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Abstract— We model and analyze blockchain miners who seek
to maximize the compound return of their mining businesses.
The analysis of the optimal strategies finds a new equilibrium
point among the miners and the mining pools, which predicts the
market share of each miner or mining pool. The cost of mining
determines the share of each miner or mining pool at equilibrium.
We conclude that neither miners nor mining pools who seek to
maximize their compound return will have a financial incentive
to occupy more than 50% of the hash rate if the cost of mining
is at the same level for all. However, if there is an outstandingly
cost-efficient miner, then the market share of this miner may
exceed 50% in the equilibrium, which can threaten the viability
of the entire ecosystem.

Index Terms—Blockchain, Kelly Strategy, Equilibrium

I. INTRODUCTION

A. Background

In Bitcoin network, most of the mining power is controlled
by mining pools, and most of the hash rate is produced by
“mining factories” that equip ASIC mining machines [1].
Since ASIC mining machines have limited purposes other than
mining, the economic behavior of a miner depends on its long-
term prediction rather than a short-term benefit. Hence, it
is necessary to analyze long-term incentives that the PoW
mechanism gives to each miner and to establish the theory
to evaluate the sustainability of the cryptoasset. The theory
is useful not only for miners to determine their strategy
but also for protocol designers and business entities to use
permissionless blockchains for their applications. There exist
prior work on the analysis of the relationship between the
short-term change of mining cost and mining power [2], [3];
however, the short-term analysis does not explain how people
invest in mining assets for long-term profit. We need a new
approach for analyzing how the change of mining power
affects profit on the long term.

B. Profitable Strategies for Repeated Games

To illustrate the difference between optimal strategies for
short-term profit and those for long-term profit in repeated
games, we consider the following example. Suppose that there

is a repeated game in which you can bet a certain amount
and flip a coin in every stage. You gain 23% of your bet
with probability 1/2, while you lose 20% of your bet with
probability 1/2. Suppose that at the beginning of the game,
you have 1,000 USD in your hand, and you can choose any
amount of bet from your hand for each stage of the coin-
flip game.

First of all, if you keep betting a constant amount, then
the strategy is likely to be outperformed in the long-term
by a riskfree strategy that generates the compound return
of the riskfree rate. Hence betting in the game implies you
will seek a better compound return rate than the riskfree
rate. However, if you bet all in, then you are likely to find
your money is halved after about 90 times because you
are likely to result in 45 wins and 45 losses, so it will be
1000(1 + 23%)45(1− 20%)45 ≈ 480 USD.

You can improve the compound return rate by adjusting
the amount of bet. Let W be the random variable that takes
W = 0.23 with probability 1/2 and W = −0.2 with 1/2. Let
f be a real number 0 < f < 1 that decides the asset allocation
for the bet: If we have assets A, you will bet fA in the game,
and will keep (1 − f)A. Your assets after the coin-flip game
will be (1−f)A+f(1+W )A, so the probabilistic return rate
is X = fW . To maximize the compound return rate, you
would like to maximize E[log(1+X)] = log(1+0.23f)0.5+
log(1− 0.2f)0.5. By solving d

dfE[log(1 +X)] = 0, it is easy
to see the maximum is attained when f is f∗ ≈ 0.33. Your
expected log-return rate at f∗ is about 0.0024, a positive rate.

The choice of optimal allocation factor f∗ under the payoff
function of the log-return rate is called the Kelly strategy [4],
[5]. The Kelly strategy is known to be the optimal asset
allocation for repeated games with respect to the expected
compound return rate [6], [7].

C. Dynamic Asset Allocation in Blockchain Mining

In this paper, we apply the idea of Kelly strategy to Proof-
of-Work blockchain mining. To formulate the Kelly strategy
in blockchain mining, we need a model for the economics of
blockchain mining that allows dynamic mining algorithms. To
the best of our knowledge, the rewards of blockchain mining
are modeled using the Poisson process (for example, [8]).
In the model, the miners are modeled as a fixed algorithm
that receives probabilistic rewards according to the Poisson
process. This paper proposes a model that allows dynamic978-1-7281-7091-6/20/$31.00 ©2020 IEEE



mining algorithms by formulating the economics of mining as
a binomial tree model for the probabilistic return from mining
reward minus cost, while a Poisson process triggers the growth
of the binomial tree. We show that the proposed model is a
generalization of the existing Poisson reward model.

Using the new model, we present an analysis of the decision
on dynamic asset allocation. We call the mining strategy
with the optimal asset allocation the growth-rate mining. The
analysis of the decision also finds the equilibrium point of
hash rates among the growth-rate miners.

D. Predicting Share of Bitcoin Mining Pools

The equilibrium point predicts miners’ shares of the hash
rate of Bitcoin. Assuming all the miners have the same cost
rate of mining, the growth-rate miners will occupy about 9% of
the world hash rate when the world hash rate is at 85% of the
break-even point. If a growth-rate miner is more cost-efficient
by about 5% than other growth-rate miners, then the miner
will occupy about 13%. Interestingly, the prediction coincides
roughly with reality.

The growth-rate mining strategy does not threaten the secu-
rity of Bitcoin with respect to the 51% attack as long as there
are no miners who have outstanding cost-efficiency. However,
the lower bound of the mining cost for the 51% attack is not
necessarily unrealistic in the current Bitcoin environment: the
equilibrium point exceeds 50% of the world hash rate if a
miner is about 70% more cost-efficient than other miners.

E. Related Works

1) Known Equilibrium Points Among Miners: Chiu et al.
claim a Nash equilibrium point from the Cournot game setting
the mining reward minus cost as the payoff function for
Player i [3]. In our notations defined in Section II-A, the hash
rate at equilibrium is given by M̂i = m−1

m2
B
c when ci = c for

all i.
Pagnotta et al. and Cong et al. independently claim equi-

librium points based on the CAAR utility function ([9] and
[10]). Both contain an exogenous parameter that indicates the
degree of risk-aversion.

2) Mining Pools: Wang et al. consider the mining pools’
choice between being open or closed to miners: the former
strategy is likely to be more efficient since attracts more
miners, while the latter strategy protects the pool from certain
attacks [11]. The authors model the pools’ choice as a two-
stage game, in which pools choose to be open or not and to
attack or not, and find that weaker pools are more likely to
attack.

Qin et al. study how miners select which mining pool
to join, considering pay-per-share, pay-per-last-N -share, and
proportional reward mechanisms [12]. The authors model pool
selection as a risk decision problem based on maximum-
likelihood criterion, which can provide managerial insights for
miners. Liu et al. study the dynamics of mining pool selection
and find that the hash rate for puzzle-solving and block
propagation delay are the two major factors that determine
the results of the competition between mining pools [13].

Schrijvers et al. study the incentive compatibility of mining
pool reward mechanism using a game-theoretic model, in
which miners can choose between reporting or delaying when
they discover a share or full solution [14]. The authors show
that proportional rewards are not incentive compatible, but the
pay-per-last-N -shares mechanism is in a more general model,
and they introduce a novel incentive compatible mechanism.

II. MINING WITH DYNAMIC ASSET ALLOCATION

A. Model

We model the economics of blockchain mining as a repeated
reward process.

Environment
• B is the reward for mining the next block.
• τ is the average time interval between new block arrivals.
• r is the riskfree rate for time interval τ , usually the

interest rate for the national treasury bond.

Players There are a finite number of Players. Each Player i
has the following parameters.

• A set of balance sheets Oi ⊂ O which the Player chooses
one from. O is the set of all possible balance sheets O =
{(E,L,M,F ) ∈ R4

≥0} that satisfy E + L = M + F ,
and L = 0 if F 6= 0. We call E Equity, L Liabilities, M
Mining Assets, and F Riskfree Assets.

• Price of facility di, which is the average price for facilities
that produce the unit hash rate.

• Cost rate ci, which is the average cost for running the
device per the unit hash rate per time interval of τ .

Shared information The parameters for the Environment
are publicly known. Also, each Player’s existence and its hash
rate of Mi/di are publicly known.

Nakamoto Reward Process The Nakamoto Reward Pro-
cess is a timeless random event for Players with balance
sheets. Of all Players who play the game, Player i with Mining
Assets Mi is exclusively randomly chosen with probability

pi =
Mi/di∑
jMj/dj

,

and obtains revenue of B. In addition, each Player j always
pays cost cjMj/dj . We call pi the success probability of
mining for Player i. Let Ri be the random variable for the
revenue minus the cost. We call Ri the return of the Nakamoto
Reward Process.

Nakamoto Game The Nakamoto Game is a repeated game
with the following stage game in finite time interval from t = 0

to t = T . Let Θ be the Poisson process with λ =
∑

j Mj/dj

D .
D is a parameter adjusted so that D is close to τ

∑
jMj/dj .

1. For all i, Player i chooses balance sheet Bi ∈ Oi.
2. Wait a trigger according to Θ.
3. All the Players execute the Nakamoto Reward Process.

For all i, Player i with the Mining Assets Mi of Bi =
(Ei, Li,Mi, Fi) obtains the return Ri.

4. For all i, Player i pays (or receives) interests r(Li−Fi).



The payoff for each stage game of the Nakamoto Game is
log(1+ Ri−r(Li−Fi)

Ei
), and the payoff for the Nakamoto Game

is the sum of the payoff of the stage games.
When the Players have the same facility price d = di,

we say that the Players are homogeneous. In this case, we
normalize the prices without loss of generality so that d = 1.
We say Player is static if it always chooses the fixed balance
sheet.

B. Assumption on the Variance of Cost Rate

The Nakamoto Game models the mining cost rate as a
constant for each new block arrival, ignoring the timewise
variance of the cost. This assumption is realistic for two
reasons. First, most of the variance of the return in the one-shot
mining comes from the variance from the mining reward and
that from the cost rate is minor in practical settings. Second,
we are interested in the behavior of Players that remain robust
to change of external factors in block arrival timing such as
other miner’s behavior with possible malicious intentions, the
delay of block propagation network, possible forks, and so on.

C. Return from the Nakamoto Reward Process

For a random variable X , the moment generating function
of X is defined as MX(u) = E[euX ].

Proposition 1: Given balance sheets Bi =
(Ei, Li,Mi, Fi) ∈ Oi for all i, let Ri be the random
variable for the return from the Nakamoto Reward Process
for Player i. Then, MRi

(u) = MRevenue(u)MCost(u) for
MRevenue(u) = pie

uB + (1− pi) and MCost(u) = e−uciMi/di .
Corollary 1: For the return Ri of the Nakamoto Reward

Process with homogeneous Players,

E[Ri] =
BMi∑
jMj

− ciMi, and V[Ri] =
B2MiM−i
(
∑
jMj)2

for M−i =
∑
j 6=iMj .

Corollary 2: Let Yi = B/ci. Player i’s response in
Nakamoto Game satisfies Mi ≤ Yi−

∑
j 6=iMj if (0, 0, 0, 0) ∈

Oi. In particular Mi = 0 if Yi ≤
∑
j 6=iMj .

We call Yi the break-even hash rate for Player i.

D. Nakamoto Game and Poisson Reward Model

Since the original Bitcoin paper [15], the reward for miners
has been modeled using the Poisson process[8], which we call
the Poisson reward model.

Poisson Reward Model: A player with hash rate Mi/di will
receive the revenue B according to the Poisson process with
λi = Mi

Ddi
. D is the difficulty parameter, which is adjusted so

that λ−1 = τ for λ = H
D , where H is the world hash rate.

We claim that the revenue of the Nakamoto Game with
static Players replicates that of the Poisson reward model.

Proposition 2: Suppose static Players play the Nakamoto
Game and Players i chooses balance sheet (Ei, Li,Mi, Fi)
for time interval t = 0 to t = T . Let Mi(u) be the moment
generating function for the sum of the return of player i. Then,

Mi(u) = eTλ((pie
uB+1−pi)e−uciMi/di−1)

In particular if ci = 0 then Mi coincides with the moment
generating function of the revenue in the Poisson reward
model.

III. DECISION OF ASSET ALLOCATION AND FINANCE

We assume the Players are homogeneous hereafter.
Theorem 1: Suppose Player i plays the Nakamoto Game

with Oi = O. Fix Player j’s balance sheet Bj for j 6= i. Then,
there is a unique balance sheet B∗i = (E∗i , L

∗
i ,M

∗
i , F

∗
i ) ∈ Oi

that maximizes the expected payoff from the stage game of
the Nakamoto Game. Player i maximizes the expected payoff
of the Nakamoto Game by continuously choosing B∗ for each
stage game. B∗ is determined by M∗i = 1

3

(
B
ci+r

−M−i
)
.

Theorem 2: Suppose (m+ n) Players play the Nakamoto
Game, and let I = {1, 2, · · · ,m} and K = {m + 1,m +
2, · · · ,m + n}. Suppose that for i ∈ I , Players i tries to
maximize the expected payoff of the Nakamoto Game with
Oi = O. For k ∈ K, Player k has only choice of the balance
sheet with Ok = {Bk}. Then, there is an equilibrium point
B̂i = (Êi, L̂i, M̂i, F̂i) among Players i ∈ I in which B̂i is
determined by

M̂i =

 1

ci + r
− 1

m+ 2

∑
j∈I

1

cj + r

 B

2
− Z

m+ 2

for Z =
∑
k∈KMk.

A. Optimal Asset Allocation

Proposition 3: Let Wi = Ri/Mi, the random variable for
the return rate over Mining Assets from the Nakamoto Reward
Process with Mining Asset Mi for Player i. For given Bi =
(Ei, Li,Mi, Fi), the payoff of the stage game of the Nakamoto
Game is given by log(1+Xi) for Xi = (1−f)r+fWi, where
f is the leverage rate f = Mi/Ei.

The expected payoff of the stage game is approximated as

E[log(1 +Xi)] = r + f(E[Wi]− r)−
f2V[Wi]

2
+O(E[Wi]

2).

This approximation formula is obtained by applying the
method described in [16].

Let g∞(f) = r + f(µ − r) − f2σ2

2 for µ = E[Wi] and
σ2 = V[Wi]. The player would like to maximize g∞(f).
Solving g′∞(f) = 0, g∞(f) attains the maximum at f = f∗

for f∗ = µ−r
σ2 , and g∞(f∗) = S2

2 + r for S = µ−r
σ . S is

called the Sharpe ratio of Wi. Thus we obtained the following
proposition.

Proposition 4: Suppose Player i seeks the optimal balance
sheet and fix the balance sheet Bj for every j 6= i. (1) Given
Mining Assets M̃ there is a unique balance sheet Bi ∈ O(M̃)
that maximizes the expected payoff of the stage game of the
Nakamoto Game with the balance sheet chosen from O(M̃) =
{(E,L,M,F ) ∈ O|M = M̃}. (2) The maximal expected
payoff of the stage game of the Nakamoto Game for Player i
with balance sheet Bi is approximated by S2

i /2 + r. Si is the
Sharpe ratio of the return rate of the Single Nakamoto Game,
namely Si = E[Wi]−r√

V[Wi]
.



B. Equilibrium among Players

Suppose (m+n) Players play the Nakamoto Game. Let I =
{1, 2, · · · ,m} and K = {m+ 1,m+ 2, · · · ,m+n}. Suppose
that for i ∈ I , Player i tries to maximize the expected payoff
of the Nakamoto Game with Oi = O. For k ∈ K, Player k
has only choice of the balance sheet with Ok = {Bk}. Let
Z =

∑
k∈KMk, H =

∑
j∈IMj + Z and M−i = −Mi + H

for i ∈ I . The Sharpe ratio of the return rate of Player i in
the Single Nakamoto Game is

Si =
1− ci+r

B (Mi +M−i)√
M−i/Mi

as Corollary 1 implies E[Wi] = B
H − ci,V[Wi] = B2M−i

MiH2 .

By solving ∂Si

∂Mi
= 0, we obtain M∗i that maximizes Si by

M∗i = 1
3 (Y ′i −M−i) for Y ′i = B

ci+r
. By Proposition 4, there

exists B∗i = (E∗i , L
∗
i ,M

∗
i , F

∗
i ) ∈ O(M∗i ) that maximizes the

expected payoff for choice of balance sheets in O(M∗i ) for all
i ∈ I . Each B∗i achieves the maximal expected payoff for any
choice of balance sheets in Oi because it maximizes Si. This
proves Theorem 1.

Using the formula of M∗i in Theorem 1 we find the
equilibrium point M̂i = 1

2

(
Y ′i − 1

m+2

∑
j∈I Y

′
j

)
− Z
m+2 from

the fixed point of the maximizing condition of Si for each
i ∈ I . Namely, M̂i = 1

3

(
Y ′i − M̂−i

)
for M̂−i = −M̂i +∑

j∈I M̂j +Z. This concludes Theorem 2. This equation also
gives the share of the world hash rate for each Player.

Corollary 3: Let Ĥ =
∑
i∈I M̂i + Z be the world hash

rate at the equilibrium, and Y ′i = B
ci+r

. Then,

Ĥ =
1

m+ 2

∑
i∈I

Y ′i +
2

m+ 2
Z, and

M̂i

Ĥ
=

1

2

(
Y ′i

Ĥ
− 1

)
.

In particular, each Player’s share of the world hash rate is
decided only by the cost rate without explicitly depending on
m if the world hash rate at the equilibrium is given.

IV. IMPLICATIONS IN PRACTICE

A. Example

As of February 2020, the real Bitcoin mining environment
has the parameters as below.

1) The world hash rate is about 1.1× 108 TH/s.
2) Bitcoin price is about 9,500 USD.
3) Mining reward is 12.5 BTC.
4) The average of time intervals between block arrivals is

about 10 minutes.
5) An example of the latest mining device is Anteminer

S17+. It costs about 2200 USD, including the power
supply unit, and it generates about 73 TH/s consuming
2900W power.

6) Electric generation charge is about 0.085 USD per kWh.
7) US 10-year Treasury Rate is 1.3%. We ignore it because

it is small compared with other costs and returns.
Suppose that you are going to start a mining factory that

mines 1 out of every 1000 new blocks. If the mining business

is break-even, the mining cost per hash rate (TH) is about
9500 · 12.5/(1.1× 108) = 1.1× 10−3 USD. We estimate the
cost rate of ci is 80% of the break-even point.

The world mining assets is (1.1×108)/73·2200 = 3.3×109

USD assuming the homogeneous Players. Your mining assets
will be (3.3 × 109)/(1 − 0.001) · 0.001 = 3.3 × 106 USD.
It is equivalent to about 1500 units of Anteminer S17+. The
return rate over your mining assets when mining is successful
is u = (9500 · 12.5 − (1.1 × 108) · 0.001 · (1.1 × 10−3) ·
0.8)/(3.3 × 106) = 3.6 × 10−2, and for unsuccessful mining
d = (−(1.1× 108) · 0.001 · (1.1× 10−3 · 0.8)/(3.3× 106) =

−2.9× 10−5. Applying to f∗ = up+d(1−p)
(u2p+d2(1−p))−(up+d(1−p))2 ,

f∗ is about 5.6.
The optimal log-return rate is about 2.0 × 10−5 per 10

minutes on average. It means the annualized return is about
180%. f∗ = 5.6 means you should start with about 600, 000
USD for Equity, 2, 700, 000 USD for Liabilities. All the assets
are allocated for Mining Assets, 3, 300, 000 USD.

B. Larger is Not Necessarily Better

Suppose that a player i needs to achieve a given probability
pi of successful mining and chooses the optimal f∗ under
that constraint. f increases when pi is small, but decreases
for larger pi and drops to 0 at pi = 0.2: if we add more
than 20% of the world hash rate, then the Nakamoto Game
becomes unprofitable because the world hash rate exceeds
the break-even point. A player will have the motivation to
implement a high leverage ratio of over 100. The difficulty
in collecting such an amount of Mining Assets may be one
of the reasons for forming mining pools, which we discuss in
the next section.

C. Mining Pools as the Players

When f∗ is high, the Player has an option to work as part
of a mining pool. Since the expected simple return rates for
miners do not depend on the size of Mining Assets while the
variance is smaller as the size of Mining Assets becomes large,
the Player can reduce risk by the following methods.

Risk-Sharing Mining Pools Suppose there are a set P
of Players who agree that they share the mining reward and
dividend it in proportion to the amount of Mining Assets. Let
WP =

∑
j∈P Rj/MP for MP =

∑
j∈P Mj , the random

variable for return rate for the sum of the returns of the
Single Nakamoto Game for Players in P . Then E[WP ] =
B
H − cP , and V[WP ] = B2(H−MP )

MPH2 , for H =
∑
iMi and

cP =
∑
j∈P

Mj

MP
cj .

WP is replicated by a Player with a balance sheet B ∈
O(MP ) for the aggregated Mining Assets MP with cost rate
cP , and each participating miners are modeled as entities
which take the part of the return according to the share of the
Mining Assets. This dividend mechanism is modeled out of
the Nakamoto Game. The Player with the aggregated Mining
Assets is called the Risk-Sharing mining pool.

In practice, Risk-Sharing mining pools were first imple-
mented with a proportional reward policy. However, it is hard



to implement a fair method that verifies each member’s con-
tribution to the mining pool’s hash rate, and many deceiving
methods are proposed, such as hopping attacks. Practically,
the most popular implementation at this moment is the pay-
per-last-N -share (PPLNS) pools.

Risk-Free Reward Mining Pools Suppose there is a player
i who accumulates hash rate by collecting contributions by the
external collaborators that receive a risk-free fee.

Suppose Player i offers mining reward of c per hash rate per
the average time interval for mining a new block, and collects
hash rate Φi(c) performed by the collaborators. Then the
pool’s success probably of the single Nakamoto Game is pi =

Φi(c)
Φi(c)+M−i

, so Φi(c) = p1
1−piM−i. We can calculate the opti-

mal balance sheet Bi(pi) = (Ei(pi), Li(pi),Mi(pi), Fi(pi)) ∈
O( pi

1−piM−i) that produces success probability pi by applying
Proposition 4 to M̃ = Mi(pi) = pi

1−piM−i.
If the mining pool wants the best log-return rate for a given

c, then it should prepare Equity Ei(pi) determined by pi, but
does not need to prepare Liabilities because the Mining Assets
are already levered at the optimal ratio. The money prepared
as Equity works as the reserve to pay the reward at a cost
rate c to collaborators. The return from the mining pool is
replicated an ordinary player with balance sheet Bi(pi) and
cost rate ci = c but with an extra revenue of rLi(pi), the
interest of Liabilities at the risk-free rate.

In reality, this type of mining pools is implemented as the
pay-per-share (PPS) mining pools. It is a separate interesting
topic of how we model the market of tradable hash rates that
gives fair Φi.

D. Predicting Mining Pools’ Shares

According to practitioners, the world break-even price of
Bitcoin is about 8,000 USD as of November 2019 [17]. This
implies that the world hash rate is estimated to be about 80%
– 85% of the break-even hash rate. Corollary 3 implies each
of growth-rate mining pools will have about 9%-13% of the
hash rate assuming that they have similar cost rates.

If a mining pool is exceptionally cost-efficient by more than
about 70% to the other mining pools, then the pool has a
reason to occupy more than 50% of the hash rate.

V. CONCLUSIONS

We analyzed how the return from blockchain mining is
optimized by dynamic adjustment of the asset allocation for
mining resources and of financial structures for mining
businesses. We have observed that for each miner, how the
optimal share of the hash rate is determined by the mining
reward and the mining cost.
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