
Verified Development and Deployment of
Multiple Interacting Smart Contracts with VeriSolid

Keerthi Nelaturu∗, Anastasia Mavridou†, Andreas Veneris∗, Aron Laszka‡
∗ University of Toronto † SGT Inc. / NASA Ames Research Center ‡ University of Houston

Published in the proceedings of the
2nd IEEE International Conference on Blockchain and

Cryptocurrency (ICBC 2020).

Abstract—Smart contracts enable the creation of decentralized
applications which often handle assets of large value. These
decentralized applications are frequently built on multiple inter-
acting contracts. While the underlying platform ensures the cor-
rectness of smart contract execution, today developers continue
struggling to create functionally correct contracts, as evidenced
by a number of security incidents in the recent past. Even though
these incidents often exploit contract interaction, prior work on
smart contract verification, vulnerability discovery, and secure
development typically considers only individual contracts. This
paper proposes an approach for the correct-by-design develop-
ment and deployment of multiple interacting smart contracts by
introducing a graphical notation (called deployment diagrams)
for specifying possible interactions between contract types. Based
on this notation, it later presents a framework for the automated
verification, generation, and deployment of interacting contracts
that conform to a deployment diagram. As an added benefit,
the proposed framework provides a clear separation of concerns
between the internal contract behavior and contract interaction,
which allows one to compositionally model and analyze systems
of interacting smart contracts efficiently.

Index Terms—Smart Contract, Verification, CAD, Solidity,
Ethereum.

I. INTRODUCTION

Blockchain technology has received significant attention in
recent years from academia and industry due to its ability to
provide open, decentralized, and trustworthy platforms of com-
putation. While undoubtedly the most widely used application
of blockchains today is remittance of cryptocurrencies (e.g.,
BTC on Bitcoin network), blockchains can also be used as
trustworthy decentralized mediums for general-purpose trust-
less computation in the form of smart contracts.

As with any software implementation, smart contracts may
suffer from subtle and surprising bugs made by developers.
These bugs present potential threats to the security of smart
contracts by allowing attackers to maliciously extract currency
from contracts or to even destroy the contracts in certain cases.
Recent notable security incidents are the “DAO attack” [1],
in which around 3.6 million Ether was transferred to the
perpetrator (valued today at around $747 million), and the
“Parity Wallet hack” [2], in which around 514 thousand Ether
was permanently frozen (valued today at around $107 million).

Motivated by such security issues and incidents, a number
of tools have been proposed for vulnerability discovery (e.g.,

[3], [4], [5]), formal verification (e.g., [6], [7], [8]), correct-
by-design construction (e.g., [9], [10]), etc. to aid developers
in creating secure contracts. A common limitation of existing
tools is that they typically focus on the analysis or development
of a single contract in isolation from other contracts with
which it may have to interact once it is deployed. However, in
practice, most decentralized applications are built on multiple
interacting smart contracts, and exploits often involve more
than one of them. For example, in the so-called “DAO attack,”
the perpetrator exploited a re-entrancy vulnerability in the DAO
contract that involved function calls to other contracts.

In this paper, we propose an end-to-end framework for
the correct-by-design development and deployment of multiple
interacting smart contracts for Ethereum’s Solidity. Our work
builds upon the VERISOLID open-source framework [10],
which supports the correct-by-design development of stand-
alone contracts. Contrary to other tools that support vulnera-
bility discovery and analysis of existing smart contracts, the
idea behind VERISOLID is to help users develop correct-by-
design smart contracts through iterative analysis of high-level
models and code generation. In particular, VERISOLID allows
developers to graphically design a smart contract as a transition
system, perform model checking, and generate functionally
equivalent Solidity code based on formally defined operational
semantics.

In detail, the contributions of this paper are as follows:
• We extend the VERISOLID operational semantics to for-

mally capture interaction of transition systems.
• We propose a graphical notation, called Solidity De-

ployment Diagrams, for specifying permitted interactions
between smart contracts.

• We introduce an approach for the formal verification of
a system of interacting smart contracts.

• We extend VERISOLID Solidity code generation to sup-
port the generation of multiple interacting contracts.

• We provide a deployment framework of the generated
smart contracts on the Ethereum blockchain.

The remainder of this paper is organized as follows. Sec-
tion II provides background information on VERISOLID. Sec-
tion III introduces our novel approach for multiple interacting
contracts. Section IV describes the transformation of smart
contract Solidity code into verifiable models. Section V intro-
duces our graphical notation for modeling contract interaction.
Section VI presents our verification methodology. Section VII
discusses examples of typical vulnerabilities that can be
prevented or detected using our framework. Section VIII
discusses related work and Section IX concludes the paper.

1

II. BACKGROUND: VERISOLID FRAMEWORK

VERISOLID enables developers to (i) specify smart con-
tracts as transition systems, (ii) verify these systems indi-
vidually, and (iii) generate functionally equivalent Solidity
code from them [10]. The states of a transition system model
the various states of a contract (e.g., different stages of a
secret ballot vote or of a blind auction), while the transitions
between these states model functions that may be externally
called to change the state of the contract. For the sake of
completeness, we provide a brief overview of the formal
syntax and verification approach of VERISOLID [10].

VERISOLID allows developers to specify the actions that are
performed by transitions (i.e., function bodies) using a Turing-
complete subset of Solidity statements denoted by S. Further,
let T denote the set of Solidity data types, I denote the set of
valid Solidity identifiers, D denote the set of Solidity events
and custom data type definitions, E denote the set of Solidity
expressions, and C (⊆ E) denote the set of Solidity expressions
that do not have any side effects (apart from consuming gas or
raising an exception). Then, a transition system for modeling
a smart contract is a tuple (D,S, SF , s0, a0, aF , V, T):
• D ⊂ D is a set of custom event and type definitions;
• S ⊂ I is a finite set of states;
• SF ⊂ S is a set of final states;
• s0 ∈ S, a0 ∈ S are the initial state and action;
• aF ∈ S is the fallback action;
• V ⊂ I × T contract variables (i.e., variable names and

types);
• T ⊂ I× S × 2I×T ×C× (T ∪ ∅)× S× S is a transition

relation, where each transition t ∈ T includes: transition
name tname ∈ I; source state tfrom ∈ S; parameter
variables (i.e., arguments) tinput ⊆ I× T; transition guard
gt ∈ C; return type toutput ∈ (T ∪ ∅); action at ∈ S;
destination state tto ∈ S.

A contract can have at most one constructor represented
by the initial action a0. After the constructor returns, the
contract is in initial state s0. A contract can also have at most
one unnamed function, which is called the fallback function
and represented by the fallback action aF . Other functions
are represented by transitions T . A transition t ∈ T expects
a set of function arguments tinput, executes its action at
if the contract is in the source state tfrom and the guard
condition gt is met, and moves the contract into destination
tto upon successful execution (i.e., no exceptions raised). For
the interested reader, [10] provides formal operation semantics
that allow the mechanics and formalism presented here.

In VERISOLID, formal verification is essential to check
the behavioral correctness of the system under design. While
alternative approaches (such as simulation or testing) rely
on the selection of appropriate test input stimulus for a
predetermined coverage of the program’s control flow, formal
verification (e.g., by model checking) guarantees full coverage
of execution paths for all possible inputs. Thus, it provides
a rigorous way to assert (or disprove) that a system model
meets a set of predefined properties. VERISOLID uses nuXmv,
a symbolic model checker for transition systems. To enable
nuXmv to consider transition actions (i.e., Solidity statements

in function bodies), VERISOLID transforms each transition
action into a series of internal states and internal transitions
that represent the control flow of the action. Specifically, it
applies an augmentation algorithm that recursively replaces
compound statements with series of inner transitions and
states, and recursively replaces control-flow statements (e.g.,
selection and loop statements) with inner transitions and states
modeling the possible execution traces. The output of this
augmentation algorithm is a transition system with only simple
statements (i.e., expression statements, variable declarations,
and event emissions) as actions. The augmentation also con-
siders the possibility of a function encountering an exception
and reverting its execution.

III. PROPOSED WORKFLOW

We extend VERISOLID with a novel approach for the
correct-by-design development and deployment of multiple
interacting smart contracts. We provide an open-source, web-
based implementation [11] which allows the collaborative de-
velopment of Ethereum contracts with built-in version control,
which enables branching, merging, and history viewing. We
also extend VERISOLID to support Solidity v0.5.

Fig. 1. Design, verification, and deployment workflow

Figure 1 shows the steps (numbered arrows) of the design,
verification, and deployment workflow of our approach that
extends the original VERISOLID framework. Circled numbers
with shaded background represent steps that do not exist
or are significantly different than in the previous version of
VERISOLID. Solid arrows represent steps that are mandatory,
while dashed arrows represent optional steps. In Step 1, the
developer provides input, which consists of:
• Contract specifications containing: 1) a graphically spec-

ified transition system and 2) variable declarations, ac-
tions, and guards specified in Solidity. Alternatively, a
developer may import the code of an existing Solidity
contract and the system automatically creates the corre-
sponding transition system, as detailed in Section IV.

• A list of properties to be verified. These properties can be
expressed in predefined natural-language like templates.
Properties are extended to enable specifying requirements
on multiple interacting smart contracts (Section VI).

• A graphically specified Solidity Deployment Diagram
that contains contract types and their associations. The
associations specify which contracts have references to
which other contracts (Section V).

2

Algorithm 1: Transition System Generation
Input: Solidity source code
Output: model (D,S, SF , s0, a0, aF , V, T)
1: model ← call AddStatesTransitions(source)

[Algorithm 2]
2: model ← call AddModifiers(source, model)
3: return model [Algorithm 3]

The verification loop (Steps 2 to 6) starts at the next step.
Step 2 is automatically executed to generate the augmented
contract models based on the transition systems and the de-
ployment diagram information. Next, in Step 3, the Behavior-
Interaction-Priority (BIP) model of the interacting smart con-
tracts is automatically generated. Similarly, in Step 4, the
specified properties that may involve multiple interacting con-
tracts are automatically translated to Computational Tree Logic
(CTL). The model can then be verified for deadlock freedom
or other properties using tools from the BIP tool-chain [12] or
nuXmv [13] (Step 5). If the required properties are not satisfied
by the model (depending on the output of the verification tools)
the input can be refined by the developer (Step 6) and analyzed
anew. Finally, when the developer is satisfied with the design,
i.e., all specified properties are satisfied, the equivalent Solidity
code of the interacting contracts is automatically generated
in Step 7. At this point (Step 8), the user may use our
deployment plugin to correctly deploy the verified contracts
onto a blockchain network.

Scope of Supported Operations: To keep verification com-
putationally tractable for multiple contracts, we impose certain
restrictions on the interactions between the contracts. We
believe that these restrictions are plausible and realistic, as
they enable the correct-by-design implementation of a wide
range of decentralized applications. In particular, we make the
following assumptions on contract interactions:
• We allow only the following interactions between gen-

erated Solidity contracts: high-level functions calls (i.e.,
contract.function(arg1, arg2, . . .)), transfers (i.e., ad-
dress.transfer(amount)), and a custom high-level
delegation mechanisms, which is implemented as a wrap-
per around the low-level delegatecall and raises an
exception upon failure;

• We do not allow re-entrancy for external function calls,
that is, if contract x calls another contract, then before
this call finishes, no other function may be invoked in
contract x; and,

• We allow only non-recursive internal function calls, that
is, if function f is invoked, then it may not be invoked
again before the current invocation finishes.

IV. TRANSITION SYSTEM GENERATION

In Step 1, a developer may import the Solidity
code of an existing contract and use our automatic
mechanism, described in Algorithm 1, to generate a
corresponding transition system. Algorithm 1 uses the
following two sub-algorithms: AddStatesTransitions
(Algorithm 2) and AddModifiers (Algorithm 3).

Algorithm 2: Add States and Transitions
Input: Solidity source code
Output: model (D,S, s0, a0, aF , V, T)
1: D ← ∅, S ← {s}, SF ← ∅, a0 ← {}, aF ← {},
V ← ∅, T ← ∅

2: for event in source:
3: D ← D + event
3: end for
4: for contract variable @type @identifier in source:
5: V ← V + (@identifier, @type)
6: end for
7: if constructor in source:
8: a0 ← constructor body
9: end if
10: if fallback function () in source:
11: aF ← fallback body
12: end if
13: for function @type function @name(@input)
in source:

14: T ← T+ transition t, where tname = @name,
from = s, tto = s, tinput = @input, gt ← true,
toutput = @type, and at = function body

15: end for

Algorithm 3: Add Modifiers
Input: Solidity source code, model
(D,S, s0, a0, aF , V, T)

Output: model (D,S, s0, a0, aF , V, T)
1: modifiers ← ∅
2: for modifier @mname @mbody in source:
3: modifiers ← modifiers + (@mname, @mbody)
4: end for
5: for t ∈ T :
6: for @mname in modifiers of function tname:
7: @mbody ← find @mname in modifiers
8: if @mbody specifies side-effectless condition c:
9: gt ← gt ∧ c
10: else
11: at ← at extended with @mbody
12: end if
13: end for
14:end for

AddStatesTransitions creates the states, transitions,
initial action, and fallback actions. AddModifiers extends
the transitions based on the modifiers of the corresponding
functions. After the extension, the generated transitions
may contain guard conditions depending on whether the
corresponding functions use Solidity modifiers. Note that not
all modifiers can be converted into guards. The modifiers
that our framework converts into guards must follow the
syntax below, i.e., they must include require and/or if

statements and their execution must come before the body of
the corresponding function:

3

Fig. 2. Transition system of WalletLibrary

〈guard modifier〉 ::=
modifier @identifier (

(
@type @identifier

(, @type @identifier) ∗
)
∗)

{ (if(@expression)) ∗ |
(require(@expression);)∗
| _;}

If there are multiple if, require statements in the modifier,
we append all the expressions with a logical && operator
forming a conjunction. Once a transition systems is generated,
the developer may update the transition systems by adding,
removing, or modifying states, transitions, etc.

As an example, consider an earlier version of the Parity
multisignature wallet, which became famous as the victim of
one of the largest Ethereum security incidents to date [2]. A
single instance of the Parity WalletLibrary contract was
deployed and used as a library by a number of Parity Wallet
contracts, which heavily relied on the code of the library since
they simply delegated most function calls to the library.

We automatically generated the transition systems of
Wallet and WalletLibrary by importing their source
code, which is available on Etherscan [14] (350 lines of code
for WalletLibrary and 60 lines of code for Wallet).

From the source code of WalletLibrary, our framework
generated the model in Figure 2. To increase readability of
the model, our framework groups functions that use the same
modifiers—the guards of the transition system—as follows:
• ∗_onlyowner contains the execute and
underLimit functions;

• ∗_onlyinitialized contains the
initmultiowned, initDayLimit,
initWallet functions;

• ∗_nomodifier contains the getOwner, isOwner,
hasConfirmed, revoke,
create, confirm, confirmCheck,
reorganizeOwners, clearPending,
today functions;

• ∗_onlymanyowners contains the
changeOwner, addOwner, removeOwner,
changeRequirement, setDayLimit,
resetSpentToday, kill functions.

Similarly, from the source code of Wallet, our framework
generated the model shown in Figure 3. The initial transition
Wallet corresponds to the constructor of the contract.

Each generated transition system contains a single state.
The Initial state of WalletLibrary represents initial
state of the contract after creation. Note that the contract

Fig. 3. Transition system of Wallet

Fig. 4. SDD of Parity Wallet

does not have a constructor, so all variables are zero. The
Initialized state of Wallet represents the main state of
the contract, which is entered once the owners are set up.

One of the functions of WalletLibrary, named
initMultiOwned (generated as a transition), played a cru-
cial role: it was invoked from the constructor of a wallet using
delegation to set up the owners of the wallet. However, due to
a design mistake, anyone could call this function directly in
an instance of WalletLibrary, thereby taking ownership
of the library itself. Once someone has taken ownership of
the WalletLibrary instance, they could easily destroy it
by calling its kill function. The destruction of the library
meant that all wallets relying on it were deadlocked, i.e., lost
almost all of their functionality, including the ability to send
or withdraw funds. This deadlock resulted from the interaction
between the Wallet and the WalletLibrary. At the time
of this writing, the amount of Ether “deadlocked” in these
wallets is approximately $107 million.

V. MODELING SMART CONTRACT INTERACTIONS

To specify contract interaction rules for verification, the
developer must provide a Solidity Deployment Diagram (SDD)
in Step 1. In this section, we focus on the specification of
deployment information between contract types based on the
concept of association.

Figure 4 shows the SDD of Parity Wallet example, which
contains two contract types: WalletLibrary and Wallet.
Each of the contract types has an associated natural number,
namely cardinality, that defines the number of instances that
must be deployed for each contract type, e.g., 3 for Wallet
and 1 for WalletLibrary. Additionally, the SDD contains
an arrow associating each instance of Wallet with the single
instance of WalletLibrary. This means that each Wallet
instance must have a reference to the WalletLibrary
instance, which can be used for delegating or calling functions.

We now define formally the aforementioned concepts.

Definition 1. An SDD 〈T , n, A〉 consists of a set of contract
types T = {T1, . . . , TK}; an associated cardinality function
n : T → N, where N is the set of natural numbers (we will
abbreviate n(Ti) to ni to simplify the notation); and a set of
deployment associations A = {A1, . . . , Al} of the form A =

4

Fig. 5. Example deployment of Parity Wallet

(〈as, at〉, d), where as, at ∈ T are respectively the source and
target of the deployment association, and d ∈ N>0 is the
degree of the association.

The degree of an association constrains the number of
associations attached to each instance of the source contract
type (as). The number of associations attached to each instance
of the target contract type (at) is equal to the cardinality nas

of
the source contract type multiplied by the degree d. Notice that
deployment associations are binary, i.e., they involve exactly
two contract types.

The degree of an association must be equal to or less
than the cardinality of at, otherwise the SDD is invalid. Our
framework checks and notifies the developer of invalid SDDs.
In the Parity Wallet, we have only two contract types with a
single association between them but in other cases a single
contract may be referencing several other contracts. Manually
adding this information may be an error prone task. Our
framework provides a high-level, diagrammatic view of the
architecture of the system, which gives the developer a clear
idea of the involved contracts and how they interact. Based
on this information, our framework automatically generates
in Solidity the references between smart contracts during the
Solidity code generation (Step 7 in Figure 1).

Next, we formally define a deployment instance (Defi-
nition 2) and the Deployment Semantics, which describe
conditions that a deployment instance must satisfy in order to
conform to a given SDD. For instance, the deployment shown
in Figure 5 conforms to the SDD of Figure 4.

Definition 2. A deployment is a pair 〈C, γ〉, where C is a set
of contract instances and γ is a deployment configuration, i.e.,
a set of binary associations among the contract instances in
C. Each contract instance C ∈ C is specified as a pair 〈T,v〉
of contract type T ∈ T and constructor parameter values v,
i.e., C is instantiated from type T with parameters v.

Definition 3. [Deployment Semantics] A deployment 〈C, γ〉
conforms to an SDD 〈T , n, A〉 if 1) for each i ∈ [1, k], the
number of contracts of type Ci in C is equal to ni and 2) for
each association A ∈ A and instance Ci ∈ C such that Ci is
of type as, there exist exactly d instances Cj ∈ C of type at
such that (Ci, Cj) ∈ γ.

The second condition can be written formally as follows:

∀(〈as, at〉, d) ∈ A, Ci ∈ C : Ci is of type as ⇒
d = |{Cj |Cj ∈ C ∧ Cj is of type at ∧ (Ci, Cj) ∈ γ}|

VI. VERIFYING INTERACTING SMART CONTRACTS

Once a developer has provided the required input
(Step 1 in Figure 1), the verification loop begins.

Steps 2 and 3 include the automatic generation of the
augmented transition systems and BIP model. To support the
augmentation process, we have extended the set of supported
statements S by including selfdestruct(@expression);

and our custom, high-level delegation invocation
@expression.delegate.@identifier(

(
@expression(,

@expression)∗
)
?). Next, we present the necessary modeling

concepts of the BIP component framework [12].
a) Modeling with BIP: Systems are modeled in BIP [15],

[16] by superposing the Behavior, Interaction, and Priority
layers. The Behavior layer consists of a set of components
represented by transition systems. Each component transition
is labeled by a port. Ports form the interface of a component
are used for interaction with other components. Additionally,
each transition may be associated with a set of guards and a
set of actions. A guard is a predicate on variables that must
be true to allow the execution of the associated transition.
An action is a computation triggered by the execution of the
associated transition.

Component interaction is described in the Interaction layer.
A BIP interaction is a non-empty set of ports that synchronize
(i.e., their corresponding transitions are jointly executed).
We represent component interaction with connectors between
component ports. In the context of smart contracts, we use
BIP interactions to model: 1) function calls between different
contracts and 2) call delegations. We omit the explanation of
the Priority layer since we do not use it in our contract models.

b) Operational Semantics of Interacting Smart Con-
tracts: To apply formal verification, we define the opera-
tional semantics of smart contract interaction in the form
of Structural Operational Semantics (SOS) rules [17]. Next,
we present rules of the normal execution of a transaction
and a function. Due to space limitations, we have included
all additional rules that capture both normal execution and
exceptions for call delegation and nested function calls in [18].
We let Ψ denote the state of the ledger, which includes account
balances, values of state variables in all contracts, number and
timestamp of the last block, etc. We let s the current states of
contracts of the system. During the execution of a function,
the execution state σ = (Ψ,M, s, κ) also includes the memory
and stack state M , and the set of destroyed contracts κ. To
handle return statements and exceptions, we also introduce
an execution status, which is E when an exception has been
raised, R[v] when a return statement has been executed with
value v (i.e., return v), and N otherwise. Finally, we let
Eval(σ,Exp) → 〈σ̂, R[v]〉 signify that the evaluation of a
Solidity expression Exp in execution state σ yields value v.
On the other hand, Eval(σ,Exp) → 〈σ̂, E〉 signifies that the
evaluation has resulted in an exception.

In our model, an externally owned account initiates a
transaction by providing a contract instance i ∈ C with a
function name name ∈ I and a list of parameter values
v1, v2, The transaction invokes the function in the current
ledger and contract states Ψ and s, which results in changed
ledger and contract states Ψ′ and s′ as well as a set of
contracts κ that have selfdestructed during execution (see rule
FUNC). The transaction changes the states of these contracts
j ∈ κ to a special state s′′j = destroyed, and then makes the

5

Fig. 6. WalletLibrary: Global Coordinator & augmented component part

new ledger and contract states Ψ′ and s′′ permanent. This
normal execution is captured by the TRANS rule:

〈(Ψ, s, ∅), i.name (v1, v2, . . .)〉 →
〈(Ψ′, s′, κ), x〉, x ∈ {N,R[v]}

∀j ∈ κ : s′′j = destroyed, ∀j 6∈ κ : s′′j = s′j
s′′ = s′′1 , . . . , s

′′
|C|TRANS 〈(Ψ, s), i.name (v1, v2, . . .)〉 → 〈(Ψ′, s′′), N〉

Next, we specify the semantics of function calls, which
apply to both calls from external accounts (see first line of
TRANS rule) and calls from other contracts. A function
call is triggered by providing a contract instance i ∈ C
with a function name name ∈ I and a list of parameter
values v1, v2, The execution first checks if there exists
a transition (i.e., function) t with name tname = name,
if the origin state tfrom of this transition t is the current
state si, and if the guard condition gt evaluates to true
with the execution state σ initialized using the parameter
values v1, v2, A normal execution passes the above tests
and executes the action at of the transition, resulting in
a new execution state σ′ and keeping the execution status
normal N . Finally, it sets the current state of the contract s′′i
to the destination state tto of the transition, and yields the
new ledger, contract, and destroyed states Ψ′, s′′, and κ′ as
well as normal execution status N . This normal execution is
captured by the FUNC rule:

s1, . . . , s|C| = s, t ∈ Ti, name = tname,
si = tfrom,M = Params(t, v1, v2, . . .),

σ = (Ψ,M, s, κ)
Eval(σ, gt)→ 〈σ,R[true]〉
〈(σ,N), at〉 → 〈(σ′, N), ·〉,

σ′ = (Ψ′,M ′, s′, κ′), s′1, . . . , s
′
|C| = s′,

s′′i = tto, s′1, . . . , s
′′
i , . . . , s

′
|C| = s′′

FUNC 〈(Ψ, s, κ), i.name (v1, v2, . . .)〉 → 〈(Ψ′, s′′, κ′), N〉
c) Global Coordinator Component: To enforce the ex-

ecution of a single transaction at a time [19], we in-
clude in our generated BIP models a component that rep-
resents a global coordinator. This component coordinates
the system execution so that only one transaction can

1 function kill(address _to)
2 onlymanyowners(sha3(msg.data)) external {
3 selfdestruct(_to); }

Fig. 7. Solidity code of kill function

be executed at a time. The BIP model of the coordi-
nator is shown in Figure 6. It comprises three transi-
tions: beginTransaction, finishTransaction, and
rmKilledContracts, which are exported as ports in the
interface of the component. At the end of each transaction,
the Coordinator checks the state of the contracts in the system
and removes any contracts that were self-destructed during
the transaction through the synchronized execution of the
rmKilledContracts transition.

d) Augmentation: In Figure 6, we also present part of
the augmented transition system of the WalletLibrary
contract. In particular, Figure 6 shows the augmented transition
system of the kill function (the corresponding Solidity code
is shown in Figure 7). Our algorithm extends the algorithm
used in VERISOLID [10] by taking into account contract
interaction mechanisms. In particular, for each function it adds
transitions beginCL and beginLL.

The connectors between the ports of the Coordinator and
the ports of the kill function define synchronization of tran-
sitions, e.g., transition beginTransaction and beginCL
must be executed simultaneously. Further, through this con-
nector, data is exchanged between the two components. In
particular, beginCL sends the unique id of the contract
to the Coordinator, which stores it in a variable. Similarly,
through the connector between ports finishTransaction
and selfdestruct, the unique Id of the contract is
also sent to the Coordinator. The synchronized execution
of finishTransaction and selfdestruct is enabled
only if the two Ids match (guard of finishTransaction).
This restricts the execution of a single transaction at a time.

When another contract calls the kill function, the syn-
chronization will be between the transition beginLL and
the transition that invoked kill from the other contract,
which will then have to wait in the same state until it can
synchronize with selfdestruct. These synchronizations
enable function calls to be nested to any depth, but ensure
that the caller always waits for the callee to finish. Notice that
for beginLL, the guard condition and revert transition are
not present. The reason for this is that due to the restricted
interactions (high-level function calls, custom delegation, and
transfer), either all functions run to a normal stop or all
functions revert in our system. Consequently, if a callee reverts
(either due to the guard not being met or for some other
reason), then all calls must be reverted, which is captured for
verification by the revert option of the top level call (see, e.g.,
beginCL).

Note that the connectors of the BIP models are auto-
matically generated using the information given through the
corresponding SDD and by statically detecting function and
delegation calls in the body of a Solidity functions.

6

e) Delegation calls: Since we restrict interactions be-
tween contracts such that exceptions are always rethrown, we
introduce a custom delegation statement. The syntax of our
custom, high-level delegation statement is:

contract.delegate.function(arg1, arg2, . . .);

where contract is reference to another contract, function is
a function name, and arg1, arg2, . . . are arguments. We omit
the semantics of evaluating this expression here due to space
restrictions that can be found in [18].

Our code generator implements the expression as a simple
wrapper around delegatecall that rethrows exceptions:

if (!address(contract).delegatecall(

abi.encodePacked(bytes4(keccak256("

function(arg1type, arg2type, . . .)")),

arg1, arg2, . . .)))revert();

f) Verification properties: As shown above, our frame-
work provides a clear separation of concerns between contract
behavior and interaction, which allows one to compositionally
model and analyze systems of interacting smart contracts.
Once the BIP models are generated in Step 3, the user may
specify temporal logic properties in CTL to verify the system.

Even if the user does not specify any properties, our
framework by default always checks for deadlock freedom.
It is interesting to note that for the Parity Wallet contracts, we
are able to detect the parity bug by only checking for deadlock
freedom. In particular, the counterexample returned by the
NuSMV model checker included the following execution trace
(after executing initMultiowned): 1) the kill function
of WalletLibrary is called during a transaction; 2) in the
end of the transaction, WalletLibrary is destroyed (goes to the
destroyed state); 3) a new transaction begins where a function
of Wallet is called (in our trace this was isOwner) that
uses delegateCall to WalletLibrary.

Our framework allows the specification of CTL properties
that reference actions from different components. For instance,
we next provide examples of liveness and safety properties that
we verified:
• WalletLibrary.destroy will eventually happen af-

ter Coordinator.beginTransaction & WalletLi-
brary.beginCL.

• if WalletLibrary.initWallet happens, WalletLi-
brary.addOwner can happen only after WalletLi-
brary.initmultiowned happens.

VII. VULNERABILITY ANALYSIS

Our model checking approach can handle both typical
and atypical vulnerabilities by verifying all desired safety
properties that are specified for a contract. In this section, we
discuss examples of well known vulnerability types that can
be prevented or detected using our framework.

1) Re-entrancy: A smart contract may be vulnerable to this
pattern if there exists a function call to an external contract
that can be used to re-enter the caller function, allowing the
callee to exploit the transient state of the caller. Another variant
of the same vulnerability, cross-function re-entrancy, may be
observed in the case where two functions share the same state.

TABLE I
SUMMARY OF VULNERABILITIES VERIFIED

Vulnerability Prevention / Verification Technique
Re-entrancy Prevented by locking the contract us-

ing intermediate state
Exception Mishandling Prevented by using high-level calls,

transfer, and custom high-level
delegation

External Contract Referencing Prevented using automated deploy-
ment

Shortening of Address Verified during deployment
Locked Ether Verified during modeling
Unprotected Suicide Verified during modeling

We do not allow re-entrancy by design for external function
calls. In particular, after a transition begins but before the
execution of the transition action, the contract changes its
state to a temporary one. As a result, none of the functions
may be called externally before the transition finishes (or
reverts). One might question this design decision since re-
entrancy is not always harmful. However, there is evidence that
it can pose significant challenges for providing security. First,
supporting re-entrancy substantially increases the complexity
of verification. Our framework allows the verification of a
broad range of properties within seconds, which is essential
for iterative development. Second, re-entrancy often leads
to vulnerabilities since it significantly complicates contract
behavior. Hence, we believe that prohibiting re-entrancy is a
small price to pay for security.

2) Mishandled Exceptions: With low- and high-level func-
tion calls (e.g., call and transfer), Solidity handles
exceptions in two different ways: (i) the callee contract re-
turns false to the caller contract, or (ii) the exception is
propagated back to the caller and its function is reverted. In
the first case, if a developer forgets to check the return value,
exceptions can lead to an unintended state of the contract.

Our framework avoids this vulnerability by allowing only
high-level function calls, transfer, and a customized high-
level delegation mechanism, which is implemented as a wrap-
per around the low-level delegatecall and raises an
exception upon failure.

3) External Contract Referencing: Contracts that are al-
ready deployed in the network can be referred to by other
contracts using their addresses. In Solidity, any address can be
cast as a contract irrespective of whether the code represents
the intended contract type. As an adverse result, during deploy-
ment, a contract creator can provide address for an arbitrary
code unknown to the users.

There are two recommended ways to prevent this malicious
behaviour: (i) hardcoding any external contract address if
known before deployment; (ii) usage of the new keyword to
create contracts. Our framework automatically applies these
prevention techniques during code generation (adding code
for instantiating contracts and providing addresses) and during
deployment (supplying correct addresses).

4) Shortening of Address: Addresses in Ethereum are 20
bytes long. Address shortening vulnerability can be exploited
by forcing a transfer to an account by passing an address of
shortened length. Consider an example where an address with

7

a trailing 0 was created and loaded with an off-line balance of
1000 tokens. Then, a transfer request is made from a wallet
with 256, 000 tokens, but with the trailing 0 excluded from
the receiver address in the transfer function. Since address
parameter is expected to be of a specific length, the missing
bytes are added from the amount parameter which is of
type uint256 and has lots of leading zeros. This creates an
underflow, because there are not enough bytes in uint256
and zeros are added to the end of the amount value, shifting
it to 256 bits long.

All of the addresses created using our framework are
verified to be 20 bytes in length. Even the ones that are passed
along with the Solidity code are checked to make sure that the
length is the same before the deployment.

5) Locked Ether: As discussed with our running example
ParityWallet, some contracts allow users to deposit Ether
into a contract but not allow withdrawing it under any condi-
tion. These contracts have been called greedy contracts [4]. In
ParityWallet, the issue arose due to the use of a separate
library for withdrawing funds. Once the library was killed,
there was no way for the wallet contract to release the deposits,
thus becoming greedy. A recommended prevention technique
for this vulnerability is to provide critical functions within
the contract instead of resorting to an external library. Our
framework can verify that appropriate withdrawal functions
always remain reachable.

6) Unprotected Suicide: This is another vulnerability ob-
served during the first attack of Parity Wallet as dis-
cussed in Section VI. Contracts can be deleted by using
selfdestruct instruction either by a direct call to its
code or using delegatecall. This will remove the code
of the contract from the blockchain and the Ether left in the
contract address is sent to a specified target. In cases where
the authentication mechanism for a contract is inadequate, the
selfdestruct instruction could be called by anyone on the
contract. As exploited in the Parity Wallet, the contract
was deleted using the kill function causing a deadlock and
losing the ability to transfer or withdraw funds in wallets. Our
framework can verify if a suicide statement can be reached
using an unintended execution trace.

VIII. RELATED WORK

Smart contract verification has been recently the focus of
a lot of research. Various methodologies have been proposed
catering to different vulnerabilities. Traditional symbolic ex-
ecution techniques have been used in [3], [7], [20], [21],
[22] by compiling smart contract source code to bytecode
and representing bytecode in the format required by these
tools for analysis of known/typical vulnerabilities. Tools like
Securify [7] and Slither [23] fall under this category and they
verify contracts by traversing through the code data-flow.

Further, there are tools that specialize in detecting a spe-
cific type of vulnerability. As an example, VERISMART [8],
SMTCHECKER [24], Zeus [25] and Osiris [26] are tools used
to detect integer over/underflows and division-by-zero paths
and Sereum [27] is used to look for reentrancy vulnerabilities.
Although targeting minimal set of vulnerabilities, these tools
guarantee high precision compared to their predecessors.

Formal verification has also been applied in the field of
smart contract analysis to check program correctness through
rigorous mathematical models. Hirai [28] proposed formal
verification using Ethereum bytecode. Bhargavan et al. [6]
proposed a framework that translates EVM bytecode to F ∗

and verifies contract safety and correctness. Finally, Atzei et
al. [29] formaly proved properties of the Bitcoin blockchain.

By creating semantics for a virtual machine, a one-time task
depending on the network, and by providing the specification
for a contract, the bytecode of any smart contract can be
verified during runtime. A drawback of this approach is that it
requires tedious manual processing. KEVM [30] formalized
EVM semantics into the K-framework. Sereum [27] is a
runtime verification tool, which uses taint analysis and checks
for storage and control flow in the contract. Microsoft has
recently added formal verification semantics explicitly for its
Azure Blockchain Workbench as well as a built-in verifier
VERISOL which uses state transitions and model checking to
analyze contracts [31]. SmartDEMAP [32] is another deploy-
ment and management platform that comes with built-in tools
for formal verification. A custom programming language is
used to specify the safety properties of a smart contract.

Recently, there have been proposals for visual programming
languages. These are basically design oriented languages that
automatically generate the underlying smart contract code
based on the specific structure and flow that is presented.
The main objective behind this effort is to provide a clear
understanding to the developer on the “interactivity” between
components of the code. Babbage [33] was designed to
express smart contracts in terms of mechanical components.
Bamboo [34], Obsidian [35] and Simplicity [36] are other
languages which specify contracts as state machine functions.

In comparison, the main advantage of our approach is that
it allows developers to specify desired properties for both
standalone and interacting smart contracts. Developers can
use high-level model form to specify the properties instead
of using low-level representation, e.g., EVM bytecode. In
addition, we synchronize verification and deployment as a
common framework allowing a contract to be published on
a blockchain network once verified.

IX. CONCLUSION

We present an end-to-end framework that allows the ver-
ification, generation, and deployment of correct-by-design
interacting Solidity contracts based on VERISOLID. This
framework provides a clear separation between contract be-
havior and interaction, which allows one to compositionally
model and verify systems of multiple interacting contracts. To
enhance usability and understandability, the proposed work
provides easy-to-use graphical editors for the specification of
high-level models that include transition systems and SDDs.
Even though security incidents often exploit contract inter-
action as witnessed by the Parity Wallet hack and other
well known attacks, prior work on smart contract verification,
vulnerability discovery, and secure development typically con-
siders only individual contracts. To the best of our knowledge,
this is the first work that provides a systematized approach for
designing and verifying systems of interacting contracts.

8

REFERENCES

[1] K. Finley, “A $50 million hack just showed that the DAO
was all too human,” Wired https://www.wired.com/2016/06/
50-million-hack-just-showed-dao-human/, June 2016.

[2] L. H. Newman, “Security news this week: $280m worth of Ethereum
is trapped thanks to a dumb bug,” WIRED, https://www.wired.com/
story/280m-worth-of-ethereum-is-trapped-for-a-pretty-dumb-reason/,
November 2017.

[3] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 23rd ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, October
2016, pp. 254–269.

[4] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in Proceedings of
the 34th Annual Computer Security Applications Conference (ACSAC),
2018.

[5] H. Wang, Y. Li, S.-W. Lin, L. Ma, and Y. Liu, “VULTRON: catching
vulnerable smart contracts once and for all,” in Proceedings of the
41st International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER). IEEE Press, 2019, pp. 1–4.

[6] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, A. Rastogi, T. Sibut-Pinote, N. Swamy,
and S. Zanella-Béguelin, “Short paper: Formal verification of smart
contracts,” in Proceedings of the 11th ACM Workshop on Programming
Languages and Analysis for Security (PLAS), in conjunction with ACM
CCS 2016, October 2016, pp. 91–96.

[7] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev,
“Securify: Practical security analysis of smart contracts,” in Proceedings
of the 25th ACM Conference on Computer and Communications Security
(CCS), 2018.

[8] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “VeriSmart: A highly
precise safety verifier for Ethereum smart contracts,” arXiv preprint
arXiv:1908.11227, 2019.

[9] A. Mavridou and A. Laszka, “Designing secure Ethereum smart con-
tracts: A finite state machine based approach,” in Proceedings of the
22nd International Conference on Financial Cryptography and Data
Security (FC), February 2018.

[10] A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, “VeriSolid:
Correct-by-design smart contracts for Ethereum,” in Proceedings of the
23rd International Conference on Financial Cryptography and Data
Security (FC), February 2019.

[11] K. Nelaturu, A. Mavridou, A. Veneris, and A. Laszka, “Open-
source implementation of extended VeriSolid,” https://github.com/
smartcontractsfc/verifier, accessed on 12/19/2019.

[12] A. Basu, B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen,
and J. Sifakis, “Rigorous component-based system design using the bip
framework,” IEEE Software, vol. 28, no. 3, pp. 41–48, 2011.

[13] S. Bliudze, A. Cimatti, M. Jaber, S. Mover, M. Roveri, W. Saab, and
Q. Wang, “Formal verification of infinite-state BIP models,” in Proceed-
ings of the 13th International Symposium on Automated Technology for
Verification and Analysis (ATVA). Springer, 2015, pp. 326–343.

[14] Etherscan, “Parity multisignature wallet source code,” https://etherscan.
io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4, accessed on
9/24/2019.

[15] N. B. Said, T. Abdellatif, S. Bensalem, and M. Bozga, “Model-driven
information flow security for component-based systems,” in From Pro-
grams to Systems. The Systems perspective in Computing. Springer,
2014, pp. 1–20.

[16] A. Mavridou, S. Emmanouela, S. Bliudze, A. Ivanov, P. Katsaros, and
J. Sifakis, “Architecture-based design: A satellite on-board software case
study,” in Proceedings of the 13th International Conference on Formal
Aspects of Component Software (FACS), October 2016, pp. 260–279.

[17] G. D. Plotkin, A structural approach to operational semantics. Com-
puter Science Department, Aarhus University, Denmark, 1981.

[18] smartcontractsfc, “Formalisms report,” https://github.com/
smartcontractsfc/verifier/blob/master/Formalisms Report.pdf, accessed
on 12/19/2019.

[19] Solidity Documentation, “Blockchain basics,” https://solidity.
readthedocs.io/en/v0.5.3/introduction-to-smart-contracts.html?
highlight=transaction#blockchain-basics, accessed on 9/24/2019.

[20] Trail of Bits, “Manticore: Symbolic execution for humans,” https:
//github.com/trailofbits/manticore, October 2018.

[21] B. Mueller, “Smashing Ethereum smart contracts for fun and real profit,”
9th Annual HITB Security Conference (HITBSecConf), 2018.

[22] E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey, “EthIR: A
framework for high-level analysis of Ethereum bytecode,” in Proceed-
ings of the 16th International Symposium on Automated Technology for
Verification and Analysis (ATVA), 2018.

[23] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in Proceedings of the 2019 IEEE/ACM 2nd In-
ternational Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB). IEEE, 2019, pp. 8–15.

[24] L. Alt and C. Reitwiessner, “SMT-based verification of solidity smart
contracts,” in Proceedings of the International Symposium on Leveraging
Applications of Formal Methods. Springer, 2018, pp. 376–388.

[25] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts,” in Proceedings of the 2018 Network and Distributed
Systems Security Symposium (NDSS), 2018.

[26] C. F. Torres, J. Schütte et al., “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference (ACSAC). ACM, 2018, pp. 664–676.

[27] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” arXiv preprint
arXiv:1812.05934, 2018.

[28] Y. Hirai, “Formal verification of deed contract in Ethereum name
service,” https://yoichihirai.com/deed.pdf, November 2016.

[29] N. Atzei, M. Bartoletti, S. Lande, and R. Zunino, “A formal model
of Bitcoin transactions,” in Proceedings of the 22nd International
Conference on Financial Cryptography and Data Security (FC), 2018.

[30] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu et al., “Kevm: A complete
formal semantics of the ethereum virtual machine,” in Proceedings of
the 2018 IEEE 31st Computer Security Foundations Symposium (CSF).
IEEE, 2018, pp. 204–217.

[31] S. K. Lahiri, S. Chen, Y. Wang, and I. Dillig, “Formal specification
and verification of smart contracts for azure blockchain,” arXiv preprint
arXiv:1812.08829, 2018.

[32] M. Knecht and B. Stiller, “Smartdemap: A smart contract deployment
and management platform,” in IFIP International Conference on Au-
tonomous Infrastructure, Management and Security. Springer, 2017,
pp. 159–164.

[33] Reitwiessner, C, “Babbage: a mechanical smart
contract language,” https://medium.com/@chriseth/
babbage-a-mechanical-smart-contract-language-5c8329ec5a0e,
accessed on 9/21/2019.

[34] Y. Hirai, “Bamboo: an embryonic smart contract language,” https:
//github.com/pirapira/bamboo, accessed on 9/25/2019.

[35] M. Coblenz, “Obsidian: a safer blockchain programming language,” in
Proceedings of the 39th International Conference on Software Engineer-
ing Companion. IEEE Press, 2017, pp. 97–99.

[36] R. O’Connor, “Simplicity: A new language for blockchains,” in Proceed-
ings of the 2017 Workshop on Programming Languages and Analysis
for Security. ACM, 2017, pp. 107–120.

9

https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://www.wired.com/story/280m-worth-of-ethereum-is-trapped-for-a-pretty-dumb-reason/
https://www.wired.com/story/280m-worth-of-ethereum-is-trapped-for-a-pretty-dumb-reason/
https://github.com/smartcontractsfc/verifier
https://github.com/smartcontractsfc/verifier
https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4
https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4
https://github.com/smartcontractsfc/verifier/blob/master/Formalisms_Report.pdf
https://github.com/smartcontractsfc/verifier/blob/master/Formalisms_Report.pdf
https://solidity.readthedocs.io/en/v0.5.3/introduction-to-smart-contracts.html?highlight=transaction#blockchain-basics
https://solidity.readthedocs.io/en/v0.5.3/introduction-to-smart-contracts.html?highlight=transaction#blockchain-basics
https://solidity.readthedocs.io/en/v0.5.3/introduction-to-smart-contracts.html?highlight=transaction#blockchain-basics
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
https://yoichihirai.com/deed.pdf
https://medium.com/@chriseth/babbage-a-mechanical-smart-contract-language-5c8329ec5a0e
https://medium.com/@chriseth/babbage-a-mechanical-smart-contract-language-5c8329ec5a0e
https://github.com/pirapira/bamboo
https://github.com/pirapira/bamboo

