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The quantity of personal data that is collected, stored, and subsequently processed continues to grow rapidly.

Given its sensitivity, ensuring privacy protections has become a necessary component of database management.

To enhance protection, a number of mechanisms have been developed, such as audit logging and alert triggers,

which notify administrators about suspicious activities. However, this approach is limited. First, the volume of

alerts is often substantially greater than the auditing capabilities of organizations. Second, strategic attackers

can attempt to disguise their actions or carefully choose targets, thus hide illicit activities. In this paper, we

introduce an auditing approach that accounts for adversarial behavior by (1) prioritizing the order in which

types of alerts are investigated and (2) providing an upper bound on how much resource to allocate for each

type.

Specifically, we model the interaction between a database auditor and attackers as a Stackelberg game. We

show that even a highly constrained version of such problem is NP-Hard. Then we introduce a method that

combines linear programming, column generation and heuristic searching to derive an auditing policy. On

the synthetic data, we perform an extensive evaluation on the approximation degree of our solution with the

optimal one. The two real datasets, (1) 1.5 months of audit logs from Vanderbilt University Medical Center

and (2) a publicly available credit card application dataset, are used to test the policy-searching performance.

The findings demonstrate the effectiveness of the proposed methods for searching the audit strategies, and

our general approach significantly outperforms non-game-theoretic baselines.
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1 INTRODUCTION
Modern computing and storage technology has made it possible to create ad hoc database systems

with the ability to collect, store, and process extremely detailed information about the daily activities
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of individuals [34]. These database systems hold great value for society, but accordingly face

challenges to security and, ultimately, personal privacy. The sensitive nature of the data stored in

such systems attracts malicious attackers who can gain value by disrupting them in various ways

(e.g., stealing sensitive information, commandeering computational resources, committing financial

fraud, and simply shutting the system down) [1]. It is evident that the severity and frequency of

attack events continue to grow. Notably, the most recent breach at Equifax led to the exposure

of data on 143 million Americans, including credit card numbers, Social Security numbers, and

other information that could be used for identity theft or other illicit purposes [37]. Even more of a

concern is that the exploit of the system continued for at least two months before it was discovered.

While complex access control systems have been developed for database management, it has

been recognized that in practice no database systems will be impervious to attack [44]. As such,

prospective technical protections need to be complemented by retrospective auditing mechanisms,

a notion that has been well recognized by the database community [30]. Though audits do not

directly prevent attacks in their own right, they may allow for the discovery of breaches that can be

followed up on before they escalate to full blown exploits by adversaries originating from beyond,

as well as within, an organization.

In the general situation of database management, auditing relies heavily on the performance

of a threat detection and misuse tracking (TDMT) module, which raises real-time alerts based on

the actions committed to a system for further investigation by experts. In general, the alert types

are specifically predefined by the administrator officials in ad hoc applications. For instance, in
the healthcare domain, organizations are increasingly reliant on electronic medical record (EMR)

systems for anytime, anywhere access to a patient’s health status. Given the complex and dynamic

nature of healthcare, these organizations often grant employees broad access privileges, which

increases the potential risk that inside employees illegally exploit the EMR of patients [25]. To

detect when a specific access to a patient’s medical record is a potential policy violation, healthcare

organizations use various triggers to generate alerts, which can be based on predefined rules (e.g.,

when an access is made to a designated very important person). As a consequence, the detected

anomalies, which indicate deviations from routine behavior (e.g., when a pediatrician accesses

the records of elderly individuals), can be checked by privacy officials [2]. As another example,

consider the credit card provisioning domain. In this setting, individuals are interested in applying

for credit cards, which might be used in a fraudulent manner. There may be many reasons why an

application would trigger an alert for a credit risk analyst, who, in turn, would need to determine if

the applicant is worth investigating.

Although TDMTs are widely deployed in database systems as both detection and deterrence

tools, security and privacy have not been sufficiently guaranteed. The utility of TDMT in practice

is currently limited by the fact that they often lead to a very large number of alerts, whereas the

number of actual violations tends to be quite small. This is particularly problematic because the

large quantities of false alarms can easily overwhelm the capacity of the administrative officials

who are expected to follow-up on these, but have limited resources at their disposal [38]. One

typical example is the observation from our evaluation dataset: at Vanderbilt University Medical

Center, on any single workday, the volume of accesses to the EMR system is around 1.8 million, of

which more than 30,000 alerts of varying predefined types are generated, which far beyond the

capacity of privacy officials. Therefore, in lieu of an efficient audit functionality in the database

systems, TDMTs are not optimized for detecting suspicious behavior.

Given the overwhelming number of alerts in comparison to available auditing resource and

the need to catch attackers, the core query function invoked by an administrator must consider

resource constraints. And, given such constraints, we must determine which triggered alerts should

be recommended for investigation. One intuitive way to proceed is to prioritize alert categories
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based on the potential impact of a violation if one were to be found. However, this is an inadequate

strategy because would-be violators can be strategic and, thus, reason about the specific violations

they can perform so that they balance the chance of being audited with the benefits of the violation.

To address this challenge, we introduce a model based on a Stackelberg game, in which an auditor

chooses a randomized auditing policy, while potential violators choose their victims (such as which

medical records to view) or to refrain from malicious behavior after observing the auditing policy.

Specifically, our model restricts the space of audit policies to consider two dimensions: 1) how to

prioritize alert categories and 2) how many resources to allocate to each category. We show that

even a highly restricted version of the auditor’s problem is NP-Hard. Nevertheless, we propose

a series of algorithmic methods for solving these problems, leveraging a combination of linear

programming and column generation to compute an optimal randomized policy for prioritizing

alert categories. We perform an extensive experimental evaluation with two real datasets—one

involving EMR access alerts and the other pertaining to credit card eligibility decisions—the results

of which demonstrate the effectiveness of our approach.

The remainder of the paper is organized as follows. In Section 2, we discuss related work on

alert processing in the database systems, security and game theory, and audit games. In Section 3,

we formally define the game theoretic alert prioritization problem and prove its NP-hardness. In

Section 4, we describe the algorithmic approaches for computing a randomized audit policy. In

Section 5, we introduce a synthetic dataset to show, in a controlled manner, the effectiveness of our

methods for approximating the optimal solution with dramatic gains in efficiency. In Sections 6, we

use two real datasets (from healthcare and finance) that rely upon predefined alert types to show

that our methods lead to high-quality audit strategies. We discuss our findings and conclude this

paper in Section 7.

2 RELATEDWORK
The development of computational methods for raising and subsequently managing alerts in

database systems is an active area of research. In this section, we review recent developments that

are most related to our investigation.

Alert Frameworks. Generally speaking, there are two main categories by which alerts are gener-

ated in a TDMT: 1) machine learning methods – which measure the distance from either normal

or suspicious patterns [26, 27, 33], and 2) rule-based approaches – which flag the occurrences of

predefined events when they are observed [5, 17, 39]. Concrete implementations are often tailored

to distinct application domains.

In the healthcare sector, methods have been proposed to find misuse of EMR systems. Boxwala

et at. [9] treated it as a two-label classification problem and trained support vector machines and

logistic regression models to detect suspicious accesses. Given that not all suspicious accesses

follow a pattern, various techniques have been developed to determine the extent to which an

EMR user [14] or their specific access [15] deviated from the typical collaborative behavior. By

contrast, Fabbri et al. [20–22] designed an explanation-based auditing mechanism which generates

and learns typical access patterns from an expert-, as well as data-driven, view. EMR access events

by authenticated employees can be explained away by logical relations (e.g., a patient scheduled

an appointment with a physician), while the residual can trigger alerts according to predefined

rules (e.g., co-workers) or simply fail to have an explanation. The remaining events are provided to

privacy officials for investigation; however, in practice, only a tiny fraction can feasibly be audited

due to the resource limitation.

In the financial sector, fraud detection [35] in credit card applications assists banks in mitigating

their losses and protecting consumers [19]. Several machine learning-based [6] models have been

ACM Transactions on Privacy and Security, Vol. 22, No. 3, Article 17. Publication date: June 2019.



17:4 C. Yan et al.

developed to detect fraud behavior. Some of the notable models include hidden Markov models[41],

neural networks [12], support vector machines [13], etc. Rule-based techniques were also integrated

into some detection frameworks [10, 42, 43, 47]. While these methods trigger alerts for investigators,

they result in a significant number of false positives—a problem which can be mitigated through

alert prioritization schemes.

Alert Burden Reduction. Various methods have been developed to reduce alert magnitude gener-

ated in database systems. Many focus on reducing redundancy and clustering alerts based on their

similarity. In particular, a cooperative module was proposed for intrusion detection, which imple-

mented the functions of alert management, clustering and correlation [18]. Xiao et al. proposed

a multilevel alert fusion model to abstract high-level attack scenarios to reduce redundancy [46].

As an alternative, fuzzy set theory was applied by Maggi et al. to design robust alert aggregation

algorithms [32]. Also, a fuzzy-logic engine to prioritize alerts was introduced by Alsubhi et al. by

rescoring alerts based on a few metrics [3]. Njogu et al. built a robust alert cluster by evaluating

the similarity between alerts to improve the quality of those sent to analysts [36]. However, none

of these approaches consider the impact of alert aggregation and prioritization on decisions by

potential attackers, especially as the latter may choose attacks that circumvent the prioritization

and aggregation mechanisms.

Security Games. Our general model is related to the literature on Stackelberg security games [28],

where a single or multiple defenders [45, 48] first commit to a (possibly randomized) allocation of

defense resources, while the attacker chooses an optimal attack in response based on observation.

Such models have been applied in a broad variety of security settings, such as airport screening [11],

coast guard patrol scheduling [4], and even for preventing poaching and illegal fishing [23]. However,

models used in much of this prior work are specialized to physical security and do not readily

generalize to the problem of prioritizing alerts for auditing. This is the case even for several efforts

specifically dealing with audit games [7, 8], which abstract the problem into a set of targets that

could be attacked, so that the structure of the model remains essentially identical to physical security

settings. In practical alert prioritization and auditing problems, in contrast, a crucial consideration

is that there are many potential attackers and many potential victims or modes of attack for each of

these. Moreover, auditing policies involve recourse actions where the specific alerts audited depend

on the realizations of alerts of various types. Since alert realizations are stochastic, this engenders

complex interactions between the defender and attackers, and results in a highly complex space

of prioritization policies for the defender. In an early investigation on alert prioritization, it was

assumed that 1) the identity of a specific attacker was unknown and 2) an exhaustive auditing

strategy across alert types of a given order would be applied [31]. These assumptions were relaxed

in the investigation addressed by our current study.

Recently, the problem of assigning alerts to security analysts has been introduced [24], with

a follow-up effort casting it within a game theoretic framework [40]. In [40], there are two key

limitations addressed by our framework: 1) it considers only single attacker, whereas auditing

decisions in the context of access control policies commonly involve many potential attackers,

with most never considering the possibility of an attack; 2) it assumes that the number of alerts in

each category is known a priori to both the auditor and attacker. In this paper, we consider the

scenario with multiple attackers and apply the practical situation where alert counts by category

are stochastic and can exhibit high variance.

3 GAME THEORETIC MODEL OF ALERT PRIORITIZATION
In environments dealing with sensitive data or critical services, it is common to deploy TDMTs to

raise alerts upon observing suspicious events. By defining ad hoc alert types, each suspicious event
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Table 1. A legend of the notation used in this paper.

Symbols Interpretation

T Set of alert types

E Set of entities or users causing events

V Set of records or files available for access

P t (⟨e,v⟩) Probability of raising type t alert by attack ⟨e,v⟩
Ct Cost for auditing an alert of type t
B Auditing budget

Ft (n) Probability that at most n alerts are in type t
OOO Set of all alert prioritizations over T
Zt Number of alerts under type t
bt Budget threshold assigned for auditing type t
R(⟨e,v⟩) Adversary’s gain when attack ⟨e,v⟩ is undetected
M(⟨e,v⟩) Adversary’s penalty when attack ⟨e,v⟩ is captured
K(⟨e,v⟩) Cost of deploying attack ⟨e,v⟩
pooo Probability of choosing an alert prioritization ooo
Pe Probability that e is a potential adversary

can be marked with an alert label, or type, and put into an audit bin corresponding to this type.

Typically, the vast majority of the raised alerts do not correspond to actual attacks, as they are

generated as a part of a routine workflow that is too complex to accurately capture. Consequently,

looking for actual violations amounts to looking for needles in a large haystack of alerts, and

inspecting all, or even a large proportion of, alerts that are typically generated is rarely feasible. A

crucial consideration, therefore, is how to prioritize alerts, choosing a subset that can be audited

given a specified auditing budget from a vast pool of possibilities. The prioritization problem is

complicated by the fact that intelligent adversaries—that is, would-be violators of organizational

access policies—would react to an auditing policy by changing their behavior to balance the gains

from violations, and the likelihood, and consequences, of detection.

We proceed to describe a formal model of alert prioritization as a game between an auditor,

who chooses an alert prioritization policy, and multiple attackers, who determine the nature of

violations, or are deterred from one, in response. In the described scenarios, we assume that the

attackers have complete information, which is the worst case assumption
1
. For reference purposes,

the symbols used throughout this paper are described in Table 1.

3.1 System Model
Let E be the set of potential adversaries, such as employees in a healthcare organization, some of

whom could be potential violators of privacy policies, and V be the set of potential victims, such as

patients in a healthcare facility. We define events, as well as attacks, by a tuple ⟨e,v⟩. A subset of

these events will trigger alerts. Now, let T be the set of alert types or categorical labels assigned

to different kinds of suspicious behavior. For example, a doctor viewing a record for a patient not

assigned to them and a nurse viewing the EMR for another nurse (who is also a patient) in the

same healthcare facility could trigger two distinct alert types. We assume that each event ⟨e,v⟩
maps to at most one alert type t ∈ T . This mapping may be stochastic; that is, given an event ⟨e,v⟩,

1
We do not claim that the attacker actually has such information, but instead aim to be robust even if the attacker has

complete information
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an alert with type t is triggered with probability P t (⟨e,v⟩), and no alert is triggered otherwise

(i.e., pt
′

⟨e,v ⟩ = 0 for all t ′ , t ). Typically, both categorization of alerts and corresponding mapping

between events and types is given (for example, through predefined rules). If not, it can be inferred

by generating possible attacks and inspecting how they are categorized by TDMT. Auditing each

alert is time-consuming and the time to audit an alert can vary by alert type. Let Ct be the cost

(e.g., time) of auditing a single alert of type t and let B be the total budget allocated for auditing.

We assume that the number of alerts triggered by normal events follows a distribution which

reflects a typical workflow of the organization and can be learned based on historical data. We

assume this distribution is known, represented by Ft (n), which is the probability that at most n
alerts of type t are generated. If we make the reasonable assumption that attacks are rare events

and that the alert logs are tamper-proof by applying a certain technique [29], then this distribution

can be obtained from historical alert logs. It is noteworthy that the probability that adversaries

successfully manipulate the distribution in the sensitive practices (e.g., the EMR system or the

credit card application program), to fool the audit model is almost zero. The cost of orchestrating

and implementing such attacks is much higher than what could be gained from running a few

undetected attacks.

3.2 Game Model
We model the interaction between the auditor and potential violators as a Stackelberg game.

Informally, the auditor chooses a possibly randomized auditing policy, which is observed by the

prospective violators, who in response choose the nature of the attack, if any. Both decisions

are made before the alerts produced through normal workflow are generated according to a known

stochastic process Ft (n).
In general, a specific pure strategy of the defender (auditor) is a mapping from an arbitrary

realization of alert counts of all types to a subset of alerts that are to be inspected, abiding by

a constraint on the total amount of budget B allocated for auditing alerts. Even representing

a single such strategy is intractable, let alone optimizing in the space of randomizations over

these. We, therefore, restrict the defender strategy space in two ways. First, we let pure strategies

involve an ordering ooo = (o1,o2, . . . ,o |T |) (∀i, j ∈ Z+ and i, j ∈ [1, |T |], if i , j, then oi , oj ) over
alert types, where the subscript indicates the position in the ordering, and a vector of thresholds

b = (b1, . . . ,b |T |), with bt being the maximum budget available for auditing alerts in category t .
Let O be the set of feasible orderings, which may be a subset of all possible orders over types (e.g.,

the organizational policy may impose constraints, such as always prioritizing some alert categories

over others). We interpret a threshold bt as the maximum budget allocated to t ; thus, the most alerts

of type t that can be inspected is ⌊bt/Ct ⌋. Second, we allow the auditor to choose a randomized

policy over alert orderings, with pooo being the probability that ordering ooo over alert types is chosen,
whereas the thresholds b are deterministic and independent of the chosen alert priorities.

We have a collection of potential adversaries E , each of whom may target any potential victim

v ∈ V . We assume that the adversary will target exactly one victim (or at most one, if V contains

an option of not attacking anyone). Thus, the strategy space of each adversary e is V . In addition,

we characterize the probability that an adversary e ∈ E performs an attack as Pe (i.e., e does not
even consider attacking with probability 1 − Pe ).

Suppose we fix a prioritization ooo and thresholds b. Let o(t) be the position of alert type t in ooo and
oi be the alert type in position i in the order. Let Bt (ooo, b,Z) be the budget remaining to inspect alerts

of type t if the order is ooo, the defender uses alert type thresholds b, and the vector of realizations of
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benign alert type counts is Z = {Z1, . . . ,Z |T |}. Then we have

Bt (ooo, b,Z) = max

{
B −

o(t )−1∑
i=1

min

{
boi ,ZoiCoi

}
, 0

}
. (1)

Now, let us take a moment to unpack this expression for context. For the audited alert type t , we
repeatedly compare the threshold bt with ZtCt to determine how much budget will be left for the

types that follow in the priority order. If the total budget that is eaten by inspecting alerts prior

to t is larger than B, Bt (ooo, b,Z) returns 0, and no alerts of type t will be inspected. Next, we can
compute the number of alerts of type t that are audited as

nt (ooo, b,Z) = min {⌊Bt (ooo, b,Z)/Ct ⌋ , ⌊bt/Ct ⌋ ,Zt } . (2)

Suppose that an attack generates an alert of type t . As noted earlier, we assume that the number

of alerts generated due to attacks is a negligible proportion of all generated alerts (e.g., when Pe
are small). Then, the probability that an alert of type t generated through an attack is detected is

approximately

Pal (ooo, b, t) ≈ EZ

[
nt (ooo, b,Z)

Zt

]
. (3)

The approximation comes from the fact that we use the benign counts Zt in the denominator to

approximate the sum of the number of the false positive alerts and the true positive alerts in type t .
This is because 1) the number of true positive alerts in each type is very small in practice and 2)

the exact number true positives are unknown to the auditor.

The adversary e does not directly choose alert types, but rather the victims v (e.g., an EMR). The

probability of detecting an attack ⟨e,v⟩ under audit order ooo and audit thresholds b is then

Pat (ooo, b, ⟨e,v⟩) =
∑
t

P t (⟨e,v⟩)Pal (ooo, b, t). (4)

We now have sufficient preliminaries to define the utility functions of the adversaries e ∈ E .
LetM(⟨e,v⟩) denote the penalty of the adversary when captured by the auditor, R(⟨e,v⟩) denote
the benefit if the adversary is not audited, and K(⟨e,v⟩) the cost of an attack. The utility of the

adversary is then

Ua(ooo,b, ⟨e,v⟩) = Pat (ooo, b, ⟨e,v⟩) ·M(⟨e,v⟩)
+ (1 − Pat (ooo, b, ⟨e,v⟩)) · R(⟨e,v⟩) − K(⟨e,v⟩).

(5)

By assuming that the game is zero-sum, there is no difference between the Strong Stackelberg

Equilibrium (SSE) and the Nash Equilibrium (NE) [16]. Under this assumption, the auditor’s goal

can be transferred into finding a randomized strategy ppp and type-specific thresholds b to minimize

the expected utility of the adversary:

min

ppp,b

∑
e ∈E

Pe max

v

∑
ooo∈OOO

poooUa(ooo, b, ⟨e,v⟩), (6)

where ppp = {pooo | ooo ∈ OOO}. We call this optimization challenge the optimal auditing problem (OAP).
The optimal auditing policy can be computed using the following mathematical program, which

directly extends the standard linear programming formulation for computing mixed-strategy Nash
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equilibria in zero-sum games:

minb,ppp,u
∑

e ∈E Peue

s .t . ∀ ⟨e,v⟩ , ue ≥ ∑
ooo∈OOO poooUa(ooo, b, ⟨e,v⟩)∑

ooo∈OOO pooo = 1,

∀ooo ∈ OOO, 0 ≤ pooo ≤ 1.

(7)

An important issue in this formulation is that we do not randomize over the decision variables b.
However, if we restrict strategies to the decision variables ppp by fixing b first, then the resulting SSE

and NE are identical. Indeed, if we fix b, the formulation becomes a linear program. Nevertheless,

since the set of all possible alert prioritizations is exponential, even this linear program has expo-

nentially many variables. Furthermore, introducing decision variables b makes it non-linear and

non-convex. Next, we show that solving this problem is NP-hard, even in a restricted special case.

We prove this by reducing from the 0-1 Knapsack problem.

Definition 3.1 (0-1 Knapsack Problem). Let I be a set of items where each item i ∈ I has a weight

wi and a value vi , withwi and vi integers.W is a budget on the total amount of weight (an integer).

Question: given a threshold K , does there exist a subset of items R ⊆ I such that

∑
i ∈R vi ≥ K and∑

i ∈R wi ≤W ?

Theorem 3.2. OAP is NP-hard even when O is a singleton.

Proof. We reduce from the 0-1 Knapsack problem defined by Definition 3.1.

We begin by constructing a special case of the auditing problem and work with the decision

version of optimization Equation 6, in which we decide whether the objective is below a given

threshold θ . First, suppose that Zt = 1 for all alert types t ∈ T with probability 1. Since the set

of orders is a singleton, the probability distribution over orders pooo is not relevant. Consequently,
it suffices to consider bt ∈ {0, 1} for all t , and the actual order over types is not relevant because

Zt = 1 for all types. Consequently, we can choose b to select an arbitrary subset of types to inspect

subject to the budget constraint B (i.e., type t will be audited iff bt = 1). Thus, the choice of b is

equivalent to choosing a subset of alert types A ⊆ T to audit.

Suppose that V = T , and each victimv ∈ V deterministically triggers some alert typev ∈ V = T
for any attacker e . Let M(⟨e,v⟩) = C(⟨e,v⟩) = 0 for all e ∈ E ,v ∈ V , and suppose that for every

e , there is a unique type t(e) with R(⟨e,v⟩) = 1 if and only if v = t(e) and 0 otherwise. Then

maxv Ua(o, b, ⟨e,v⟩) = 1 if and only if bt (e) = 0 (i.e., alert type t(e) is not selected by the auditor)

and 0 otherwise. Finally, we let Pe = 1 for all e .2

For the reduction, suppose we are given an instance of the 0-1 Knapsack problem. Let T = I ,
and for each i ∈ I , generatevi attackers with t(e) = i . Thus,vi = |{e : t(e) = i}|. LetCi = wi be the

cost of auditing alerts of type i , and let B =W . Define θ = |E | − K . Now observe that the objective

in Equation 6 is below θ if and only if minb
∑

t :bt=0vt ≤ θ , or, equivalently, if there is R such that∑
t ∈R vt ≥ K . Thus, the objective of Equation 6 is below θ if and only if the Knapsack instance has

a subset of items R ⊆ I which yield

∑
i ∈R vi ≥ K , where R must satisfy the same budget constraint

in both cases. □

2
While this is inconsistent with our assumption that attackers constitute only a small portion of the system users, we note

that this is only a tool for the hardness proof.
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4 SOLVING THE ALERT PRIORITIZATION GAME
There are two practical challenges that need to be addressed to compute useful approximate

solutions to the OAP. First, there is an exponential set of possible orderings of alert types that need

to be considered to compute an optimal randomized strategy for choosing orderings. Second, there

is a combinatorial space of possible choices for the threshold vectors b. In this section, we develop

a column generation approach for the linear program induced when we fix a threshold vector b.
We then introduce a search algorithm to compute the auditing thresholds.

4.1 Column Generation Greedy Search
By fixing the auditing threshold vector b, Equation 7 becomes a linear program, albeit with an

exponential number of variables. However, since the number of constraints is small, only a limited

number of variables will be non-zero. In other words, the number of effective orderings of alert

types in the optimal solution is small compared to the exponential search space. The challenge

is in finding this small basis. We solve this problem in a greedy manner by applying the column

generation framework. In this approach, we iteratively solve a linear program, where we use a

subset of the variables. Upon each iteration we add a new variable before the value of the objective

function fails to reduce. By doing so, we can incorporate the orderings that contribute to reducing

the value of the objective function. When no new orderings can be added, the process terminates.

We refer to this method as Column Generation Greedy Search (CGGS), the pseudocode for which

is in Algorithm 1.

Specifically, we begin with a small subset of alert prioritizations QQQ ⊆ OOO . We solve the linear

program induced after fixing b in Equation 7, restricted to columns inQQQ . For reference purposes,
we call this the master problem, which is generated by function Glp (∗). Next, we check if there

exists a column (ordering over types) that improves upon the current best solution. The column

of parameter matrix of constraints can be denoted as Γpooo = Pat (ooo, b, ⟨e,v⟩) − 1 for the decision

variable pooo or Γue = 1 for the decision variable ue . The corresponding reduced costs, computed

by function rc(∗), are Cr
pooo = 1 − πQQQ · Γpooo and Cr

ue = −πQQQ · Γue , where πQQQ is the solution of the

dual problem. By minimizing the reduced costs, we generate one new column in each iteration and

add it to the subset of columnsQQQ in the master problem. Within the process of generating a new

column, we use Γ′
(o′o′o′+t) to denote the parameter column with the audit order (o′o′o′ + t). This process is

repeated until we can prove that the minimum reduced cost is non-negative.

The subproblem of generating the optimal column is itself non-trivial.We address this subproblem

through the application of a greedy algorithm for generating a reduced-cost-minimizing ordering

over alert types. The intuition behind CGGS is that, in the process of generating a new audit order,

we greedily add one alert type at a time to minimize the reduced cost given the order generated thus
far. We continue until the objective (reduced cost) fails to improve.

4.2 Iterative Shrink Heuristic Method
Armed with an approach for solving the linear program induced by a fixed budget threshold vector

b, we now develop a heuristic procedure to find alert type thresholds.

Now, let us characterize the range of each element in b. First, it should be recognized that∑
t bt ≥ B because to allow otherwise would clearly waste auditing resources. Yet there is no

explicit upper bound on the thresholds. However, given the distribution of the number of alerts Zt
for an alert type t , we can obtain an approximate upper bound on bt , where Ft (bt/Ct ) ≈ 1. This is

possible because setting the thresholds above such bounds would lead to negligible improvement.

Consequently, searching for a good solution can begin with a vector of audit thresholds, such that

for each bt , Ft (bt/Ct ) ≈ 1. Leveraging this intuition, we design a heuristic method, which iteratively
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ALGORITHM 1: Column Generation Greedy Search (CGGS)

Input :The setQQQ with a single random pure strategy for the auditor.

Output :The set of pure strategiesQQQ .
1 while True do
2 Z = Glp (QQQ); /* Construct LP using current QQQ */

3 πππQQQ = LP(Dual(Z )); /* Solve dual problem */

4 o′o′o′ = [];

5 while |o′o′o′ | < |T | do
6 o′o′o′ = o′o′o′ + argmaxt ∈T \o′o′o′ πππQQQ · Γ

′
(o′o′o′+t);

7 end
8 if min rc(QQQ) < 0 then
9 QQQ =QQQ +o′o′o′;

10 else
11 break;

12 end
13 end

shrinks the values of a good
3
subset of audit thresholds according to a certain step size ϵ . We refer

to this as the Iterative Shrink Heuristic Method (ISHM), the pseudocode for which is provided in

Algorithm 2.

In each atomic searching action, ISHM first makes a subset of thresholds bt strategically shrink.

Next, it checks to see if this results in an improved solution. We introduce a variable lh , which
indicates the level (or the size) of the given subset of b, and ϵ ∈ (0, 1), which controls the step size.

In the beginning, the vector of audit thresholds {Ĥo} is initialized with the approximate upper

bounds. Then, by assigning lh = 1, we consider shrinking each of the audit thresholds Ĥi . The

coefficient for shrinking is defined by the ratio in line 7, which is instantiated with the predefined

step size ϵ ; i.e., i = 1. If the best value for the objective function in the candidate subsets at lh = 1

after shrinking shows an improvement, then the shrink is accepted and the shrinking coefficient is

made smaller by increasing i . When no coefficient leads to improvement, we increase lh by one,

which induces tests of threshold combinations at the same shrinking ratio. This logic is described

in line 6 through 20.

Once an improvement occurs, the search course resets based on the current b. The search

terminates once lh > |T |.
Note that for a single improvement, the worst-case time complexity is O(⌈1/ϵ⌉ ·O(LP) · 2 |T |).

Though exponential, our experiments show that ISHM achieves outstanding performance, both in

terms of precision (of approaching the optimal solution) and efficiency.

5 CONTROLLED EVALUATION
To gain intuition into the potential for our methods, we evaluated the performance of the ISHM

and CGGS approaches using a synthetic dataset, Syn_A. To enable comparison with an optimal

solution, we use a relatively small synthetic dataset, but as will be clear, it is sufficient to illustrate

the relationship between our methods and the optimal brute force solution.

To perform the analysis, we vary the audit budgets B and step size ϵ of ISHM. In addition, we

evaluate a combination of CGGS+ISHM (since the former is also an approximation), by again

comparing to the optimal.

3
“Good” in this context means that shrinking the thresholds within the subset improves the value of the objective function.
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ALGORITHM 2: Iterative Shrink Heuristic Method (ISHM)

Input : Instance of the game, step size ϵ .
Output :Vector of audit thresholds {Ĥi }.

1 Initialize {Ĥi } with full coverages in {Ft };

2 lh = 1; obj = +∞;

3 while lh <= |T | do
4 Clh = choose(|T |, lh ); /* Find combinations */

5 prдrs = 0;

6 for i ← 1 to ⌈1/ϵ⌉ do
7 ratio = max{0, 1 − i ∗ ϵ};

8 objr = +∞; pstr = 0;

9 for j ← 1 to |Clh | do
10 temp = {Ĥi };

11 for k ← 1 to lh do
12 temp(1,Clh (j,k )) = temp(1,Clh (j,k )) ∗ ratio;

13 end
14 obj ′ = LP(B, temp); /* Return LP objective value */

15 if obj ′ < objr then objr = obj
′
; pstr = j;

16 end
17 if objr < obj then
18 obj = objr ;

19 Su = Clh (pstr , :); /* Types in need of update */

20 for j ← 1 to |Su | do ĤSuj = ĤSuj ∗ ratio;

21 break;

22 end
23 prдrs = i;

24 end
25 if prдrs == ⌈1/ϵ⌉ then lh = lh + 1;

26 else lh = 1;

27 end

5.1 Data Overview
The dataset Syn_A consists of 5 potential attackers who perform accesses (pe = 1

4
), 8 files, 4

predefined alert types, and a set of rules for triggering alerts if any access happens. Table 2

summarizes the information of Syn_A and related parameters in the corresponding scenario. We let

the number of alerts for all types be distributed according to a Gaussian distribution with means

and standard deviation as reported in Table 2a. Since the number of alerts for each alert type

are integers, we discretize the x-axis of each alerts cumulative distribution function and use the

corresponding probabilities for each possible alert count. We consider the 99.5 probability coverage

for each alert type to obtain a finite upper bound on alert counts.

We assume alerts are triggered deterministically for each access, a common case in rule-based sys-

tems. The alert type that will be triggered for each potential access is provided in Table 2b, where “-”

represents a benign access. This table is generatedwith a probability vector [0.07, 0.38, 0.23, 0.16, 0.16]
for each employee, which corresponds to alert type vector [0, 1, 2, 3, 4]. Although in reality, benign

accesses may be more frequent, we lower their probability to better differentiate the final value of

4
The artificially high incidence of attacks here is merely to facilitate a comparison with a brute-force approach.
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the objective function. The benefit of the adversary for a successful attack, the cost of an attack and

the cost of an audit are all directly related to the alert type, which is shown in Table 2a. In addition,

the penalty for being caught is set to a constant value of 4.

Table 2. Description of Dataset Syn_A.

(a) Parameters for alert types in the synthetic setting.

Type 1 Type 2 Type 3 Type 4

Mean 6 5 4 4

Std 2 1.6 1.3 1

99.5% Coverage +/-5 +/-4 +/-3 +/-3

Benefit 3.4 3.7 4 4.3

Attack Cost 0.4 0.4 0.4 0.4

Audit Cost 1 1 1 1

(b) Rules for alert types in the synthetic setting.

Employee Record

r1 r2 r3 r4 r5 r6 r7 r8

e1 − 3 2 2 3 4 3 1

e2 1 − 1 1 1 2 1 1

e3 1 3 4 − 1 3 1 4

e4 2 1 3 1 4 4 2 2

e5 2 3 1 4 2 1 3 2

5.2 Optimal Solution with Varying Budget
Based on the given information, we can compute the optimal OAP solution. First, the search

space for audit thresholds in this scenario is as follows: 1) for each alert type, the audit threshold

bt ∈ N, 2) the sum of thresholds for all alert types should be greater than or equal to B, 3) for
each type, the upper bound of the audit threshold bt is where Ft (bt/Ct ) ≈ 1. Concretely, we set

vector J = Mean + |99.5%Coveraдe | as the upper bound for finding the optimal solution. Thus, the

space of the investigation of the optimal solution is O(
∏ |T |

i=1(Ji + 1)). Note that 0 is also a possible

choice, which means the auditor will not check the corresponding alert type. Thus, it is infeasible

to directly solve the OAP in the instances with a large number of alert types or large Ji.
To investigate the performance of the proposed audit model, we allocated a vector of audit

budgets B = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}, which has a wide range with respect to the scale of the

means of the alert types. We then apply a brute force search to discover an optimal vector of budget

thresholds for each type. Table 3 shows the optimal solution of OAP for each candidate B, including
the optimal value of the objective function, optimal threshold (using the smallest optimal threshold

whenever the optimal solution is not unique), pure strategies in the support of the optimal mixed

strategy, and the optimal mixed strategy of the auditor. As expected, it can be seen that as the

budget increases, the optimal value of the objective function (minimized by the auditor) decreases

monotonically.
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Table 3. The optimal solution for the auditor under various budgets.

ID Budget Optimal Objective Value Optimal Threshold Effective Pure Strategy Optimal Mixed Strategy

1 2 12.2945 [1,1,1,1] [2,3,4,1][4,1,3,2][4,2,3,1][4,3,2,1] [0.3566, 0.3780, 0.1210, 0.1444]

2 4 7.7176 [2,1,1,2] [1,2,3,4][2,1,3,4][4,2,1,3][4,2,3,1] [0.4664, 0.0052, 0.0934, 0.4350]

3 6 3.2651 [2,2,2,2] [2,1,3,4][4,1,3,2][4,2,1,3][4,2,3,1] [0.2748, 0.2341, 0.3293, 0.1618]

4 8 -0.4517 [3,3,2,2] [2,1,3,4][4,1,3,2][4,2,1,3][4,2,3,1] [0.0762, 0.4600, 0.1329, 0.3309]

5 10 -2.1314 [3,3,3,3] [1,2,3,4][1,4,3,2][4,1,2,3][4,1,3,2] [0.3926, 0.0788, 0.4080, 0.1206]

6 12 -3.7345 [4,4,3,3] [2,1,3,4][4,2,3,1][4,2,1,3][4,1,3,2] [0.2028, 0.1554, 0.2076, 0.4342]

7 14 -5.1645 [5,4,3,3] [2,1,3,4][4,2,3,1][4,2,1,3][4,1,3,2] [0.3559, 0.2199, 0.3176, 0.1066]

8 16 -6.4510 [6,5,4,4] [2,1,3,4][4,1,3,2][4,2,1,3][4,2,3,1] [0.2431, 0.2636, 0.1728, 0.3205]

9 18 -7.4649 [7,6,5,5] [2,1,3,4][4,1,3,2][4,2,1,3][4,2,3,1] [0.2710, 0.2630, 0.2054, 0.2615]

10 20 -8.1561 [9,7,6,6] [1,2,3,4][4,1,2,3][4,1,3,2][4,2,3,1] [0.2398, 0.1742, 0.2275, 0.3585]

5.3 Findings
Our heuristic methods aim to find an approximate solution throughmajor reductions in computation

complexity. In this respect, the search step size ϵ is a key factor to consider because it could lead

the search into a locally optimal solution. To investigate the gap between the objective function

with the optimal solution, as well as the influence of ϵ on the gap, we performed experiments with

a series of step sizes ϵ = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]. Tables 4 and 5, summarize

the results, where each cell consists of two items: 1) the minimized sum of the maximal utilities

of all adversaries obtained using the heuristic method and 2) the corresponding audit threshold

vector.

There are three findings worth highlighting. First, when ϵ is fixed, the approximated values

of the objective function decrease as the budget increases. This is akin to the trend shown in

Table 3. Second, when the budget B is fixed, the approximated values achieved through ISHM and

ISHM+CGGS exhibit a general growth trend as ϵ increases. This occurs because larger shrink ratios
increase the likelihood that the heuristic search will miss more of the good approximate solutions.

Third, we find that the ISHM and ISHM+CGGS solutions are close to the optimal. To measure the

solution quality as a function of ϵ , we use γϵ =
1

|B |
∑ |B |

i |ŜBi ,ϵ − SBi ,ϵ |/|SBi ,ϵ |, where ŜBi ,ϵ denotes

the approximate optimal values in Tables 4 and 5 and SBi ,ϵ denotes the optimal values provided by

Table 3.

In Table 6, it can be seen that ISHM (and solving the linear program to optimality) achieves solu-

tions near 99% of the optimal (as denoted by γ 1

ϵ ) when the step size ϵ ≤ 0.2. Even the approximately

optimal solutions with ϵ = 0.5 have a good approximation ratio (above 89%). As such, it appears

that if we choose an appropriate ϵ , then ISHM can perform well.

When we combine ISHM+CGGS (denoted by γ 2

ϵ ), the approximation quality drops compared

to γ 1

ϵ , as we would expect, with the lone exception of (ϵ = 0.4). However, γ 2

ϵ is very close to γ 1

ϵ ,

which suggests that our approximate column generation method does not significantly degrade the

quality of the solution.

Next, we consider the computational burden for ISHM to achieve an approximate target of the

optimal solution. Table 7 provides the values of the threshold vectors under various B and ϵ . It can
be seen that the number of threshold candidates explored decreases as the step size grows. For a

given ϵ , the number of thresholds considered by the algorithm initially increases, but then drops as

the audit budget increases. The reason that less effort is necessary at the extremes of the budget

range is that the restart of the test for a single alert type (to find a better position) is invoked less

frequently. By contrast, a larger amount of effort is required in the middle of the budget range due

to more frequent restarts (although this yields only a small improvement).
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Finally, we investigate the average number for the threshold vectors explored by the algorithm

over the budget range B. For the various step sizes, we represent the results in vector form

𝒯 = [403, 223, 156, 121, 93, 86, 68, 66, 61, 47]. Dividing by the number of investigations needed

to discover the optimal solution, the resulting ratio vector is 𝒯 ′ = [0.0831, 0.0460, 0.0321, 0.0251,
0.0198, 0.0190, 0.0163, 0.0182, 0.0206, 0.0210]. Thus, when ϵ = 0.2 (when both γ 1

ϵ and γ 2

ϵ are

greater than 0.99), the number of thresholds explored is only 2.51% of the entire space. As such, by

applying ISHM, the number of investigated threshold candidates can be greatly reduced without

significantly sacrificing solution quality.

Table 4. The approximation of the optimal solutions obtained by ISHM at various levels of B and ϵ .

B Approximation of Optimal Loss of the Auditor and corresponding thresholds by ISHM

ϵ = 0.05 ϵ = 0.10 ϵ = 0.15 ϵ = 0.20 ϵ = 0.25 ϵ = 0.30 ϵ = 0.35 ϵ = 0.40 ϵ = 0.45 ϵ = 0.50

2

12.2945 12.2945 12.2958 12.2945 12.2958 12.3675 12.3675 12.2945 12.3675 12.3675
[10, 1, 1, 1] [9, 1, 1, 1] [9, 9, 1, 1] [8, 1, 1, 1] [8, 9, 1, 1] [7, 9, 7, 7] [7, 9, 7, 7] [6, 1, 1, 1] [6, 9, 7, 7] [5, 9, 7, 7]

4

7.7176 7.7176 7.7176 7.7176 7.7176 7.7176 7.7181 7.8402 7.8402 7.9037
[2, 1, 1, 2] [2, 1, 1, 2] [2, 1, 1, 2] [2, 1, 1, 2] [2, 1, 1, 2] [2, 1, 1, 2] [2, 1, 7, 2] [1, 1, 7, 7] [1, 9, 1, 3] [11, 9, 1, 3]

6

3.2651 3.2651 3.2651 3.2651 3.2651 3.2651 3.3267 3.2744 3.4549 3.4549
[2, 2, 2, 2] [2, 2, 2, 2] [2, 2, 2, 2] [2, 2, 2, 2] [2, 2, 2, 2] [2, 2, 2, 2] [3, 3, 2, 2] [2, 3, 2, 2] [11, 2, 3, 3] [11, 2, 3, 3]

8

−0.4517 −0.4517 −0.4517 −0.4517 −0.4517 −0.3508 −0.4517 −0.4116 −0.3730 −0.2910
[3, 3, 2, 2] [3, 3, 2, 2] [3, 3, 2, 2] [3, 3, 2, 2] [3, 3, 2, 2] [4, 4, 2, 2] [3, 3, 2, 2] [11, 3, 2, 2] [3, 4, 3, 3] [5, 4, 3, 3]

10

−2.1314 −2.1314 −2.1314 −2.1314 −2.1314 −1.9693 −1.9996 −2.0119 −2.0755 −2.0037
[3, 3, 3, 3] [3, 3, 3, 3] [3, 3, 3, 3] [3, 3, 3, 3] [3, 3, 3, 3] [4, 4, 4, 4] [4, 3, 4, 4] [3, 3, 4, 4] [3, 4, 3, 3] [5, 4, 3, 3]

12

−3.7345 −3.7345 −3.7345 −3.7345 −3.7345 −3.5991 −3.5627 −3.4854 −3.6533 −3.6873
[4, 4, 3, 3] [4, 4, 3, 3] [4, 4, 3, 3] [4, 4, 3, 3] [4, 4, 3, 3] [4, 4, 4, 4] [4, 5, 4, 4] [6, 5, 4, 4] [6, 4, 3, 3] [5, 4, 3, 3]

14

−5.0713 −5.0713 −5.0430 −5.0430 −5.0713 −5.0962 −5.0350 −5.0629 −5.0713 −5.0713
[9, 4, 3, 5] [9, 4, 3, 5] [11, 5, 3, 3] [11, 5, 3, 3] [5, 4, 3, 5] [7, 4, 4, 4] [7, 5, 4, 4] [6, 5, 4, 4] [6, 4, 3, 7] [5, 4, 3, 7]

16

−6.4510 −6.4510 −6.4363 −6.4510 −6.3823 −6.4135 −6.4363 −6.4510 −6.3225 −6.1149
[6, 5, 4, 4] [6, 5, 4, 4] [7, 5, 4, 4] [6, 5, 4, 4] [6, 6, 5, 5] [7, 6, 4, 4] [7, 5, 4, 4] [6, 5, 4, 4] [6, 9, 7, 7] [5, 9, 7, 7]

18

−7.4649 −7.4649 −7.4600 −7.4490 −7.4585 −7.4490 −7.4320 −7.3956 −7.3612 −6.1149
[7, 6, 5, 5] [7, 6, 5, 5] [7, 7, 5, 5] [8, 7, 5, 5] [8, 6, 5, 5] [7, 6, 7, 7] [7, 9, 7, 7] [11, 9, 7, 4] [6, 9, 7, 7] [5, 9, 7, 7]

20

−8.1561 −8.1561 −8.1548 −8.1523 −8.1520 −8.1308 −8.1138 −7.6619 −7.3612 −6.1149
[9, 7, 6, 6] [9, 7, 6, 6] [9, 7, 7, 7] [8, 7, 7, 7] [8, 9, 7, 7] [11, 6, 7, 7] [7, 9, 7, 7] [11, 9, 7, 4] [6, 9, 7, 7] [5, 9, 7, 7]

6 MODEL EVALUATION
The previous results suggest ISHM and CGGS can be efficient and effective in solving the OAP

in a small controlled environment. Here, we investigate the performance of the proposed game-

theoretical audit model on more realistic and larger datasets. This evaluation consists of comparing

the quality of solutions of OAP with several natural alternative auditing strategies.

The first dataset, Rea_A, corresponds to the EMR access logs of Vanderbilt University Medical

Center (VUMC). This dataset is notable because VUMC privacy officers rely on this data to conduct

retrospective audits to determine if there are accesses that violate organizational policy. The central

goal in this use case is to preserve patient privacy. Given that this is not a publicly available dataset,

we conducted experiments with a second dataset, Rea_B, which consists of public observations of

credit card applications. It labels applicants as having either low or high risk of fraud. We provide

an audit mechanism to capture events of credit card fraud based on the features in this dataset. We

use Rea_B to demonstrate the broad applicability of the proposed approaches and enable replication

of our results.
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Table 5. The approximation of the optimal solutions obtained by ISHM + CGGS at various levels of B and ϵ .

B Approximation of Optimal Loss of the Auditor and corresponding thresholds by ISHM + CGGS

ϵ = 0.05 ϵ = 0.10 ϵ = 0.15 ϵ = 0.20 ϵ = 0.25 ϵ = 0.30 ϵ = 0.35 ϵ = 0.40 ϵ = 0.45 ϵ = 0.50

2

12.2967 12.2967 12.3096 12.2967 12.3096 12.3677 12.3677 12.2967 12.3677 12.3677
[1, 1, 1, 1] [1, 1, 1, 1] [9, 9, 1, 1] [1, 1, 1, 1] [8, 9, 1, 1] [7, 9, 7, 7] [7, 9, 7, 7] [1, 1, 1, 1] [6, 9, 7, 7] [5, 9, 7, 7]

4

7.7214 7.7214 7.7346 7.7214 7.7346 7.7346 7.7346 7.9151 7.8402 7.9045
[2, 1, 1, 2] [2, 1, 1, 2] [2, 9, 1, 2] [2, 1, 1, 2] [2, 9, 1, 2] [2, 9, 1, 2] [2, 9, 1, 2] [1, 1, 1, 7] [1, 9, 1, 3] [11, 9, 1, 3]

6

3.2755 3.2755 3.2755 3.2755 3.2755 3.2755 3.3628 3.3267 3.4897 3.3099
[2, 2, 2, 2] [2, 2, 2, 2] [2, 2, 2, 2] [2, 2, 2, 2] [2, 2, 2, 2] [2, 2, 2, 2] [3, 3, 2, 2] [2, 3, 2, 2] [11, 2, 3, 3] [2, 2, 3, 3]

8

−0.4422 −0.4422 −0.4422 −0.4422 −0.2761 −0.3300 −0.4006 −0.4422 −0.3404 −0.2761
[3, 3, 2, 2] [3, 3, 2, 2] [3, 3, 2, 2] [3, 3, 2, 2] [5, 2, 2, 7] [4, 4, 2, 2] [4, 3, 2, 2] [3, 3, 2, 2] [3, 4, 3, 3] [5, 2, 3, 3]

10

−2.1203 −2.1203 −2.1203 −2.1203 −2.1203 −1.9503 −1.9873 −2.0091 −2.0612 −1.9508
[3, 3, 3, 3] [3, 3, 3, 3] [3, 3, 3, 3] [3, 3, 3, 3] [3, 3, 3, 3] [4, 4, 4, 4] [4, 3, 4, 4] [3, 3, 4, 4] [3, 4, 3, 3] [5, 4, 3, 3]

12

−3.7215 −3.7215 −3.7215 −3.7215 −3.7215 −3.5832 −3.5448 −3.4326 −3.6383 −3.6768
[4, 4, 3, 3] [4, 4, 3, 3] [4, 4, 3, 3] [4, 4, 3, 3] [4, 4, 3, 3] [4, 4, 4, 4] [4, 5, 4, 4] [6, 5, 4, 4] [6, 4, 3, 3] [5, 4, 3, 3]

14

−5.0709 −5.1529 −5.0430 −5.0700 −5.0698 −5.0857 −5.0125 −5.0494 −5.0698 −5.0706
[5, 9, 3, 4] [5, 4, 4, 4] [9, 4, 3, 3] [6, 5, 3, 4] [6, 4, 3, 7] [7, 4, 4, 4] [7, 5, 4, 4] [6, 5, 4, 4] [6, 4, 3, 7] [5, 4, 3, 7]

16

−6.4394 −6.4394 −6.4258 −6.4394 −6.3683 −6.4008 −6.4258 −6.4394 −6.3038 −6.1149
[6, 5, 4, 4] [6, 5, 4, 4] [7, 5, 4, 4] [6, 5, 4, 4] [6, 6, 5, 5] [7, 6, 4, 4] [7, 5, 4, 4] [6, 5, 4, 4] [6, 9, 7, 7] [5, 9, 7, 7]

18

−7.4524 −7.4524 −7.4465 −7.4363 −7.4472 −7.4359 −7.4171 −7.3825 −7.3612 −6.1149
[7, 6, 5, 5] [7, 6, 5, 5] [7, 7, 5, 5] [8, 7, 5, 5] [8, 6, 5, 5] [7, 6, 7, 7] [7, 9, 7, 7] [11, 5, 7, 7] [6, 9, 7, 7] [5, 9, 7, 7]

20

−8.1448 −8.1448 −8.1433 −8.1398 −8.1388 −8.1207 −8.1043 −7.6619 −7.3612 −6.1149
[9, 7, 6, 6] [9, 7, 6, 6] [9, 7, 7, 7] [8, 7, 7, 7] [8, 9, 7, 7] [11, 6, 7, 7] [7, 9, 7, 7] [11, 9, 7, 4] [6, 9, 7, 7] [5, 9, 7, 7]

Table 6. The average precision over the budget vector B by applying ISHM and ISHM+CGGS.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

γ 1

ϵ 0.9982 0.9982 0.9973 0.9974 0.9970 0.9634 0.9830 0.9680 0.9549 0.8982

γ 2

ϵ 0.9943 0.9959 0.9932 0.9940 0.9560 0.9562 0.9684 0.9700 0.9452 0.8966

Table 7. The number of threshold vectors checked by ISHM with a given budget B and step size ϵ .

ϵ B

2 4 6 8 10 12 14 16 18 20

0.10 251 267 255 243 235 227 199 207 191 171

0.20 128 144 148 140 132 124 108 108 92 84

0.30 65 109 101 93 85 85 81 77 69 65

0.40 74 66 78 70 70 62 62 62 50 50

0.50 35 43 47 47 47 47 43 35 35 35

6.1 Data Overview
Rea_A consists of the VUMC EMR access logs for 28 continuous workdays during 2017. There are

48.6M access events, 38.7M (79.5%) of which are repeated accesses.
5
We filtered out the repeated

accesses to focus on the distinct user-patient relationships established on a daily basis. The mean

and standard deviation of daily access events was 355,602.18 and 195,144.99, respectively. The
features for each event include: 1) timestamp, 2) patient ID, 3) employee ID, 4) patient’s residential

address, 5) employee’s residential address, 6) employee’s VUMC department affiliation and 7)

indication of if a patient is an employee. We focus on the following alert types: 1) employee and

patient share the same last name, 2) employee and patient work in the same VUMC department, 3)

5
We define a repeated access as an access that is committed by the same employee to the same patient’s EMR on the same

day.
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Table 8. Description of the EMR alert types.

ID Alert Type Description Mean Std

1 Same Last Name 183.21 46.40

2 Department Co-worker 32.18 23.14

3 Neighbor (≤ 0.5 miles) 113.89 80.44

4 Last Name; Same address 15.43 14.61

5 Last Name; Neighbor (≤ 0.5 miles) 23.75 11.07

6 Same address; Neighbor (≤ 0.5 miles) 20.07 11.49

7 Last Name; Same address; Neighbor (≤ 0.5 miles) 32.07 16.54

employee and patient share the same residential address, and 4) employee and patient are neighbors

within a distance threshold.

In certain cases, the same access may generate multiple alerts, each with a distinct type. For

example, if a husband, who is a BMRC employee, accesses his wife’s EMR, then two alert types

may be triggered: 1 (same last name) and 3 (same address). We, therefore, redefine the set of alert

types to also consider combinations of alert categories. The resulting set of alert types is detailed in

Table 8.

We label each access event in the logs with a corresponding alert type or as “benign” (i.e., no

alerts generated). To evaluate our methods, we choose a random sample of 50 employees and

patients who generate at least one alert. This set of employees and the set of patients then results

in 2500 potential accesses, where each employee can access each patient.

We let the probability that an employee could be malicious be 1, which is artificially high, but

enables us to clearly compare the methods in the experiments. The benefit vector for the adversary

is [10, 12, 12, 24, 25, 25, 27] for the corresponding categories of alert types (1-7 in Table 8). The

penalty for capture is set to 15. We set the cost of both an attack and an audit to 1. We acknowledge

that the model parameters are ad hoc, but this does not affect the results of our comparative analysis.

In practice, this would be accomplished based on expert opinion, but is outside the scope of this

study.

Rea_B is the Statlog (German Credit Data) dataset available from the UCI Machine Learning

Repository. Rea_B contains 1000 credit card applications. It is composed of 20 attributes describing

the status of the applicants pertaining to their credit risk. Before issuing a credit card, banks would

determine if it could be fraudulent based on the features in the data. Nevertheless, no screening

process is perfect, and given a large number of applications, applications will require retrospective

audits to determine whether specific applications should be canceled. Thus, alerts in this setting

aim to indicate potential fraud and a subset of such alerts are chosen for a time-consuming auditing

process. Leveraging the provided features, we define 5 alert types, which are triggered by the specific

combinations of attribute values and the purpose of the application. The 8 selected purposes of

application are the “victims” in our audit model. Table 9 summarizes how alerts are triggered. In the

description field, italicized words represent the purpose of the application, while the other words

represent feature values.

We used the 5 alert categorizations discussed above to label the 1000 applications with alert

types, excluding any that fail to receive a label. Among these, we randomly selected 100 applicants

who may choose to “attack” one of the 8 purposes of credit card applications, for a total of 800

possible events. The benefit vector for the adversary is [15, 15, 14, 20, 18] for each of the alert types

generated, respectively. We set the penalty for detection to 20 and costs for attack and audit were

both set to 1. Again, to facilitate comparison we set pe = 1 in all cases.
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Table 9. Description of the defined alert types.

ID Alert type Description Mean Std

1 No checking account, Any purpose 370.04 15.81

2 Checking < 0, New car, Education 82.42 7.87

3 Checking > 0, Unskilled, Education 5.13 2.08

4 Checking > 0, Unskilled, Appliance 28.21 5.25

5 Checking > 0, Critical account, Business 8.31 2.96

6.2 Comparison with Baseline Alternatives
The performance of the proposed audit model was investigated by comparing with several natural

alternative audit strategies as baselines. The first alternative is to randomize the audit order over

alert types, which we call Audit with random orders of alert types. Though random, this strategy

mimics the reality of random reporting (e.g., where a random patient calls a privacy official to look

into alleged suspicious behavior with respect to the use of their EMR). In this case, we adopt the

thresholds out of the proposed model with ϵ = 0.1 to investigate the performance. The second

alternative is to randomize the audit thresholds. We refer to this policy as Audit with random
thresholds. For this policy, we assume that 1) the auditor’s choice satisfies

∑
i bi ≥ B and 2) the

auditor has the ability to find the optimal audit order after deciding upon the thresholds. The third

alternative is a naive greedy audit strategy, where the auditor prioritizes alert types according to

their utility loss (i.e., greater consequence of violations). In this case, the auditor investigates as

many alerts of a certain type as possible before moving on to the next type in the order. For our

experiments, when the alert type order is based on the loss of the auditor, which is the benefit the

adversary receives when they execute a successful attack. Thus, we refer to this strategy as Audit
based on benefit.
The following performance comparisons are assessed over a broad range of auditing budgets.

For our model, we present the values of the objective function with three different instances of

the step size ϵ in ISHM: [0.1, 0.2, 0.3]. Figures 1 and 2 summarize the performance of the proposed

audit model and three alternative audit strategies for Rea_A and Rea_B, respectively.
For dataset Rea_A, the range of B was set to 10 through 100. The budget of 100 covers about 1/4

of the sum of the means of the seven alert types. In reality, such coverage is quite high. By applying

the proposed audit model, we approximately solve the OAP given B and ϵ . For Audit with random
orders of alert types, we assign the audit thresholds using ISHM with ϵ = 0.1. The randomization

is repeated 2000 times without replacement. As for Audit with random thresholds, we randomly

generate the audit thresholds to solve the corresponding LP, which are repeated 5000 times. For

Audit based on benefit, we randomly sample 2000 instances of Z based on the distributions of alert

types learned from the dataset.

Based on Figure 1, there are several findings we wish to highlight. First, in our model, as the audit

budget increases, the auditor’s loss decreases. At the high end, when B ≥ 90, the auditor’s loss is

zero, which, in the VUMC audit setting, implies that all the potential adversaries are deterred from

an attack. This valuation of B is smaller than 1/4 of the sum of distribution means of all alert types.

The reason for this phenomenon stems from the fact that when the audit budget increases, the

audit model finding better approximations of the optimal audit thresholds, which, in turn, enables

the auditor to significantly limit the potential gains of the adversaries. Second, our proposed model

significantly outperforms all of the baselines. Third, even though Audit with random orders of
alert types uses approximated audit thresholds, the auditor’s loss is substantially greater than our

proposed approach. However, the auditor’s losses for the alternatives approach ours when B = 20.
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This is because the thresholds are [0, 0, 0, 7, 0, 11, 8], such that the audit order is less of a driver than

in other situations. Fourth, Audit based on benefit tends to have very poor performance compared

to other policies. This is because when the audit order is fixed (or is predictable), adversaries have

greater evasion ability and attack more effectively. Fifth, Audit with random thresholds tends to
outperform the other baselines but is still significantly worse than our approach. The is because

the auditor has the ability to search for the optimal audit policy, but the thresholds are randomly

assigned such that they are hampered in achieving the best solution.
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Fig. 1. Auditor’s loss in the proposed and baseline models in the Rea_A dataset.

For the credit card application scenario, Figure 2 compares the auditor’s loss in our heuristics

and the three baselines. For dataset Rea_B, the range for B is 10 to 250 with a step size of 20. As

expected, as the budget increases, the auditor sustains a decreasing average loss. It can be seen that

the proposed audit model significantly outperforms the alternative baselines. Specifically, as the

auditing budget increases, the auditor’s loss trends towards, and becomes, 0 in our approach. This

means that the attackers are completely deterred. For the alternatives, as before, Audit with random
thresholds outperforms other strategies. And, just as before, the strategy that greedily audits alert

types (in order of loss) tends to perform quite poorly.
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Fig. 2. Loss of the auditor in the proposed and alternatives audit model in the Rea_B dataset.
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7 DISCUSSION AND CONCLUSIONS
TDMTs are usually deployed in database systems to address a variety of attacks that originate

from within and beyond an organization. However, an overwhelming alert volume is far beyond

the capability of auditors with limited resources. Our research illustrates that policy compliance

auditing, as a significant component of database management, can be improved by prioritizing

which alerts to focus on via a game theoretic framework, allowing auditing policies to make the

best use of limited auditing resources while simultaneously accounting for the strategic behavior of

potential policy violators. This is notable because auditing is critical to a wide range of management

requirements, including privacy breach and financial fraud investigations. As such, this model and

the effective heuristics we offer in this study fill a major gap in the field.

There are several limitations of our approach that we wish to highlight as opportunities for

future investigations. First, there are limitations to the parameterization of the game. One notable

aspect is that we assumed that the game has a zero-sum property. Yet in reality, this may not

be the case. For example, an auditor is likely to be concerned less about the cost incurred by an

adversary for executing an attack and more concerned about the losses that arise from successful

violations Additionally, while our experiments show the proposed audit model outperforms natural

alternatives, it is unclear how sensitive this result is to parameter variations. Thus, a fruitful

direction of research is in the payoff structures and how they influence the performance of the

model.

A second set of limitations stems from the assumptions we rely upon. In particular, we assumed

that each attack is instantaneous, which turned the problem into a one-shot two-stage game.

However, attacks in the wild may require multiple cycles to fully execute, such that the auditor

may be able to capture the attacker before they complete their exploit. To address such a setting, a

temporal audit model may complement the approach introduced in this paper. Furthermore, our

model is predicated on an environment in which the auditor has complete knowledge, including

the identities, about the set of potential adversaries. However, in practice, one player can hardly

know everything about the other. Thus, a natural follow-up investigation is to relax such a strong

assumption by involving uncertainty in the knowledge of the players.

A third limitation is in the economic premise of the attack. Specifically, we expected the interaction

between the auditor and adversaries as fully rational. In reality, adversaries may be bounded in their

rationality, and an important extension would be to generalize the model consider such behavior.

8 CONCLUSION
Prioritizing the alerts raised by TDMT modules can enable effective auditing of privacy- and

security-related incidents. This paper introduced a game theoretic model to represent the strategic

interactions between an auditor and a set of potential adversaries. We showed that discovering

the optimal prioritization of alerts is NP-hard, but that several efficient search heuristics can be

designed to solve the problem. Using a controlled, synthetic, dataset, we proved that the heuristics

can achieve a performance that is close to the optimal solution. And, using several different types of

datasets illustrated that the heuristics are substantially more effective at prioritization than typical

auditing strategies invoked in practice. We did, however, make several simplifying assumptions

regarding the behavior of the adversaries and the parameterization of the variables in the model,

but believe that this research provides a foundation for further investigation in alert prioritization

games.
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