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University of Budapest University of University of Pennsylvania University of

Münster Technology and Economics California, Berkeley State University Münster

ABSTRACT
We provide a game-theoretic analysis of a scenario

from the field of content-adaptive steganography. Alice, a
steganographer, wants to embed a secret message into a ran-
dom binary sequence with a known distribution in which the
value of each position is independently but non-identically
distributed. Eve, a steganalyst, observes the sequence and
wants to determine whether it contains a hidden message. Al-
ice is allowed to flip binary values independently at random,
with the constraint that the expected number of changes is a
fixed constant. Eve may choose to classify each sequence as
either unmodified (cover) or modified (stego). The payoff for
Eve in the game is the probability that her classification is
correct; and the payoff for Alice is the probability that Eve’s
classification is incorrect, so that the game is constant-sum.

We show that Eve’s best response strategy in this game
can be expressed as a linear aggregation threshold formula
similar to those used in practical steganalysis. We give a gen-
eral formula for Alice’s best response strategy; and we com-
pute explicit pure strategy equilibria for the special case of
changing one bit in a length-two sequence.

1. INTRODUCTION

1.1. Steganography and Steganalysis

Steganography is the art of hiding messages in a communi-
cation channel; while its counterpart, steganalysis, is the art
of determining whether a communication channel has been
modified to contain a message. Much research has been done
in this area, most prevalently in the context of digital multi-
media [1]. In that context, the objective of a steganographer is
to hide a message in a multimedia file, e.g., by adjusting some
of the pixels in a JPEG image. The objective of the stegana-
lyst is then to detect whether the image has been modified to
encode some message [2].

A useful heuristic when hiding messages is to take advan-
tage of noisy regions in the communication channel. For ex-
ample, in digital images there are often regions of high color
variance where a color change in some pixel is unlikely to be
noticed [3]. We say that a steganographic scheme is content-
adaptive if it takes advantage of channel noise to decide where
the message is embedded.

In studying content-adaptive steganography, it is useful
(and common [4]) to give considerable detection power to the
steganalyst, including knowledge of the distribution of the un-
modified communication channel. For a fixed communication
channel, we refer to this distribution as the cover distribution,
and the set of possible communications as the cover source.
In digital image steganography, for example, the cover source
would be the set of all possible images that might be used
to hide a message; and the cover distribution would assign
a probability to each such image. In practice, the cover dis-
tribution for a given communication channel is almost never
known [3]. On the other hand, when we are most interested in
developing good content-adaptive embedding strategies, giv-
ing more power to the detector is a useful conservative as-
sumption.

1.2. Modeling Approach

To abstract away from the communication channel details,
we consider a cover source consisting of binary sequences of
some fixed length. In the cover distribution, the value of the
sequence at each position is independently but non-identically
distributed. The distribution is such that the embedding suit-
ability of a given position does not affect the suitability of
any other position, but some positions are more suitable for
embedding than others.

In the context of images, one can think of our modeling
framework as aggregating noisy regions together, so that a bi-
nary choice indicates whether or not the stenographer modi-
fied that region. More generally, the model tries to capture the
most essential features of content-adaptive embedding strate-
gies by focusing only on the communication channel’s noise
levels.

A steganographer must choose some positions in which
to hide her message. Practical and theoretical considerations
serve to motivate appropriate restrictions on this embedding
strategy. First, due to the non-deterministic manner in which
a real-world encoding scheme converts a message to an em-
bedding [5], we allow the steganographer to use randomized
embedding strategies and constrain only the expected value of
the embedding size. Second, due to abstractions of noisy re-
gions into independent binary variables, any advantage gained



from introducing new correlations between positions would
not translate well to the original motivation. Therefore we
require the steganographer’s randomized strategy to embed
independently in each position. With these changes, the dis-
tribution of modified covers (a.k.a. the stego distribution),
retains the independence property between positions.

1.3. Game Theory

Enter game theory: the study of strategic choices and their
consequences. We consider a two-player game between Al-
ice, the steganographer, and Eve, the steganalyst.

Alice wants to hide messages of expected length k into
a cover source of length-N binary sequences; so she may
choose any set of N probabilities that sum to k. Each ai
represents the probability that Alice changes the value of the
sequence at position i.

Eve wants to optimally classify sequences as either con-
taining a message (stego) or not (cover); so she may choose
a probability for each length-N binary sequence. Each e(x)
represents the probability that Eve classifies the sequence x
as stego.

To formalize the game payoff, we suppose that cover se-
quences and stego sequences are equally likely to be seen by
Eve. The game payoff is then determined by the probability
over all cover/stego possibilities, binary sequences, embed-
ding probabilities, and classifier probabilities, that Eve cor-
rectly determines from which distribution the sequence was
drawn. Alice’s payoff is the probability that Eve’s classifier is
incorrect, so that the sum of the two players’ payoffs is 1.

1.4. Paper Outline

The rest of the paper is organized as follows. We review re-
lated work in Section 2. In Section 3, we present our equilib-
ria results. We show numerical illustrations of these results in
Section 4, and we conclude in Section 5.

2. RELATED WORK

The combination of steganography and game theory dates
back to 1998 [6]; while the combination of game theory and
content-adaptive steganography is more recent, with the first
such study appearing in [7]. Our model draws inspiration
from the game-theoretic setup in [8], which is also based
on content-adaptive steganography. Game-theoretic analyses
in this area are well-motivated by the fact that almost all
recently published steganographic algorithms are content-
adaptive, e. g. [9].

3. MODEL ANALYSIS

In this section, we derive analytical results on the minimax
strategies and the existence of pure-strategy Nash equilibria.
We begin by introducing some notation to aid the analysis.

3.1. Notation

Let X denote the random variable representing the observed
binary sequence, and let Y denote the random variable taking
values in {C, S} that represents whether the sequence was
drawn from the cover (C) or stego (S) distribution.

In the cover distribution, X is determined by a monotoni-
cally increasing sequence 〈fi〉Ni=1from ( 12 , 1), where fi gives
the probability that Xi = 1. Since the positions are indepen-
dent,

Pr[X = x|Y = C] =
∏
i:xi=1

fi ·
∏
i:xi=0

(1− fi) . (1)

In the stego distribution, Alice flips the value of the se-
quence in each position i with probability ai, so that Xi = 1
with probability fi(1−ai)+(1−fi)ai. To simplify notation,
we introduce the bias sequence f̃i = 2fi − 1. Then we have
fi(1 − ai) + (1 − fi)ai = fi − aif̃i. Since positions in the
stego distribution are also independent,

Pr[X = x|Y = S] =
∏
i:xi=1

(fi−aif̃i) ·
∏
i:xi=0

(1−fi+aif̃i) .

(2)

3.2. Eve’s Best Response

Given a fixed embedding strategy for Alice, Eve must clas-
sify each sequence as cover or stego. Since she knows both of
these distributions, she can perform a likelihood ratio test to
determine her optimal decision [1]. This test gives a determin-
istic decision rule whenever the two likelihoods are unequal.
When they are equal for a given sequence x, Eve’s decision
at that x does not affect the probability that her classifier is
correct; so in this case, any randomized function over cover
and stego is a best response.

Theorem 1. A best response strategy of Eve is given by the
decision rule

Dbest(x) =


C if

∑
i wixi > τ

S if
∑
i wixi < τ

C or S if
∑
i wixi = τ

(3)

where for each i,

wi = log
fi(1− fi + aif̃i)

(fi − aif̃i)(1− fi)
and (4)

τ =
∑
i

log
1− fi + aif̃i

1− fi
. (5)

Proof. Given a sequence x, Eve’s best response selects the
most likely distribution from which xwas drawn. Her optimal
choice can thus be expressed as

Dbest(x) =


C if Pr[Y=C|X=x]

Pr[Y=S|X=x]
> 1

S if Pr[Y=C|X=x]

Pr[Y=S|X=x]
< 1

C or S if Pr[Y=C|X=x]

Pr[Y=S|X=x]
= 1.



The condition for cover (C) can be expressed using f and
a as follows:

1 <
Pr[Y = C|X = x]

Pr[Y = S|X = x]

=
Pr[Y = C]Pr[X = x|Y = C]

Pr[Y = S]Pr[X = x|Y = S]

=
1
2 ·
∏
i Pr[Xi = xi|Y = C]

1
2 ·
∏
i Pr[Xi = xi|Y = S]

=
∏
i:xi=1

fi

fi − aif̃i
·
∏
i:xi=0

1− fi
1− fi + aif̃i

0 <
∑
i:xi=1

log
fi

fi − aif̃i
+
∑
i:xi=0

log
1− fi

1− fi + aif̃i

=
∑
i

(
xi log

fi

fi − aif̃i
+ (1− xi) log

1− fi
1− fi + aif̃i

)

=
∑
i

xi log
fi(1− fi + aif̃i)

(fi − aif̃i)(1− fi)
+
∑
i

log
1− fi

1− fi + aif̃i

⇔
∑
i

xi log
fi(1− fi + aif̃i)

(fi − aif̃i)(1− fi)
≥
∑
i

log
1− fi + aif̃i

1− fi
.

3.3. Alice’s Best Response

Given a fixed (potentially randomized) classifier for Eve, Al-
ice wants to choose an embedding strategy that maximizes the
error probability of this classifier; but since her strategy can-
not affect the classifier’s false positive rate (on cover inputs),
she may concentrate her efforts on maximizing the classifier’s
false negative rate. Formally, if e(x) is Eve’s probability for
classifying x as stego, then Alice’s best response strategy is
to choose an a satisfying

∑
i ai = k and maximizing∑

x∈{0,1}N
(1− e(x))Pr[X = x|Y = S] =

∑
x∈{0,1}N

(1−e(x))
∏
i:xi=1

(fi−aif̃i)
∏
i:xi=0

(1−fi+aif̃i) . (6)

To get some leverage from this formula, consider Alice’s
best response strategy and any pair ai, aj that are interior val-
ues of (0, 1). Alice’s payoff cannot increase if she adjusts
her strategy by simultaneously increasing ai and decreasing
aj (or vice versa) by the same small amount ε. If we con-
sider the payoff as a function of ε in this manner, then for a
payoff-maximizing a, the partial derivative with respect to ε
must be zero at ε = 0. This condition can be expressed as a
formula, which constrains Alice’s best response strategy for
each pair (ai, aj) taking interior values in (0, 1) in terms of

the remaining am.

ai − aj =

∑
x

(1− e(x))
∏
m6=i,j

Pr[Xm = xm|Y = S]

·
(
(1− 2xi)f̃i(xj f̃j + 1− fj)

−(1− 2xj)f̃j(xif̃i + 1− fi)
)

∑
x

(1− e(x))
∏
m6=i,j

Pr[Xm = xm|Y = S]

·
(
f̃1f̃2(1− 2xi)(1− 2xj)

)
(7)

This set of constraints can be solved for at least some small
N . However, we conjecture that the general problem of com-
puting Alice’s best response strategy is NP-hard, and we leave
this as an open problem. We illustrate the structure of the so-
lution in the following subsection by considering the special
case of two positions.

3.4. Special Case: N = 2, k = 1

For this subsection, we restrict our analysis to the case of
changing a single bit (k = 1) in covers of length two (N =
2). Here Alice’s strategy (a1, a2) can be specified by giving
only one of the two probabilities, since a2 = 1 − a1; con-
sequently, we use only the probability a1 to specify Alice’s
strategy in this subsection. Eve’s strategy is specified as a
vector (e(00), e(01), e(10), e(11)).

3.4.1. Alice’s Minimax Strategy

Alice’s minimax strategy minimizes Eve’s payoff assuming
Eve is playing a best response strategy. To find this strat-
egy, we divide Alice’s strategy space into equivalence classes
such that Eve’s best response is the same for each element
in a class. We begin by giving some lemmas that show the
structure of these classes. The proofs use algebra based on
the definitions, and are omitted due to shortage of space.

Lemma 1. Eve always classifies sequence 00 as stego and
sequence 11 as cover.

Lemma 2. Eve classifies the sequence 01 as cover when a1 ≤
θ1, and she classifies the sequence 10 as cover when a1 ≥ θ2,
where

θ1 =
(f1 − 1)f̃2 + f̃1(f2 − 1)

2f̃1f̃2

+

√[
(1− f1)f̃2 + f̃1(1− f2)

]2
− 4f̃1f̃22 (f1 − 1)

2f̃1f̃2

and

θ2 =
f1f̃2 + f̃1f2 −

√[
f1f̃2 + f̃1f2

]2
− 4f1f̃1f̃22

2f̃1f̃2
.



Lemma 3. It always holds that θ1 < θ2.

The following theorem summarizes Eve’s best response
for the three equivalence classes on Alice’s strategy space.

Theorem 2. Given a fixed strategy for Alice, Eve’s optimal
decision for each binary sequence x is given by:

Alice’s strategy Eve’s optimal decision
x = 00 01 10 11

a1 ≤ θ1 S C S C
θ1 ≤ a1 ≤ θ2 S S S C
θ2 ≤ a1 S S C C

Proof. It follows immediately from Lemmas 1, 2, and 3.

Next, for each equivalence class, we consider Alice’s pay-
off, assuming Eve is making an optimal decision.

Lemma 4. Alice’s payoff is increasing for a1 ∈ [0, θ1] and
decreasing for a1 ∈ [θ2, 1].

Lemma 5. The first derivative of Alice’s payoff for a1 ∈
[θ1, θ2] is

∂u(Alice)
∂a1

∣∣∣
θ1≤a1≤θ2

= −4a1f̃1f̃2 + 2
(
f1f̃2 + f̃1(f2 − 1)

)
and the second derivative is −4f̃1f̃2.

Theorem 3. Alice’s minimax strategy is

a1 =

{
amax when amax ≤ θ2
θ2 when θ2 < amax ,

(8)

where amax denotes f1f̃2+f̃1(f2−1)
2f̃1f̃2

.

Proof. From Lemma 4, we have that Alice’s minimax strat-
egy satisfies θ1 ≤ a1 ≤ θ2. This strategy must be a local max-
imum for her payoff over [θ1, θ2]. Since the second derivative
of the payoff is always below zero in this region, we can find
the local maximum by letting the first derivative be equal to
zero and solving the equation for a1, which gives us amax.
• It can be shown that amax ≥ θ1.
• If amax ≤ θ2, the local maximum is attained at amax.

Thus, Alice’s minimax strategy is (amax, 1− amax).
• If θ2 < amax, the local maximum is attained at the

endpoint θ2. Thus, Alice’s minimax strategy is (θ2, 1−
θ2).

3.4.2. Nash equilibria

We next characterize the equilibria of the game. We start by
giving conditions for when there is an equilibrium in which
Eve uses a deterministic classifier.

Theorem 4. A Nash equilibrium with a deterministic strategy
for Eve exists if and only if amax ≤ θ2.

Proof. First, it is easy to see that the strategy pair (S, S, S,C)
and (amax, 1 − amax) is an equilibrium when amax ≤ θ2
because both strategies are best responses. Second, we have
to show that no equilibrium with a deterministic strategy for
Eve can exist if θ2 < amax:
• Alice’s best response to the strategy (S,C, S,C) is
a1 = 1; however, Eve’s best response strategy to (1, 0)
is not (S,C, S,C), but (S, S,C,C).
• Alice’s response to (S, S, S,C) is a1 = amax; how-

ever, since amax 6∈ [θ1, θ2], Eve’s response is not
(S, S, S, C), but either (S,C, S,C) or (S, S,C,C).
• Finally, Alice’s best response to (S, S,C,C) is a1 = 0;

however, Eve’ response to (0, 1) is (S,C, S,C).

Next we show that an equilibrium always exists if Eve can
use probabilistic strategies.

In the case of amax ≤ θ2, the strategy pair (S, S, S,C),
(amax, 1 − amax) is an equilibrium. Thus, in this case, Eve
can use the probabilistic strategy that chooses the determin-
istic strategy (S, S, S, C) with probability 1. Consequently,
we only have to a find a mixed strategy for Eve in the case of
amax > θ2.

Theorem 5. Eve’s minimax strategy is

e(00) = 1

e(01) = 1

e(10) =

 1 if amax ≤ θ2
f̃1√

(f1−f2)2−4f1f̃1f̃2(f2−1)
otherwise.

e(11) = 0

Proof. Eve is playing a minimax strategy when she forces Al-
ice to play her minimax strategy as a best response. We obtain
the probability for 10 by using brute force and single-variable
calculus to compute Alice’s best response as a function of this
probability and equating it with her minimax strategy.

4. NUMERICAL ILLUSTRATIONS

In this section, we give numerical illustrations for some re-
sults with N = 2 and k = 1. First, Figure 1 depicts the
probability that Eve classifies the sequence 10 as stego in her
minimax strategy, as a function of the cover predictability de-
scriptor f . The dotted black line gives the border between the
regions e(10) = 1 (white area) and e(10) < 1, where darker
areas indicate lower values.

Figure 2 shows Eve’s classification error rates as a func-
tion of a1 for two different examples of f . The example
f in Figure 2(a) yields a deterministic strategy equilibrium,
while the f in Figure 2(b) yields a randomized strategy equi-
librium. Both figures reveal that neither the false positive rate
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Fig. 1. The value of e(10) in Eve’s
minimax strategy as function of f .

Fig. 2. Eve’s false positive rate (dashed line), Eve’s false negative rate (dot-
ted line), and Alice’s payoff (solid line) as a function of a1.

nor the false negative rate is continuous, although Alice’s pay-
off (which is half the sum of these rates) is continuous. The
discontinuities occur at the two values θ1 and θ2 where Eve
switches her optimal strategy (see Lemma 2).

5. CONCLUSION

Motivated by the objective of finding good content-adaptive
embedding strategies, we analyzed a two-player game in
which Alice could flip an expected number of k bits in a
cover source consisting of N independently-distributed but
not identically-distributed positions; and her objective was
to cause maximum failure probability in Eve’s optimal clas-
sifier. We found that Eve’s best response to Alice could be
expressed as a linear inequality in the cover positions; and
that Alice’s best response to Eve was determined by maximiz-
ing a weighted sum over all cover realizations. We addressed
the basic structure of this problem by tackling the case of two
positions, and for that special case we described the game’s
pure-strategy Nash equilibria.

Many open questions remain. We conjecture that deter-
mining Alice’s best response strategy in this setting is NP-
hard. For reasons not entirely unrelated to this conjecture,
we leave more detailed structural analysis of larger covers to
future work.
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approach to content-adaptive steganography,” in Infor-
mation Hiding. 2012, vol. 7692 of LNCS, pp. 125 – 141,
Springer.

[8] Benjamin Johnson, Pascal Schöttle, and Rainer Böhme,
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