifter et al. empirically studied the Google Chrome vulnerability
reward program (VRP) and the Mozilla Firefox VRP,74 and suggested that VRPs are
more cost-effective compared to hiring full-time security researchers in terms of finding
security flaws. Kuehn andMueller applied institutional economics theory and document
analysis to explain the formation of bug bounty programs.75

Zhao et al. conducted a comprehensive study of two bug bounty ecosystems,
Wooyun and HackerOne, to understand their characteristics, trajectories and impact.76
They quantitatively discussed the low signal-to-noise ratio problem which is one focus
of this paper. In follow-up research, they empirically studied reward distribution and
hacker enrollments of public bounty programs on HackerOne and found that growing

70. Rainer Böhme, “AComparison ofMarket Approaches to Software Vulnerability Disclosure,” inEmerg-
ing Trends in Information andCommunication Security, ed.GünterMüller (SpringerBerlinHeidelberg, 2006),
298–311.
71. Stuart Schechter, “How to Buy Better Testing Using Competition to Get the Most Security and Robust-

ness for Your Dollar,” in Infrastructure Security (Springer, 2002), 73–87.
72. Andy Ozment, “Bug auctions: Vulnerability markets reconsidered,” in Workshop on the Economics of
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rewards cannot match the increasing difficulty of vulnerability discovery, and thus
hackers tend to switch to newly launched programs to find bugs more easily.77 Both
papers suggested that a bounty program manager should try to enroll as many hackers
as possible to deplete the number of vulnerabilities more effectively. However, this
leads to a significant increase of invalid submissions, which we aim to address in this
paper.

Compared with these empirical studies, this paper applies theoretical modeling
to study the dynamics of bug bounty, and proposes new mechanisms to improve its
efficiency and effectiveness.

For other types of market-based vulnerability discovery mechanisms, Kannan and
Telang theoretically demonstrated that unregulated vulnerability markets almost always
perform worse than regulated ones, or even non-market approaches.78 They further
found that offering rewards for benign vulnerability discoverers is socially beneficial.
Frei et al. studied a security ecosystem including discovers, vulnerability markets,
criminals, vendors, security information providers and the public, based on 27,000
publicly disclosed vulnerabilities to examine the risk and impact of such an ecosystem.79
They found that between 10% and 15% of the vulnerabilities of major software vendors
are handled by commercial vulnerability markets, and exploits become available faster
than patches on average. Ransbotham et al. empirically examined the effectiveness of
vulnerability markets and concluded that market-based disclosure restricts the diffusion
of vulnerability exploits, reduces the risk of exploitation, and decreases the volume
of exploitation attempts.80 Algarni and Malaiya analyzed data of several existing
vulnerability markets and showed that the black market offers much higher prices for
zero-day vulnerabilities, and government agencies make up a significant portion of the
buyers.81 Bacon et al. have proposed a more general market design that contains bug
hunters, developers, and users.82 Finally, Libicki et al. conducted a comprehensive
study of vulnerability markets and their relevance to cyber security and public policy.83

More recently, researchers started to pay attention to the behaviors of vulnerability
discoverers. One finding is that vulnerability discoverers are rather heterogeneous.
Edmundson et al. conducted a code review experiment for a small web application
with 30 subjects.84 One of their findings is that none of the participants was able
to find all 7 Web vulnerabilities embedded in the test code, but a random sample
of half of the participants could cover all vulnerabilities with a probability of about
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95%, indicating that a sufficiently large group of white hats is required for finding
vulnerabilities effectively.

Zhao et al. conducted an initial exploratory study of white hats on Wooyun85 and
uncovered the diversity of white hat behaviors regarding productivity, vulnerability type
specialization, and discovery transitions. Likewise, Huang et al. reported that hackers
at various levels of experience exist in the vulnerability disclosure ecosystem.86 They
found that hackers with different levels of accuracy have diverse strategies in selecting
to which programs to contribute.

Our discussion of duplicated reports in Sections 2.3 and 4 also relates to exist-
ing studies of vulnerability rediscovery. Ozment investigated vulnerability data of
OpenBSD 2.2, and found that vulnerabilities are often independently rediscovered
within a relatively short time span.87 Herr and Schneier, based on data of different ven-
dors and software types, estimated that the rediscovery rate is roughly 20%88. Ablon
and Bogart further looked at zero-day vulnerabilities, and found that approximately
5.7% of a stockpile of zero-day vulnerabilities will be discovered by outside parties in
one year.89 The main goals of these existing work are either to understand whether
vulnerability hunting is beneficial to security (e.g., by depleting zero-days in the hands
of attackers), or to help government decide when a zero-day vulnerability shall be dis-
closed, rather than keeping it in the stockpile for potential offensive usage. Our research
focuses on a different bug hunting scenario, with the goal of making the crowdsourcing
effort more efficient.

While there is a growing literature on the empirical, theoretical and policy/legal
study of software security and vulnerability discovery, we are unaware of any literature
that targets improvements to the effectiveness of bug-bounty platforms by devising
economic policies to reduce the occurrence of duplicate submissions and reports with
various forms of invalid submissions.

Our work is also related to recent research effort on allocating workers to crowd-
sourcing tasks. However, their results cannot be directly applied to bug bounty, for
mainly three reasons. First, even though people consider bug bounty as a kind of
crowdsourcing, the vulnerability discovery task is actually much more difficult, and
requires more expertise and diversity compared to simple tasks, such as image labeling
discussed in the crowdsourcing literature.90 Therefore, existing crowdsourcing allo-
cation mechanisms cannot be applied directly to bug bounty. Second, crowdsourcing
mechanisms typically try to address the issue of unreliable workers by allocating multi-
ple workers to the same task and infer the correct result.91 This is because the employer
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cannot directly verify workers’ output. However, bug bounty operators can validate
submissions. Third, literature of allocation in crowdsourcing typically considers the
utility of employer only, while our model in Section 4 needs to consider the utility of
both organizations and hackers.

7 Concluding Remarks
In our study, we consider software developers and businesses whomanage their own bug
bounty programs (e.g., Google or Facebook) or voluntarily join one of several commer-
cial bug-bounty platforms who run programs for them (e.g., HackerOne, BugCrowd,
Cobalt). Across these different programs and platforms, we can observe various positive
success metrics. For example, on HackerOne, almost 30,000 security vulnerabilities
have been reported and fixed for hundreds of organizations. The other platforms report
similar data indicating their overall growth and attraction (see, for example, Bugcrowd’s
The State of BugBounty reports92). Previous research also provided empirical evidence
showing that white hats’ scrutiny makes the finding of new vulnerabilities increasingly
difficult.93

In light of these observations, it is imperative to more effectively organize current
bug bounty programs. We contribute to finding solutions for this problem space
by suggesting and evaluating engagement policies that would address two prevalent
problems. First, we develop a model for evaluating approaches for reducing the number
of invalid reports. We anticipate that the deployment of the evaluated policies will
have a significant impact on the viability of a broad range of bug bounty programs
and platforms. Initial positive results achieved by similar policies such as the “Signal
Requirements” and “Rate Limiter” mechanisms on HackerOne, give confidence of their
practical applicability.94 A second contribution of this paper is the introduction of an
economic model to study the allocation of hackers in bug-bounty programs.

It is also necessary to have regulatory policies for bug-bounty regarding vulnerability
research and disclosure. We have discussed multiple challenges for creating such
regulatory policies, and pointed out future research directions.
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