
Chapter 6
Towards High-Resolution
Multi-Stage Security Games

Aron Laszka, Xenofon Koutsoukos, and Yevgeniy Vorobeychik

Abstract In recent years, we have seen a large number of cyber-incidents, which
demonstrated how difficult it is to prevent cyber-breaches when facing determined
and sophisticated attackers. In light of this, it is clear that defenders need to look be-
yond the first lines of defense and invest not only into prevention, but also into lim-
iting the impact of cyber-breaches. Thus, an effective cyber-defense must combine
proactive defense, which aims to block anticipated attacks, with reactive defense,
which responds to and mitigates perceived attacks (e.g., isolating and shutting down
compromised components). However, planning defensive actions in anticipation of
and in response to strategic attacks is a challenging problem. Prior work has intro-
duced a number of game-theoretic security models for planning defensive actions,
such as Stackelberg security games, but these models do not address the overarch-
ing problem of proactive and reactive defenses in sufficient detail. To bridge this
gap, we introduce a modeling approach for building high-resolution multi-stage se-
curity games. We describe several approaches for modeling proactive and reactive
defenses, consider key modeling choices and challenges, and discuss finding op-
timal defense policies. With our study, we aim to lay conceptual foundations for
developing realistic models of cyber-security that researchers and practitioners can
use for effective cyber-defense.

Aron Laszka
Department of Computer Science, University of Houston, Houston, TX, USA e-mail: alaszka@
houston.edu

Xenofon Koutsoukos
Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville,
TN, USA e-mail: xenofon.koutsoukos@vanderbilt.edu

Yevgeniy Vorobeychik
Department of Computer Science and Engineering, Washington University, St. Louis, MO, USA
e-mail: yvorobeychik@wustl.edu

139

alaszka@houston.edu
alaszka@houston.edu
xenofon.koutsoukos@vanderbilt.edu
yvorobeychik@wustl.edu

140 Aron Laszka, Xenofon Koutsoukos, and Yevgeniy Vorobeychik

6.1 Introduction

Traditionally, security research has focused on preventing attackers from breaching
the security of a system or network. While researchers are making considerable ad-
vances in this direction, attack techniques are also evolving, which makes providing
security an uphill battle. Indeed, attaining perfect security remains virtually impos-
sible for practical systems. The number of reported cyber-incidents is increasing
steadily, and the total cost of malicious cyber-activities to the U.S. economy has
recently been estimated to be between $57 and $109 billion [9]. For instance, ac-
cording to a 2017 industry report, 67% of companies with critical infrastructure
suffered at least one attack in the preceding 12 months; in particular, 91% of power
companies have experienced an attack [17].

In light of this, it is clear that defenders cannot focus only on the first lines of
defense, and they must look beyond the prevention of cyber-breaches. Besides pre-
venting breaches, defenders can also alleviate cyber-security risks by reducing the
expected impact of successful attacks. In practice, there are a number of actions
that defenders may take to limit the impact of a breach, such as quickly isolating
and shutting down compromised hosts or reconfiguring the uncompromised ones.
While these actions cannot prevent an attack, they can mitigate it before it could
cause significant damage. We will refer to such actions collectively as reactive de-
fense approaches to emphasize that these actions are taken in response to perceived
(or suspected) cyber-attacks.1

An effective cyber-defense must combine this reactive approach with proactive
defense actions. Proactive defense includes actions taken in anticipation of an at-
tack, such as finding and patching software vulnerabilities before an adversary could
exploit them. Optimal cyber-defense must consider the whole spectrum of avail-
able proactive and reactive actions, and it must implement them in a combination
that minimizes cyber-security risks. However, real defenders typically have a finite
budget, which limits the amount of resources, effort, and time available to them
for implementing cyber-defenses. Consequently, they need to carefully plan what
proactive actions to implement in anticipation of attacks and what reactive actions
to implement under various attack scenarios in order to minimize cyber-risks subject
to their budget constraints.

A key factor in this planning problem is the strategic nature of cyber-security.
The most threatening, sophisticated attacks are very often strategic in the sense that
adversaries tailor their malicious actions to the defenders’ plans. In light of this, de-
fenses must also be planned strategically: On the one hand, defenders must antici-
pate attacks and plan their actions accordingly, assuming that adversaries will adapt.
On the other hand, defenders have to react to observed attacks to mitigate them (e.g.,
isolate and re-install compromised hosts), assuming that adversaries have mounted
strategic attacks and are ready for strategic escalation.

1 Note that we use the term “reactive defense” to refer to actions taken in response to perceived or
suspected attacks. This is different from planning defenses in response to risks, which is sometimes
referred to using similar terms (e.g., responsive or reactive security).

6 Towards High-Resolution Multi-Stage Security Games 141

Such strategic interactions between defenders and attackers are modeled most
naturally using game theory. Indeed, a number of game-theoretic models have been
proposed for studying the defense of networked systems [38, 32]. However, prior
work has not addressed the overarching problem of proactive and reactive defenses
in sufficient detail. Firstly, a number of research efforts have studied high-level
models of cyber-security, but these papers often consider very abstract notions of
security investments (e.g., allocation of abstract defensive resources to targets [30]).
Further, these models are typically based on two-stage security games, which con-
sider only proactive actions, but not reactive ones. Secondly, a number of research
efforts have studied the optimal implementation of particular actions in detail, some
even considering continuous conflicts and reactive approaches (e.g., resetting poten-
tially compromised computational resources [51]). However, these models typically
include only one particular type of action, and it is often unclear—especially for
practitioners—how to combine different types of actions most effectively.

To bridge this gap, we discuss how to build realistic, high-resolution multi-stage
security games for networked systems, which can form a conceptual foundation for
the optimal implementation of proactive and reactive defenses. We first consider the
most widely used class of security models, called Stackelberg security games, and
argue that these are not well suited for studying reactive defenses. We then discuss
stochastic games, which provide a general mathematical framework for modeling
multi-stage interactions. Based on this framework, we introduce our approach for
modeling the proactive and reactive defense of networked systems against strategic
attacks, focusing on key modeling choices and challenges. Then, we describe canon-
ical types of proactive (redundancy, diversity, isolation, hardening, and detection)
and reactive (islanding, resetting, and reconfiguration) defenses, again focusing on
key modeling choices and challenges. Finally, we consider the problem of finding
optimal defense strategies in our model, which is generally a computationally hard
problem, and discuss reinforcement learning as a promising solution approach.

The remainder of this chapter is organized as follows. In Section 6.2, we describe
two-stage Stackelberg game model of security. In Section 6.3, we discuss stochastic
games for modeling multi-stage interactions in security. In Section 6.4, we intro-
duce our modeling approach for building realistic multi-stage models of security.
In Sections 6.5 and 6.6, we describe canonical approaches for proactive and reac-
tive defenses, respectively, and we discuss how to model them. In Section 6.7, we
consider how to solve realistic multi-stage security games and find optimal defense
strategies. In Section 6.8, we provide concluding remarks.

6.2 Stackelberg Game Models of Security

A very natural game theoretic model of security, which has received considerable
attention in recent years, is known as Stackelberg games [30, 50]. A Stackelberg
game involves two stages: in the first stage, the defender chooses a defensive posture
(such as which vulnerabilities to patch, or how to configure the firewall), and in the

142 Aron Laszka, Xenofon Koutsoukos, and Yevgeniy Vorobeychik

second stage, the attacker chooses the best attack. The crucial feature of this model
is that the attacker is assumed to observe the defensive decision; while in reality this
is a very strong assumption, it is also a sound starting point for analysis, as it makes
a worst-case assumption about the information available to the attacker, in the spirit
of Kerckhoffs’s principle [28].

Formally, let D and A denote the sets of actions available to the defender and
attacker, respectively, with d ∈D and a ∈ A referring to a particular defense / attack
action. To allow for the possibility that the defender randomizes, we let S be the
strategy set of the defender. Thus, the defender may commit to an action, in which
case S = D, or may be able to commit to a probability distribution over D, in which
case S = ∆(D), where ∆(D) is the set of all probability distributions over D. Next,
we define the utility functions uD(s,a) and uA(s,a) for the defender and attacker,
respectively, where s ∈ S is the defender’s strategy.

Suppose that the defender commits to a strategy s ∈ S. The attacker’s best re-
sponse to s is φ(s) ∈ argmaxa∈A uA(s,a). Correspondingly, the defender then aims
to find a strategy s which maximizes its payoff given the attacker’s best response
function φ(s). In particular, a pair of defender and attacker strategies (s∗,φ ∗(s))
is a Stackelberg equilibrium if φ ∗(s) is an attacker’s best response for each s, and
s∗ ∈ argmaxs∈S uD(s,φ ∗(s)). This equilibrium concept raises a subtle but important
issue of tie-breaking for the attacker. A common way to resolve it is to consider a
Strong Stackelberg equilibrium (SSE) in which the attacker breaks ties in the de-
fender’s favor [50].

Stackelberg game models of security that we described above are clearly sim-
plistic: in these models, the world has only two stages, with the defender making
the first decision, followed by the attacker. In real security settings, the game in-
volves many such stages. For example, after the attacker chooses an attack, once
the attack has been observed, the defender can deploy additional mitigations, such
as updating anti-virus software, patching vulnerabilities which have been exploited,
and rebuilding the compromised machines. The attacker, in turn, can subsequently
react to such measures, for example, by exploiting another vulnerability, and so on.
A common and very general framework for capturing such multi-stage interactions
is through the formalism of stochastic games, which we describe next. However,
as we subsequently point out, stochastic games are too general, and fail to capture
much structure exhibited in realistic problems. Consequently, we suggest moving to
less general, high-resolution models of multi-stage interactions, which allow us to
make progress towards applying game theoretic tools to realistic security scenarios.

6.3 Stochastic Games in Security

A stochastic game is a very general mathematical framework for modeling multi-
stage interactions. In the context of security, a two-player stochastic game has a
finite set of states X , finite sets of actions for the defender D and attacker A, a tran-
sition function Pda

xx′ = Pr{x′|x,d,a}, and immediate reward functions uD(d,a;x) and

6 Towards High-Resolution Multi-Stage Security Games 143

uA(d,a;x) for the defender and attacker, respectively [16, 53]. The game proceeds
in discrete time steps t = {0,1,2, . . .}, where the state at time t, denoted by xt , is de-
termined stochastically according to the transition function, given the previous state
xt−1 as well as the previous actions dt−1 and at−1 that were taken by the players.
The state xt along with the actions dt and at taken in that state then determine the
players’ immediate rewards. Let T be the time horizon of the game; it is finite if
the game has a finite horizon, and infinite otherwise. Let the history of states and
player actions through time T be h = {x0,d0,a0, . . . ,xT ,dT ,aT} Then, we define the
realized utility of a player i ∈ {D,A} (attacker or defender) to be

Ũi(h) =
T

∑
t=0

γ
t ·ui(dt ,at ;xt),

where γ ∈ [0,1] is the discount factor, which weighs distance rewards exponentially
less than current.2 Since history is stochastic, we can define expected utility of player
i ∈ {D,A} starting in state x as

Ui(x) = Eh[Ũi(h) |x0 = x].

An important and well-known result in (discounted) stochastic games is that there
always exists an equilibrium in which player strategies depend only on current state
and, in finite horizon games, time. Specifically, let a policy πi of a player i deter-
mine the action this player takes at each time step of the game. In an infinite-horizon
stochastic games, there is an equilibrium pair of policies (πD,πA) such that πi de-
pends only on state x; in finite-horizon stochastic games, such policies would also
depend on the time step t.

There are two variations of stochastic games which are particularly relevant to
multi-stage interactions in security. One, which is a special case of the stochastic
game formalism above, involves alternating moves by the defender and attacker, in
which the defender moves first. The significance of this model is that it is a natural
extension of the standard two-stage Stackelberg game: indeed, a Stackelberg game
model is just such a game with a horizon T = 1 (so that there are only two time steps,
0 and 1). Clearly, this extension captures in a very general way the intuition that we
started with: the game between a defender and an attacker extends beyond two steps,
with a defender reacting to an observed attack, the attacker subsequently reacting
to the defender, and so on. A simple way to encode such an iterative encounter
in the stochastic game formalism is as follows. Let state x encode which player’s
turn it is to move; we can do this by adding a binary state variable xm ∈ {0,1},
which deterministically flips in each step. We can let xm = 0 when it’s the defender’s
turn to move, and xm = 1 when the attacker moves. Additionally, let us extend the
action sets of both players to allow them to depend on state. Thus, the defender’s
set of actions is D(x) and the attacker’s set is A(x); this change has no effect on

2 We chose the discounted version of the stochastic game here as we view it as the best model of
security interactions, where players are sensitive to time. For example, other things being equal, an
attacker would rather obtain intellectual property data sooner than later.

144 Aron Laszka, Xenofon Koutsoukos, and Yevgeniy Vorobeychik

the theoretical properties of equilibria in stochastic games that we had noted above.
Thus, whenever xm = 0, A(x) = /0 and, conversely, when xm = 1, D(x) = /0.

Another variation, which is actually (and somewhat surprisingly) qualitatively
different from the conventional stochastic games, is the notion of Stochastic Stack-
elberg games (SSGs) [53, 52]. The definition of SSGs is nearly identical to stochas-
tic games, with one crucial difference: first, the defender commits to a policy πd ,
and then the attacker best responds with its own policy πa(πd)—note that now the
attacker’s policy can be different depending on which policy the defender commits
to! It turns out that this difference makes SSGs dramatically more challenging to
analyze and solve, in general [53, 52]. For example, it is no longer the case that we
can restrict attention to policies for both players which only depend on current state,
even when the horizon is infinite [53].

At this point, we have described several very general formalisms which allow us
to capture multi-stage interactions in security. The major concern with these, how-
ever, is that they are too general: indeed, stochastic games are difficult to solve even
when the state space is relatively small. In practice, the number of variables which
determine state can be substantial, and even the representation of a stochastic game
described above becomes intractable. Clearly, in order for us to significantly ad-
vance the art in considering interesting multi-stage interactions, we need to consider
lower-level structure. In the remainder of this chapter, we propose and illustrate the
idea of high-fidelity multi-stage games, that is, games in which we make use of much
more specialized, high-fidelity models of the domain. While this necessarily loses
generality, we argue that such modeling is necessary to reveal important structure in
multi-stage games which can enable us to solve more realistic problems.

6.4 Towards Realistic Multi-Stage Game Models

We now discuss modeling approaches and assumptions for high-fidelity multi-stage
games for studying the defense of networked systems. While our discussion will
consider networked systems in general, we will use cyber-physical systems (CPS)
as a running example to illustrate the practical applicability of our model. Defend-
ing CPS from cyber-physical attacks is an issue that is both pressing and challeng-
ing. As CPS are becoming more prevalent (e.g., smart grid, Industrial Internet of
Things), the importance of ensuring that they are resilient to cyber-attacks is grow-
ing rapidly. For example, cyber-attacks against critical infrastructures, such as smart
water-distribution and transportation networks, pose a serious threat to public health
and safety. Indeed, real-world attacks have demonstrated that cyber-attacks may
penetrate CPS and cause significant physical damage [37, 44, 56, 2, 49]. On the
other hand, defending a complex and large-scale CPS, such as smart critical infras-
tructure, is extremely challenging. These systems often face a variety of threats,
contain low-power and legacy components, have large attack surfaces, and have a
number of undiscovered software vulnerabilities in their sizable codebases. In light
of this, defending CPS is an ideal application example for security game models.

6 Towards High-Resolution Multi-Stage Security Games 145

6.4.1 System Model

We first introduce a basic model of networked systems, which will provide a basis
for the discussion of game-theoretic models. In general, we can model a networked
system as a graph (C,E), where C is a set of components and E is a set of links
between the components. Depending on the granularity of the model, a component
may correspond to a subnetwork, a host, a running process, or just a software mod-
ule. A link models a communication channel between two components, which can
be either physical (e.g., wired link) or logical (e.g., VPN). A link may be either
unidirectional or bidirectional, which we can model using either directed arcs (i.e.,
E ⊆C×C) or undirected edges (i.e., E ⊆

(C
2

)
). A key factor in network security is

that links are not only used to transmit information, control signals, etc., but they
may also be exploited by an attacker to escalate an attack by compromising the
neighbors of an already compromised component.

physical process

sensor sensor sensoractuator actuator actuator

PLC PLCRTU RTU

supervisory computer HMI workstation

Fig. 6.1 Example cyber-physical system. Labeled icons represent components; arrows represent
links through which sensor data and control signals can flow.

CPS Example To illustrate how we can model a networked system as a graph,
we now present a high-level model of networked cyber-physical systems, focusing
on the cyber parts of the systems. Figure 6.1 shows an example of a networked
cyber-physical system, consisting of a variety of physical devices. We let the com-
ponents C model such physical devices, which we divide into four component types:

• sensor: components that measure the state of physical processes (e.g., water-
pressure sensors, induction-loop sensors for measuring traffic);

• actuator: components that directly affect physical processes (e.g., valves, pumps,
circuit breakers);

• processing: components that process and store data and control signals (e.g.,
PLCs, RTUs, supervisory computers);

• interface: components that interact with human users (e.g., HMI workstations)
or other systems, which are not part of the model.

146 Aron Laszka, Xenofon Koutsoukos, and Yevgeniy Vorobeychik

The links E model communication links between these devices, which are used to
transmit sensor data and control signals. The observability and controllability of the
physical processes within the CPS depend not only on the functionality of the indi-
vidual components, but also on the structure of the graph (C,E). Depending on this
structure, an attacker may be able cause physical damage or loss by compromising
a subset of the components, and tampering with sensor data or control signals.

6.4.2 Game-Theoretic Model

We next discuss how to build a stochastic security game based on the above model
of networked systems. We first consider the players’ action sets D and A, and then
their utility functions ui.

We assume alternating moves by the defender and the attacker, the defender mov-
ing first. In each time step, a player may take multiple actions. Slightly abusing nota-
tion, we let D and A denote the sets of actions available to the defender and attacker,
respectively. A policy πi determines the subset of actions to be taken in each time
step.

Table 6.1 Defense Actions

Type Name Idea Section

Redundancy deploying redundant components 6.5.1

Diversity implementing components using a diverse set of hard-
ware and software

6.5.2

Isolation removing links between components 6.5.3

Hardening making components (or implementation types) more
resilient to attacks

6.5.4

Proactive

Detection deploying intrusion detection systems 6.5.5

Islanding removing links between components 6.6.1

Resetting resetting components into known secure states 6.6.2Reactive

Reconfiguration changing the configuration of components 6.6.3

We divide the defenders’ actions D into two disjoint sets of actions (see Ta-
ble 6.1):

• Proactive defense actions DP: Proactive actions are taken in anticipation of at-
tacks (e.g., deploying an intrusion detection system). In our model, we assume
that the defender can take these actions only in time step t = 0, which represents
everything that happens before the attacker may mount its attack. We discuss
proactive actions in more detail in Section 6.5.

• Reactive defense actions DR: Reactive actions are taken in response to an ob-
served attack (e.g., shutting down and re-installing a compromised host). In our

6 Towards High-Resolution Multi-Stage Security Games 147

model, we assume that the defender can take these actions only in time steps
t > 0. We discuss reactive actions in more detail in Section 6.6.

Meanwhile, an attacker tries to compromise or impair the components of the sys-
tem by attacking them.3 We let CC

t ⊆C and CI
t ⊆C denote the sets of components

that are compromised or impaired by the attacker at the end of time step t. Each
attack—of which the attacker may mount multiple in a time step—targets a specific
subset K ⊆ C of components using a specific attack method (e.g., code injection
attack or DDoS attack). The set of attack actions A corresponds to the possible com-
binations of targeted components and attack methods. Attacks are non-deterministic
in the sense that they do not necessarily succeed in compromising or impairing all
the targeted components K. For example, an attack might require finding a software
vulnerability in a certain implementation or guessing a password, and the attacker
might fail to do so. In general, the success probability of an attack is an increasing
function of the set of components that have already been compromised or impaired.4

Firstly, the attacker might exploit the implicit trust relations between components
that are connected by links E to easily compromise the neighbors of an already
compromised component. Secondly, the impairment of components may result in
cascading failures, which makes the impairment of other components easier.

The attacker also incurs a cost for mounting its attacks. The cost of mounting an
attack depends on both the set of targeted components K and the method of attack.
For attack methods that are easily replicated for a large number of components (e.g.,
once a software vulnerability is found, the attacker may easily compromise a large
number of hosts), the cost can be modeled as a submodular function of K, capturing
the diminishing marginal cost of attacking an additional component.

In general, the attacker’s goal is to cause damage or gain some benefit by com-
promising or impairing the components of the system, while the defender’s goal
is to minimize its losses due to successful cyber-attacks. These goals are captured
using the players’ utility functions ui, which they aim to maximize through their ac-
tion choices. In principle, we can express the defender’s utility as the baseline utility
provided by an operational system minus the losses caused by the attacks and the
costs of implementing defensive actions. Note that since this baseline utility does
not depend on the players’ actions, it may be omitted without affecting the best-
response or equilibrium strategies. Similarly, we can express the attacker’s utility
as the attacker’s gain from compromising or impairing the components minus the
costs of mounting its attacks. The form of the loss and gain functions depends on the
specifics of the modeled system. However, in most systems, we can express loss and
gain as functions of the compromised and impaired components CC

t and CI
t ; hence,

we may express a player’s utility ui for time step t as a function ui(dt ,at ;CC
t ,C

I
t). In

a simple model, we may also assume that the defender’s loss and the attacker’s gain

3 For ease of presentation, we only consider attacks against components, but it would be straight-
forward to extend our modeling approach to also consider attacks against links.
4 In practice, the probability may decrease since the defender may notice a large-scale attack and
deploy countermeasures in response. In our model, this effect is captured explicitly through the
defender’s reactive actions.

148 Aron Laszka, Xenofon Koutsoukos, and Yevgeniy Vorobeychik

are always equal. Note that even under this assumption, the game is not necessarily
zero sum since the players also incur costs for their actions.

Finally, while it is impossible to provide generic loss/gain functions that are ap-
plicable to all system, we can provide modeling guidelines. For attacks against con-
fidentiality, loss/gain may be expressed as a submodular function of the set of com-
promised components CC

t since the information gained from compromising more
and more components exhibits a diminishing return due to the possible overlap be-
tween the information contained by a set of components.5 On the other hand, for at-
tacks against integrity, loss/gain may be expressed as a supermodular function of the
set of compromised components CC

t since when information is stored redundantly
on multiple components, the attack remains undetected only if all of these compo-
nents are compromised. Similarly, system functionality that is provided redundantly
by multiple components can be tampered with (or disabled) only by compromising
the majority of the components (or impairing all of them).

CPS Example In many cyber-physical systems, loss can be measured in terms
of physical impact. For example, a cyber-attack against a smart transportation net-
work may cause disastrous traffic congestion [35, 55].6 Such attacks have been made
possible by the evolution of traffic control from standalone hardware devices into
complex networked systems, which has exposed traffic control to attacks through
wireless interfaces or even remote attacks through the Internet. As demonstrated by
the 2006 incident in Los Angeles, tampering with traffic control can cause signifi-
cant losses through congestion [23].

To formulate a multi-stage security game for smart transportation networks, we
may model the physical part of the system using an established traffic model (e.g.,
Daganzo’s well-known cell-transmission model [10, 11]), while we can model the
cyber part of the system using the following components C:

• interface: human-machine interface components, which traffic operators can use
to control traffic lights in the transportation network;

• processing: devices that process and forward traffic control signals;
• actuator: traffic lights with software-based controllers.

An attacker may try compromise these components, e.g., by connecting to traffic
lights through local-area wireless networks and exploiting software vulnerabilities.
Indeed, studies have found that many traffic control devices that are deployed in
practice have unpatched known software vulnerabilities [21, 55]. Once an attacker
has compromised some set of the components CC, it can alter the schedules of traffic
lights, thereby causing disastrous traffic congestion. We can quantify the impact of
such an attack as the total increase in travel time experienced by all the drivers.
Assuming a malicious attacker who is interested in maximizing the defender’s loss,

5 Defender’s may turn this around by using, e.g., secret sharing schemes, which lead to a super-
modular loss/gain functions for confidentiality. This possibility is considered explicitly among the
defender’s proactive actions; here, we consider a baseline case without such schemes.
6 In practice, due to hardware-based failsafes, compromising a traffic signal does not allow an
attacker to set the signal into an unsafe configuration that could immediately lead to traffic acci-
dents [21].

6 Towards High-Resolution Multi-Stage Security Games 149

we can measure both the defender’s loss and the attacker’s gain as the impact of the
attack.

6.4.3 Imperfect and Incomplete Information

A key aspect of security games is that generally the players do not possess per-
fect and complete information. Firstly, the players might not know what actions
their opponents have taken and, hence, which components are compromised, which
means that they possess imperfect information. While imperfect information can af-
fect both players, there is often an asymmetry between the players, which may put
the defender at a grave disadvantage. On the one hand, the attacker knows which
components it has attacked and—in most cases—which components it has compro-
mised. On the other hand, the defender may not immediately learn of compromises.
Indeed, a recent study has found that on average, it takes 191 days to detect a data
breach [45]. Lack of perfect information can prevent the defender from reacting
and implementing countermeasures in time to mitigate an attack, which enables the
attacker to operate covertly in the compromised system, causing damage and ex-
tracting information. In practice, attackers often seek to remain covert for as long as
possible in order to cause more damage or extract more information over a longer
period of time. For example, sophisticated spyware (e.g., used in state-sponsored
cyber-espionage campaigns) often remain covert for extended periods of time [26].
Even malware that causes physical damage in a cyber-physical system may remain
covert for months, as demonstrated by the Stuxnet worm [27].

To some extent, the attacker might also suffer from imperfect information. While
we typically assume—following Kerckhoffs’s principle—that the attacker can learn
the defender’s strategy, this strategy may be a probability distribution over possible
actions, and the attacker does not learn the specific action if it chosen truly randomly.
Further, the attacker might also not be able to directly observe which components
it has compromised. For example, the defender might secure a host (e.g., shutdown
and re-install) that is not connected to the Internet, which the attacker has compro-
mised earlier using a worm. In such a scenario, the attacker will not learn immedi-
ately that the component is no longer compromised (or if it ever were). In light of
this, the players’ policies cannot be defined as functions of the state x. Rather, each
players’ policy needs to be defined as a function of their observations.

In addition to imperfect information, the players may also suffer from incom-
plete information, i.e., not knowing the exact action sets, state transition functions,
or utility functions. Firstly, the defender might not know what actions are available
to an attacker (e.g., specific attack techniques and exploits) or how likely these ac-
tions are to successfully compromise or impair components. Further, the defender
might also not know the attackers’ objectives and what resources they have (e.g.,
script kiddies or nation-state sponsored attackers) [13, 14]. Secondly, the attacker
might not have complete knowledge of the target system. Even though we follow
Kerckhoffs’s principle and assume that the attacker will be able determine the de-

150 Aron Laszka, Xenofon Koutsoukos, and Yevgeniy Vorobeychik

sign of the system, the defender might still be able to deceive the attacker [47]. For
example, the defender might deploy honeypots in the system in order to waste the
attacker’s effort and observe its behavior [43].

6.5 Proactive Defense

Proactive defense includes actions taken by a defender in anticipation of attacks.
Here, we discuss various approaches for the proactive defense of networked systems
in more detail, focusing on how to incorporate them into our game-theoretic model.
Recall from our previous discussion that these actions are taken in time step t = 0
(i.e., before the attacker’s first move).

6.5.1 Redundancy

Redundancy means deploying additional components in the system, which are not
necessary for providing required system functionality or performance [5]. When fac-
ing denial-of-service attacks, which impair components, the benefits of redundancy
are clear: in case of an attack, the redundant components may be used instead of
the ones that are unavailable due to the attack. As long as a sufficient set of compo-
nents are still available, the system might suffer from decreased performance, user
experience, etc., but retains its functionality.

In practice, redundancy may be implemented, for example, by deploying addi-
tional physical hosts or storing redundant copies of information. In a fine-grained
model, where components correspond to software modules or services, redundancy
can be implemented even for security mechanisms. For example, multi-factor au-
thentication methods grant a user access to a system only after verifying the user’s
identity using multiple authentication methods [12]. In a cyber-physical system, re-
dundancy can be implemented by, e.g., deploying multiple sensors for monitoring
the same physical process [1], or deploying multiple controllers and letting actuators
act based on the median control value provided by these controllers.

While the benefits of redundancy are obvious in the case of denial-of-service
attacks, they are much less straightforward in the case of integrity attacks that com-
promise and tamper with components. Since defenders—and the systems under their
control—may not know which components have been compromised, when redun-
dant components provide contradictory information, they face the challenging prob-
lem of deciding which components to trust. Further, simple redundancy might even
increase risks when it comes to confidentiality. Without redundancy, the attacker
would need to compromise a particular component to gain a particular piece of
information. However, with redundancy, it needs to compromise one out of many
redundant components, which may give the attacker more opportunities to succeed.

6 Towards High-Resolution Multi-Stage Security Games 151

Consequently, to protect confidentiality, redundancy may need to combined with,
e.g., secret sharing schemes [25, 46].

We can model redundancy by allowing the defender to choose the set of deployed
components C from a family C of feasible sets. This family C consists of all the
sets that are sufficient for providing required system functionality and performance.
In a simple model, we may assume that a base deployment Cbase is given, and the
defender can choose only supersets C⊇Cbase (i.e., C = {C |C⊇Cbase}). By deploy-
ing additional components, the defender incurs some cost. In the case of hardware,
this is the cost of purchasing, installing, and operating devices, which may be an
additive or submodular function of the set of additional devices (i.e., fixed cost or
diminishing marginal cost model). In the case of services and software modules,
this may be development cost or the computational/communication cost of running
an additional software components.

6.5.2 Diversity

Deploying redundant components may be a futile effort if all of the components
are implemented and configured in the same way since an attacker might be able
to compromise all of them with relatively little effort using a common software or
configuration vulnerability. A defender can prevent this by implementing the com-
ponents using a diverse set of hardware and software, for example, by running re-
dundant web servers on different operating systems. Diversity reduces the impact of
any common vulnerability since only the components that are implemented using
the vulnerable software or hardware will be susceptible to the same exploit. Indeed,
diversity has been recognized as an effective approach for improving network se-
curity, and prior work has studied the optimal assignment of implementation types
to components [42]. On a larger, societal scale, monoculture (i.e., lack of diversity
in software solutions) has been identified as a contributor to systemic cyber-risks
[6, 18].

Similar to redundancy, diversity must be used carefully since it may increase
risks in some cases. If an attacker needs to compromise a certain set of components
to inflict damage, then diversity increases resilience since the probability of finding
a vulnerability in multiple implementations is generally lower than finding one in a
single implementation. However, if the attacker needs to compromise only one out
of many components, then diversity decreases resilience since the more implemen-
tation types, the higher the probability that at least one of them has a vulnerability.

We can model diversity by letting the defender assign an implementation type to
each component. More specifically, for each component c ∈C, we can assume that
a set of feasible implementations Ic is given, and the defender can select a particular
implementation ic. In practice, the defender typically incurs some cost for introduc-
ing a new implementation type into the system. For example, introducing a new
software may require purchasing licenses and training for personnel. Consequently,

152 Aron Laszka, Xenofon Koutsoukos, and Yevgeniy Vorobeychik

the cost of diversity depends on the set of all the implementation types
⋃

c∈C{ic}
that are used in the system.

6.5.3 Isolation

While links serve a useful purpose by providing connectivity between components,
they also enable an attacker to escalate its attack by compromising the neighbors
of a compromised component. A defender can prevent escalation and limit the im-
pact of compromises by isolating components (or sets of components) from each
other [48]. In practice, techniques for isolation range from sandboxes for software
components to firewalls between networks. To minimize security risks, isolation
may be implemented on a physical level by introducing an “air gap” (i.e., physi-
cal separation) between components. In the context of cyber-physical systems, “air
gap” is typically used to protect safety-critical control systems [15].

We can model isolation by allowing the defender to remove links from the net-
work. Equivalently, we may allow the defender to choose the set of links E to retain,
under the constraint that this set of links must be chosen from a family E of feasible
sets. This family E consists of all the sets that are sufficient for providing connec-
tivity that is necessary for the required system functionality and performance. We
may define the family of feasible sets using graph-theoretic notions; for example,
we may require the set of links E to form a strongly connected graph of components
C.

By severing useful links between components, the defender incurs various costs.
For example, decreased connectivity may result in lower performance or functional-
ity as well as increased usability and operational costs (e.g., information that could
have been sent automatically on a link might have to be transferred manually using
removable drives). Consequently, a defender must carefully choose which compo-
nents to isolate from each other. Dividing a networked system into isolated parts is
a challenging graph-theoretic problem, which has been studied in prior work, e.g.,
as a computationally-hard graph partitioning problem [4].

6.5.4 Hardening

Hardening includes techniques for protecting components from being compromised
by an attacker. These techniques may be applied at either the hardware level (e.g.,
using tamper-resistant hardware to prevent attacks based on physical access) or at
the software level (e.g., thorough testing for software vulnerabilities). Typically,
hardware-level techniques are applied to individual components (i.e., protection for
particular devices), while software-level techniques are applied to a set of com-
ponents that are implemented using the same software (i.e., eliminating common
vulnerabilities). Defenders may employ a variety of approaches for eliminating

6 Towards High-Resolution Multi-Stage Security Games 153

software vulnerabilities, ranging from following secure-coding principles to hir-
ing outside experts for penetration testing or crowdsourcing vulnerability discovery
through bug-bounty programs [58, 36].

For hardware-level protection, we can model hardening by allowing the defender
to choose how much to spend on improving the security of each component. For
software-level protection, the defender needs to choose how much to spend on
improving certain implementation types i ∈ I, where I = ∪c∈CIc is the set of all
implementation types in the system. In both cases, hardening either decreases the
probability that an attack succeeds against the hardened components, or it increases
the cost of launching a successful attack against the hardened components. Opti-
mal security investments have been thoroughly studied in the economics of security
literature [3, 22].

6.5.5 Detection

With respect to information, the defender is at a grave disadvantage compared to
the attacker. Since the defender has imperfect information regarding which compo-
nents have been attacked or compromised, it can only guess which actions to take
to mitigate a potential attack most effectively. To decrease this information gap,
defenders can deploy intrusion detection systems. An intrusion detection system
(IDS) monitors a system or network and raises an alarm when it encounters mali-
cious activity, which can then be investigated by system operators. In practice, IDS
come in a wide variety. A host-based IDS is deployed on and monitors a particular
host (e.g., running processes), while a network-based IDS monitors network traffic.
A signature-based IDS searches for known attacks, while an anomaly-based IDS
looks for deviation from normal operation. A variety of intrusion detection systems
have also been proposed for cyber-physical systems [40]

However, practical intrusion detection systems are imperfect. On the one hand,
they may fail to detect an actual attack, which is called a false-negative error. On
the other hand, they may raise an alarm when they encounter suspicious but non-
malicious activity, which is called a false-positive error. Both of these are errors
should be minimized since false negatives prevent the defender from mitigating at-
tacks, while false positives waste the limited amount of time and effort available
for investigations. However, there is generally a trade-off between the two errors:
decreasing the rate of false positives results in an increased rate of false negatives,
and vice versa. Therefore, defender must carefully configure each IDS to minimize
losses due to attacks and the costs of investigations at the same time. Finding op-
timal configurations for intrusion detection systems is a challenging problem by
itself [31, 19, 20].

We can model detection by allowing the defender to place intrusion detection
systems on components or links. We let SC ⊆C denote the set of components with
detectors, which model host-based IDS, and let SE ⊆ E denote the set of links with
detectors, which model network-based IDS. For each IDS s ∈ SC∪SE , the defender

154 Aron Laszka, Xenofon Koutsoukos, and Yevgeniy Vorobeychik

must choose a trade-off between false-negative and false-positive errors by config-
uring the detector. We can represent the attainable combinations using a trade-off
function Fs : R+×A→ [0,1], where Fs(fs,a) is the estimated probability that at-
tack a is undetected when the false-positive error rate of the detector is fs. In each
timestep, the defender’s beliefs are updated based on which detectors have raise a
true alarm, while the defender incurs cost for all the false alarms raised ∑s∈SC∪SE fs.

6.6 Reactive Defense

Reactive defense includes actions taken by a defender in response to observed at-
tacks. Here, we discuss approaches for the reactive defense of networked systems in
more detail, focusing on how to incorporate them into our game-theoretic model. In
contrast to proactive defense, these actions are taken in time steps t > 0 (i.e., after
an attack may have been launched).

6.6.1 Islanding

Isolation can be an effective approach for limiting the impact of successful attacks
(Section 6.5.3); however, it requires severing links proactively, which results in per-
manent usability and performance degradation, even when the defender has not ob-
served an attack. Here, we consider islanding, which can be thought of as a reactive
variant of isolation that severs links only after detecting an attack. More specifically,
islanding means severing links to components (or to a set of components) that the
defender suspects to be compromised by an attacker.

Islanding clearly has some advantages over isolation, but it can also be favor-
able compared to simply shutting down and resetting (e.g., re-installing) compo-
nents that are suspected to be compromised. Since the defender possesses imperfect
information regarding which components have been compromised, implementing
any reactive defense is risky in the sense that the actions might not only be costly
but also unnecessary. Shutting down and resetting a component is a drastic mea-
sure that may result in significant downtime. In a cyber-physical system, such as a
power plant, where components have to sense and control physical processes in real
time, downtime can be prohibitively expensive. On the other hand, islanding allows
the defender to prevent the escalation of a suspected attack without shutting down
the potentially compromised components. If these islanded components can provide
some level of functionality (e.g., an islanded component in a cyber-physical system
may still be able to control a physical process), then islanding can be a less risky
option for the defender.

We can model islanding similar to isolation, by allowing the defender to choose
which links are active in each time step. More formally, in each time step t, the
defender may choose a set of active links Et ⊆ E. Then, the attacker will only be

6 Towards High-Resolution Multi-Stage Security Games 155

able use links Et to escalate its attack in time step t, while the defender incurs cost
due to the performance and usability loss from the unavailability of links E \Et .

6.6.2 Resetting

Even though islanding can contain a security breach by preventing the attacker
from escalating the attack to compromise other components, it cannot eliminate the
breach and secure the system. We now consider actions that return compromised
components into their normal, uncompromised state, to which we refer as reset-
ting. For components that model physical hosts, resetting typically involves shutting
down and re-installing the hosts, while for software components, re-launching run-
ning processes may be enough to bring them into a secure state as long as they have
not effected any permanent changes to, e.g., configuration files.

By resetting a component, the defender incurs cost due to the effort and time
required to reset the component, as well as the cost of the component being unavail-
able while it is being reset. Since the defender does not have perfect information, it
does not know when to reset a component: resetting a component that has not been
compromised results in unnecessary expenses, while not resetting a compromised
one may result in increased losses due to the prolonged impact of the attack. Con-
sequently, deciding when to reset a potentially compromised component is a chal-
lenging problem. This problem has been studied extensively by prior work using
the FlipIt model [51, 33, 7, 34, 57], and optimal resetting schedules have been pro-
posed under various conditions. However, integrating these results into a multi-stage
game where a variety of actions are available to the defender is an open problem,
especially considering the structural properties of networked systems.

We can model resetting by allowing the defender to select which components
Rt ⊆ C to reset in each time step t. Selected components Rt are removed from the
sets of compromised and impaired components CC

t and CI
t , respectively, but they

also become (or remain) unavailable for a certain number of time steps, which mod-
els downtime due to resetting. Further, the defender may incur two types of costs.
Firstly, it incurs the direct cost of resetting the components, which can be modeled
as an additive function of Rt . Secondly, it incurs the cost of lost performance or
functionality due to the downtime of the selected components, which may depend
on the deployment of the system. For example, if there are redundant components
available, there might not be any performance or functionality loss.

6.6.3 Reconfiguration

In addition to islanding and resetting potentially compromised components, the de-
fender may also mitigate attacks and limit their impact by changing the behavior
of uncompromised components. In particular, the defender can reconfigure compo-

156 Aron Laszka, Xenofon Koutsoukos, and Yevgeniy Vorobeychik

nents that are still available and under its control in order to reduce the losses arising
from an attack. For example, in a cyber-physical system, a controller may be recon-
figured when some sensors or actuators are compromised or impaired, so that the
new control maintains system stability and prevents system failure in spite of the
attack [8].

We can model reconfiguration actions by letting the defender select in every time
step a configuration for each available component. Formally, in each time step t, the
defender selects for each component c ∈ C \CI

t a configuration Fc,t . However, the
configurations are applied only to uncompromised components (C \CI

t) \CC
t (note

that the defender does not necessarily know which components are compromised
and which are under its control). Reconfiguring a component c may have some
cost, such as the effort exerted to effect the change or the loss due to temporary
outage while reconfiguring components, which the defender incurs only if it actually
changes the configuration, i.e., if Fc,t 6= Fc,t−1. Further, the selected configurations
may also have an impact on the performance and functionality of the system (e.g.,
in a cyber-physical system, a more stable controller may be less efficient), which
affects the defender’s utility.

6.7 Solving Multi-Stage Security Games

Our goal is to find an optimal defense policy πD, which proscribes what defen-
sive actions to take in each time step based on the observed state. Unfortunately,
this problem is computationally challenging due to the sizes of the action and state
spaces. Firstly, in each time step, the defender has to choose from a set of actions
whose cardinality is an exponential function of the size of the graph (C,E) that
models the system. For example, consider isolation and islanding actions, which are
chosen from the set of all subsets of links E. Since the number of all subsets is 2|E|,
the size of the defender’s action space can be astronomical even for graphs of mod-
est size.7 Similarly, the number of possible states is also an exponential function of
the size of the graph (C,E). For instance, the set of compromised components CC is
a subset of the set of components C; hence, there may be up to 2|C| different sets of
compromised components. Further, the set of possible observations for the defender,
which may include various alerts generated by detectors, could be even larger.

Considering the sizes of the action and state spaces, it is challenging not only to
find an optimal policy, but even just to represent one. A straightforward policy rep-
resentation would specify what actions to take for each possible state, for example,
in the form of a list. Clearly, the size of this list would be prohibitively large for any
practical system. Therefore, there is a need for devising a compact representation of
proactive and reactive action policies.

Even restricted to some compact representation, finding an optimal policy may
be computationally hard. Indeed, prior work has shown that a number of subprob-

7 Some of these subsets may not be feasible, but in general the number of feasible subsets may
grow exponentially.

6 Towards High-Resolution Multi-Stage Security Games 157

lems (e.g., finding optimal actions of a certain type in a given state) are NP-hard.
For example, finding optimal configurations for intrusion detection systems may be
an NP-hard problem when facing strategic attacks [31, 19]. In light of this, we must
consider efficient algorithms that can find near-optimal actions. To devise such al-
gorithms, we can take advantage of the structure of our problem. In other words,
instead of resorting to generic meta-heuristics, we can tailor our algorithms to the
rich structure of security states and defensive actions.

We can combine these algorithms with reinforcement learning approaches for
finding near-optimal policies [41]. Many reinforcement learning algorithms, such
as Q-learning [54], work by learning the values of the possible states (e.g., a state in
which more components are compromised may be worth less to the defender than a
state with fewer compromised components). Once these values have been learned,
the best action in a certain state can be chosen based on which action results in the
highest expected value for the following state, considering the probabilities of the
various state transitions for a particular action.

Since exhaustively searching for the best action would not be feasible in our
model, we propose to use an actor-critic method [29], which represents both the
state values and the policy explicitly. Considering the complexity of the state and
action spaces, there is a need to represent the state values and the policy efficiently,
which we may do using (deep) neural networks. This model-free approach can be
combined with efficient, model-specific algorithms for finding a near-optimal action
in a particular state to support the exploration part of reinforcement learning.

However, considerable challenges remain in the application of reinforcement
learning to multi-stage security games. Firstly, the actor-critic method can be used
directly to find a near-optimal policy for one player, which constitutes an approxi-
mate best response, against a given policy of the opponent. Solving the game and
finding a strategic cyber-defense policy, however, requires finding an equilibrium
pair of defender and attacker policies. To find a mixed-strategy equilibrium, we can
apply a double-oracle approach, which starts with a restricted set of strategies (i.e.,
policies), and then iteratively computes a mixed equilibrium over the restricted set
and extends the set with best-response strategies against this equilibrium [39]. The
application of a double-oracle approach may lead to further computational problems
since computing many best-response strategies (i.e., running reinforcement learning
many times to find policies) can be computationally expensive.

Another challenge arises from the fact that the players in our game have nei-
ther complete nor perfect information. Consequently, reinforcement learning has
to find near-optimal policies for partially observable Markov decision processes.
To achieve good results for partially observable processes, we can extend the
actor-critic method with an internal state, for example, using recurrent neural net-
works [24].

158 Aron Laszka, Xenofon Koutsoukos, and Yevgeniy Vorobeychik

6.8 Conclusion

To protect sensitive networked systems, defenders need to deploy complex cyber-
defense solutions, which combine a variety of proactive and reactive techniques to
minimize cyber-risks. Devising complex defense solutions for practical systems is
a daunting task, which must be supported by strong theoretical models and efficient
tools. To address this need, we introduced a modeling framework for high-resolution
multi-stage security games for networked systems. We discussed a number of canon-
ical proactive and reactive defense approaches, focusing on modeling choices and
challenges. Finally, we considered the computational problem of finding optimal
defense policies.

There remain several open problems in the area of high-resolution multi-stage se-
curity games. While we have laid foundations for theoretical models, incorporating
a spectrum of practical defense methods into this framework requires further mod-
eling work. Then, models need to be rigorously evaluated using data regarding past
cyber-breaches as well as the architecture, performance, and functionality of a wide
range of practical networked systems. Once these models have been established, the
gap between theory and practice must be bridged by providing software tools for
practitioners that facilitate the application of models to practical systems. Finally,
finding optimal defense policies poses a very challenging computational problem.
We have outlined approaches for addressing this problem, but developing efficient
practical algorithms and tailoring reinforcement learning methods to multi-stage se-
curity games remain open problems.

References

1. Abbas, W., Laszka, A., Koutsoukos, X.: Resilient wireless sensor networks for cyber-physical
systems. In: S. Zeadally, N. Jabeur (eds.) Cyber-Physical System Design with Sensor Net-
working Technologies, pp. 239–267. The Institution of Engineering and Technology (2016)

2. Abrams, M., Weiss, J.: Malicious control system cyber security attack case study – Maroochy
Water Services, Australia. http://csrc.nist.gov/groups/SMA/fisma/ics/
documents/Maroochy-Water-Services-Case-Study_report.pdf (2008)

3. Anderson, R., Moore, T.: The economics of information security. Science 314(5799), 610–613
(2006)

4. Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses and the
sum-of-squares partition problem. Journal of Computer and System Sciences 72(6), 1077–
1093 (2006)

5. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of de-
pendable and secure computing. IEEE transactions on dependable and secure computing 1(1),
11–33 (2004)

6. Birman, K.P., Schneider, F.B.: The monoculture risk put into context. IEEE Security & Privacy
7(1), 14–17 (2009)

7. Bowers, K.D., Van Dijk, M., Griffin, R., Juels, A., Oprea, A., Rivest, R.L., Triandopoulos, N.:
Defending against the unknown enemy: Applying FlipIt to system security. In: Proceedings
of the 3rd Conference on Decision and Game Theory for Security (GameSec), pp. 248–263.
Springer (2012)

http://csrc.nist.gov/groups/SMA/fisma/ics/documents/Maroochy-Water-Services-Case-Study_report.pdf
http://csrc.nist.gov/groups/SMA/fisma/ics/documents/Maroochy-Water-Services-Case-Study_report.pdf

6 Towards High-Resolution Multi-Stage Security Games 159

8. Cómbita, L.F., Giraldo, J., Cárdenas, A.A., Quijano, N.: Response and reconfiguration of
cyber-physical control systems: A survey. In: Proceedings of the 2nd Colombian Conference
on Automatic Control (CCAC), pp. 1–6. IEEE (2015)

9. Council of Economic Advisers: The cost of malicious cyber activity to the u.s. economy. Tech.
rep., Executive Office of the President (2018)

10. Daganzo, C.F.: The cell transmission model: A dynamic representation of highway traffic
consistent with the hydrodynamic theory. Transportation Research Part B: Methodological
28(4), 269–287 (1994)

11. Daganzo, C.F.: The cell transmission model, part II: Network traffic. Transportation Research
Part B: Methodological 29(2), 79–93 (1995)

12. Dasgupta, D., Roy, A., Nag, A.: Multi-factor authentication. In: Advances in User Authenti-
cation, pp. 185–233. Springer (2017)

13. Dritsoula, L., Loiseau, P., Musacchio, J.: Computing the nash equilibria of intruder classifi-
cation games. In: International Conference on Decision and Game Theory for Security, pp.
78–97. Springer (2012)

14. Dritsoula, L., Loiseau, P., Musacchio, J.: A game-theoretic analysis of adversarial classifica-
tion. IEEE Transactions on Information Forensics and Security 12(12), 3094–3109 (2017)

15. Farwell, J.P., Rohozinski, R.: Stuxnet and the future of cyber war. Survival 53(1), 23–40
(2011)

16. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer (1997)
17. GE Digital: The impact of cyber attacks on critical infrastructure. Tech. rep., General Electric

(2017)
18. Geer, D., Bace, R., Gutmann, P., Metzger, P., Pfleeger, C., Querterman, J., Scheier, B.: Cy-

berInsecurity: The cost of monopoly–how the dominance of Microsoft’s products poses a risk
to security. Tech. rep., Computer and Communications Industry Association (2003)

19. Ghafouri, A., Abbas, W., Laszka, A., Vorobeychik, Y., Koutsoukos, X.: Optimal thresholds
for anomaly-based intrusion detection in dynamical environments. In: Proceedings of the 7th
Conference on Decision and Game Theory for Security (GameSec), pp. 415–434 (2016)

20. Ghafouri, A., Laszka, A., Dubey, A., Koutsoukos, X.: Optimal detection of faulty traffic sen-
sors used in route planning. In: Proceedings of the 2nd International Workshop on Science of
Smart City Operations and Platforms Engineering (SCOPE), pp. 1–6 (2017)

21. Ghena, B., Beyer, W., Hillaker, A., Pevarnek, J., Halderman, J.A.: Green lights forever: Ana-
lyzing the security of traffic infrastructure. In: Proceedings of the 8th USENIX Workshop on
Offensive Technologies (WOOT), vol. 14, pp. 1–10 (2014)

22. Gordon, L.A., Loeb, M.P.: The economics of information security investment. ACM Transac-
tions on Information and System Security 5(4), 438–457 (2002)

23. Grad, S.: Engineers who hacked into LA traffic signal computer, jamming streets, sentenced.
Los Angeles Times (2009)

24. Hausknecht, M., Stone, P.: Deep recurrent Q-learning for partially observable mdps. In: 2015
AAAI Fall Symposium Series (2015)

25. Karnin, E., Greene, J., Hellman, M.: On secret sharing systems. IEEE Transactions on Infor-
mation Theory 29(1), 35–41 (1983)

26. Kaspersky Labs’ Global Research & Analysis Team: Gauss: Abnormal distribution. https:
//securelist.com/analysis/36620/gauss-abnormal-distribution/
(2012)

27. Kelley, M.B.: The Stuxnet attack on Iran’s nuclear plant was ‘far more dangerous’ than
previously thought. Business Insider, http://www.businessinsider.com/
stuxnet-was-far-more-dangerous-than-previous-thought-2013-11
(2013)

28. Kerckhoffs, A.: La cryptographie militaire. Journal des Sciences Militaires IX, 5–83 (1883)
29. Konda, V.R., Tsitsiklis, J.N.: Actor-citic agorithms. In: Proceedings of the 12th International

Conference on Neural Information Processing Systems (NIPS), pp. 1008–1014. MIT Press
(1999)

https://securelist.com/analysis/36620/gauss-abnormal-distribution/
https://securelist.com/analysis/36620/gauss-abnormal-distribution/
http://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-previous-thought-2013-11
http://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-previous-thought-2013-11

160 Aron Laszka, Xenofon Koutsoukos, and Yevgeniy Vorobeychik

30. Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., Tambe, M.: Stackelberg vs. nash in security
games: An extended investigation of interchangeability, equivalence, and uniqueness. Journal
of Artificial Intelligence Research 41, 297–327 (2011)

31. Laszka, A., Abbas, W., Sastry, S.S., Vorobeychik, Y., Koutsoukos, X.: Optimal thresholds for
intrusion detection systems. In: Proceedings of the 3rd Annual Symposium and Bootcamp on
the Science of Security (HotSoS), pp. 72–81 (2016)

32. Laszka, A., Felegyhazi, M., Buttyan, L.: A survey of interdependent information security
games. ACM Computing Surveys 47(2), 23:1–23:38 (2014)

33. Laszka, A., Horvath, G., Felegyhazi, M., Buttyan, L.: FlipThem: Modeling targeted attacks
with FlipIt for multiple resources. In: Proceedings of the 5th Conference on Decision and
Game Theory for Security (GameSec), pp. 175–194 (2014)

34. Laszka, A., Johnson, B., Grossklags, J.: Mitigating covert compromises: A game-theoretic
model of targeted and non-targeted covert attacks. In: Proceedings of the 9th Conference on
Web and Internet Economics (WINE), pp. 319–332 (2013)

35. Laszka, A., Potteiger, B., Vorobeychik, Y., Amin, S., Koutsoukos, X.: Vulnerability of trans-
portation networks to traffic-signal tampering. In: Proceedings of the 7th International Con-
ference on Cyber-Physical Systems (ICCPS), p. 16. IEEE Press (2016)

36. Laszka, A., Zhao, M., Grossklags, J.: Banishing misaligned incentives for validating reports
in bug-bounty platforms. In: Proceedings of the 21st European Symposium on Research in
Computer Security (ESORICS), pp. 161–178 (2016)

37. Lee, R.M., Assante, M.J., Conway, T.: Analysis of the cyber attack on the Ukrainian power
grid: Defense use case. Tech. rep., Electricity Information Sharing and Analysis Center (E-
ISAC) (2016)

38. Manshaei, M.H., Zhu, Q., Alpcan, T., Bacşar, T., Hubaux, J.P.: Game theory meets network
security and privacy. ACM Computing Surveys (CSUR) 45(3), 25 (2013)

39. Mcmahan, H.B., Gordon, G.J., Blum, A.: Planning in the presence of cost functions controlled
by an adversary. In: International Conference on Machine Learning, pp. 536–543 (2003)

40. Mitchell, R., Chen, I.R.: A survey of intrusion detection techniques for cyber-physical sys-
tems. ACM Computing Surveys 46(4), 55 (2014)

41. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A.,
Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep rein-
forcement learning. Nature 518(7540), 529 (2015)

42. O’Donnell, A.J., Sethu, H.: On achieving software diversity for improved network security
using distributed coloring algorithms. In: Proceedings of the 11th ACM Conference on Com-
puter and Communications Security (CCS), pp. 121–131. ACM (2004)

43. Pı́bil, R., Lisỳ, V., Kiekintveld, C., Bošanskỳ, B., Pěchouček, M.: Game theoretic model of
strategic honeypot selection in computer networks. In: Proceedings of the 3rd Conference on
Decision and Game Theory for Security (GameSec), pp. 201–220. Springer (2012)

44. Polityuk, P.: Ukraine investigates suspected cyber attack on Kiev
power grid. Reuters, http://www.reuters.com/article/
us-ukraine-crisis-cyber-attacks-idUSKBN1491ZF (2016)

45. Ponemon Institute: 2017 cost of data breach study. Tech. rep., IBM (2017)
46. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority.

In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pp.
73–85. ACM (1989)

47. Schlenker, A., Thakoor, O., Xu, H., Tambe, M., Vayanos, P., Fang, F., Tran-Thanh, L., Vorob-
eychik, Y.: Deceiving cyber adversaries: A game theoretic approach. In: Proceedings of the
17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS)
(2018)

48. Shu, R., Wang, P., Gorski III, S.A., Andow, B., Nadkarni, A., Deshotels, L., Gionta, J., Enck,
W., Gu, X.: A study of security isolation techniques. ACM Computing Surveys (CSUR) 49(3),
50 (2016)

49. Slay, J., Miller, M.: Lessons learned from the Maroochy water breach. In: E. Goetz, S. Shenoi
(eds.) Critical Infrastructure Protection, pp. 73–82. Springer (2008)

http://www.reuters.com/article/us-ukraine-crisis-cyber-attacks-idUSKBN1491ZF
http://www.reuters.com/article/us-ukraine-crisis-cyber-attacks-idUSKBN1491ZF

6 Towards High-Resolution Multi-Stage Security Games 161

50. Tambe, M. (ed.): Security and Game Theory: Algorithms, Deployed Systems, Lessons
Learned. Cambridge University Press (2011)

51. Van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: FlipIt: The game of “stealthy takeover”.
Journal of Cryptology 26(4), 655–713 (2013)

52. Vorobeychik, Y., An, B., Tambe, M., Singh, S.: Computing solutions in infinite-horizon dis-
counted adversarial patrolling games. In: International Conference on Automated Planning
and Scheduling (2014)

53. Vorobeychik, Y., Singh, S.: Computing stackelberg equilibria in discounted stochastic games.
In: National Conference on Artificial Intelligence (2012)

54. Watkins, C.J., Dayan, P.: Q-learning. Machine Learning 8(3-4), 279–292 (1992)
55. Zetter, K.: Hackers can mess with traffic lights to jam roads and reroute cars. WIRED,

https://www.wired.com/2014/04/traffic-lights-hacking/ (2014)
56. Zetter, K.: Inside the cunning, unprecedented hack of Ukraine’s

power grid. WIRED, https://www.wired.com/2016/03/
inside-cunning-unprecedented-hack-ukraines-power-grid/ (2016)

57. Zhang, M., Zheng, Z., Shroff, N.B.: A game theoretic model for defending against stealthy
attacks with limited resources. In: Proceedings of the 6th Conference on Decision and Game
Theory for Security (GameSec), pp. 93–112. Springer (2015)

58. Zhao, M., Grossklags, J., Liu, P.: An empirical study of web vulnerability discovery ecosys-
tems. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), pp. 1105–1117. ACM (2015)

https://www.wired.com/2014/04/traffic-lights-hacking/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/

	Towards High-Resolution Multi-Stage Security Games
	Aron Laszka, Xenofon Koutsoukos, and Yevgeniy Vorobeychik
	Introduction
	Stackelberg Game Models of Security
	Stochastic Games in Security
	Towards Realistic Multi-Stage Game Models
	System Model
	Game-Theoretic Model
	Imperfect and Incomplete Information

	Proactive Defense
	Redundancy
	Diversity
	Isolation
	Hardening
	Detection

	Reactive Defense
	Islanding
	Resetting
	Reconfiguration

	Solving Multi-Stage Security Games
	Conclusion
	References

