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Abstract

In recent years, state-of-the-art traffic-control devices have evolved from standalone hardware to networked smart devices.
Smart traffic control enables operators to decrease traffic congestion and environmental impact by acquiring real-time
traffic data and changing traffic signals from fixed to adaptive schedules. However, these capabilities have inadvertently
exposed traffic control to a wide range of cyber-attacks, which adversaries can easily mount through wireless networks
or even through the Internet. Indeed, recent studies have found that a large number of traffic signals that are deployed
in practice suffer from exploitable vulnerabilities, which adversaries may use to take control of the devices. Thanks
to the hardware-based failsafes that most devices employ, adversaries cannot cause traffic accidents directly by setting
compromised signals to dangerous configurations. Nonetheless, an adversary could cause disastrous traffic congestion by
changing the schedule of compromised traffic signals, thereby effectively crippling the transportation network. To provide
theoretical foundations for the protection of transportation networks from these attacks, we introduce a game-theoretic
model of launching, detecting, and mitigating attacks that tamper with traffic-signal schedules. We show that finding
optimal strategies is a computationally challenging problem, and we propose efficient heuristic algorithms for finding
near optimal strategies. We also introduce a Gaussian-process based anomaly detector, which can alert operators to
ongoing attacks. Finally, we evaluate our algorithms and the proposed detector using numerical experiments based on
the SUMO traffic simulator.

Keywords: security, game theory, transportation network, cyber-physical system, intrusion detection, computational
complexity

1. Introduction

The evolution of traffic signals from standalone hard-
ware devices to complex networked systems has provided
society with many benefits, such as reducing wasted time
and environmental impact. However, it has also exposed
traffic signals to a variety of cyber-attacks. While tradi-
tional hardware systems were susceptible only to attacks
based on direct physical access, modern systems are vul-
nerable to attacks through wireless interfaces or even to re-
mote attacks through the Internet. To assess the severity
of these threats in practice, Ghena et al. recently analyzed
the security of real-world traffic infrastructure in cooper-
ation with a road agency located in Michigan [1]. This
agency operates around a hundred traffic signals, which
are all part of the same wireless network, but the signals
at every intersection operate independently of the other
intersections. The study found three major weaknesses in
the traffic infrastructure: lack of encryption for the wire-
less network, lack of secure authentication due to the use
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of default usernames and passwords on the devices, and
the presence of exploitable software vulnerabilities.

While all of these known weaknesses could be elimi-
nated, it is extremely difficult to ensure that devices are
free of any unknown weaknesses. In general, it is virtually
impossible—or prohibitively expensive—to ensure that a
system is perfectly secure. In addition to the general dif-
ficulty of attaining perfect security, traffic-control devices
pose further challenges. Similar to other distributed cyber-
physical systems, traffic-control systems have large attack
surfaces, and they often have long system lifetime and
complicated software-upgrade procedures, which makes fix-
ing vulnerabilities difficult. Consequently, operators can-
not hope to stop all cyber-attacks since a determined and
sophisticated attacker might always find a way to compro-
mise some of the devices. Therefore, instead of focusing
solely on the first line of defense, operators must also con-
sider minimizing the impact of successful cyber-attacks.

Due to hardware-based failsafes, compromising a traf-
fic signal does not allow an attacker to set the signal to an
unsafe configuration that would lead to traffic accidents,
such as giving green light to two intersecting directions.
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However, compromising a signal does enable tampering
with its schedule, which allows the attacker to cause dis-
astrous traffic congestion. Such malicious cyber-attacks
may be launched by any adversary whose interest is to
case disruption and damage, ranging from cyber-terrorists
to disgruntled ex-employees. For instance, during the Los
Angeles traffic engineers’ 2006 strike, two disgruntled em-
ployees allegedly penetrated the traffic-control system of
the city, and reprogrammed the traffic lights of four in-
tersections to cause congestion: “[t]he red signal would be
on too long for the critical approach and the green signal
would be on too long for the noncritical approach, thus
resulting in long backups into the airport and other key
intersections around the city” [2]. Furthermore, terrorists
could also mount these attacks in conjunction with physi-
cal attacks, thereby increasing their impact (e.g., delaying
ambulances and firefighters).

To minimize the impact of attacks tampering with traf-
fic signals, operators must be able to detect and mitigate
them promptly and effectively. In practice, the detection
of novel cyber-attacks poses multiple challenges. Since
signature-based detectors are ineffective against novel at-
tack, operators must employ anomaly-based detectors. How-
ever, these detectors are prone to raising false alarms,
which must be investigated manually, resulting in a waste
of manpower and resources. Considering the relative scarcity
of attacks, the cost of these investigations may exceed the
benefit of early attack detection and mitigation. There-
fore, when configuring the sensitivity of detectors, opera-
tors must carefully balance the cost of false alarms and the
risk from delayed detection. Moreover, sophisticated at-
tackers can act strategically by mounting stealthy attacks,
which delay detection but still cause significant impact. In
light of this, operators must also plan their defense strate-
gically, by anticipating the attackers’ responses.

Contributions

In [3], we introduced an approach for evaluating the
vulnerability of transportation networks to cyber-attacks
that tamper with traffic-control devices. In this paper, we
extend this approach by considering detectors and counter-
measures that operators can implement to mitigate these
attacks. In particular, we introduce a game-theoretic model,
in which an operator can setup anomaly-based detectors
and mitigate ongoing attacks by reconfiguring traffic con-
trol. Similar to [3], we build on the cell-transmission model
introduced by Daganzo [4, 5]. To the best of our knowl-
edge, our work is the first to consider the problem of
designing and deploying systems based on traffic-sensors
measurements to detect tampering attacks against traffic
control. Our main contributions in this paper are the
following:

• We formulate a multi-stage security game that mod-
els the detection and mitigation of cyber-attacks against
transportation networks.

• We propose an efficient metaheuristic search algo-
rithm for finding detector configurations that mini-
mize losses in the face of strategic attacks.

• We introduce an anomaly-based detector for attacks
against traffic control, which is built on a Gaussian-
process based model of normal traffic.

• We evaluate our detector and algorithms based on
detailed simulations of traffic using SUMO.

Outline

The remainder of this paper is organized as follows. In
Section 2, we introduce our game-theoretic model of de-
tecting and mitigating attacks against transportation net-
works. In Section 3, we present computational results on
our model and propose efficient heuristic algorithms. In
Section 4, we introduce a Gaussian-process based detector
for attacks against traffic control. In Section 5, we use
detailed simulations of transportation networks to evalu-
ate our detector and the heuristic algorithms. In Section 6,
we discuss related work on the vulnerability of transporta-
tion networks, configuration of attack detectors, and game
theory for security of cyber-physical systems. Finally, in
Section 7, we offer concluding remarks.

2. Game-Theoretic Model of Attacks on Traffic Sig-
nals

In this section, we introduce our model of launching,
detecting, and mitigating cyber-attacks against traffic con-
trol in transportation networks. Our model includes two
agents: an attacker who can launch cyber-attacks and a
defender who attempts to detect and mitigate them. Since
these agents may anticipate and react to each other’s ac-
tions, we formulate our model using game theory, which
enables us to capture the strategic interactions between
the two agents. For a list of symbols used in our model,
see Table 1.

2.1. Traffic Model

First, we introduce Daganzo’s cell transmission model,
the traffic model on which our game-theoretic model, our
analysis, and our numerical evaluation are built. Here, we
provide only a very brief summary of this traffic model,
focusing on the notation that will be used throughout the
paper. For a detailed description of the model, we refer
the reader to [4, 5, 6]. 1

The cell transmission model divides a road network into
cells, which represent homogeneous road segments, and
divides time into uniform intervals. The length of a road
segment corresponding to a cell is equal to the distance
traveled in light traffic by a typical vehicle in one time

1For readers who are familiar with the cell-transmission model,
we recommend to continue with Section 2.2.
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Table 1: List of Symbols

Symbol Description
Traffic Model

Qi maximum number of vehicles that can flow
into or out of cell i

δi ratio between free-flow speed and back-
ward propagation speed of cell i

Ni maximum number of vehicles in cell i
di demand (inflow) at source cell i

Γ−1(i) set of predecessor cells to cell i
ptki inflow proportion from cell k to signalized

intersection i
I set of signalized intersections

Game Constants and Functions
ID set of signalized intersections with attack

detectors
B attacker’s budget for compromising traffic

signals
∆D(D,A) detection delay for detector configuration

D and attack A
∆M length of mitigation (before returning to

normal operation)
T congestion with default traffic control

TA(A) congestion as a result of attack A (before
mitigation)

C cost of investigating a false alarm
TM (A,M) congestion after mitigation M of attack A
G(D,A,M) attacker’s gain for actions (D,A,M)
L(D,A,M) defender’s loss for actions (D,A,M)

Game Variables
D defender’s detector configuration action

(Stage I)
Di false-positive rate of detector at intersec-

tion i ∈ ID
A = (IA, p̂) attacker’s attack action (Stage II)

IA set of signals compromised by the attacker
p̂ki modified (by attack or mitigation) inflow

proportion from cell k to intersection i
M defender’s mitigation action (Stage III)

interval. Each cell i has three sets of parameters: N t
i is

the maximum number of vehicles that can be present in
cell i at time t; Qt

i is the maximum number of vehicles
that can flow into or out of cell i during time interval t;
and δti is the ratio between the free-flow speed and the
backward propagation speed of cell i at time t (see [6] for
a detailed explanation).2 Cells that model road segments
where vehicles can enter traffic are called source cells, and
each source cell i has a traffic demand parameter dti, which
is the number of vehicles entering traffic at cell i in time
interval t. Cells where vehicles may exit traffic are called
sink cells.

2This constant is used to quantify how the speed of traffic de-
creases as the cell becomes congested, and can model traffic phe-
nomena such as shockwaves.

Every cell is connected to one or more other cells: cells
that correspond to consecutive road segments or road seg-
ments that are joined by an intersection are connected.
The set of cells from which vehicles can move into cell i
is called the set of predecessor cells, denoted by Γ−1(i).
Cell that have multiple predecessors are called merging
cells, while cells that are the predecessors of multiple cells
are called sink cells. To model signal control at intersec-
tions, we follow Daganzo’s proposition [5] and introduce
the time-dependent parameters ptki controlling the inflow
proportions of merging cell i. We let I denote the set of
merging cells that model signalized intersections.

To solve the traffic model (i.e., to determine the traf-
fic flow for a given network and set of parameters), we use
Ziliaskopoulos’s linear programming approach [6]. The ob-
jective of this linear program is the sum of the number of
vehicles traveling (i.e., number of vehicles on the road)
over time, which is clearly equal to the total travel time of
all the vehicles. As a consequence, we can use the value of
the linear program—which can be computed efficiently for
a given instance—as a measure of network congestion.

Finally, we consider relatively short-term attack sce-
narios, in which the parameters of the cells and the default
(i.e., unattacked) schedules of the traffic signals are con-
stant. Hence, in our game-theoretic model, we will omit
the superscript t from Qt

i, N
t
i , δti , and ptki.

2.2. Multi-Stage Security Game

We model defensive countermeasures and attacks in
a transportation network as a two-player multi-stage se-
curity game between a defender and an attacker [7]. The
defender represents the operator of the transportation net-
work, who can configure traffic-control devices and aims
to minimize congestion in the network. The attacker rep-
resents any strategic adversary that can compromise and
tamper with traffic signals and aims to maximize conges-
tion.

In a nutshell, our game consists of the following three
stages.

I. Detector Configuration: In the first stage, the
defender configures detectors, which are deployed in
the transportation network, to detect cyber-attacks
against traffic control. The detectors may be traffic-
anomaly based detectors or conventional cyber-security
intrusion detection systems (IDS). When configur-
ing these detectors, the defender should anticipate
the attacker’s possible adversarial actions in the sec-
ond stage.

II. Attack on Traffic Control: In the second stage,
the attacker mounts a cyber-attack against the trans-
portation network by compromising traffic signals and
tampering with their schedule to cause congestion.
When choosing its attack, the attacker must take
into account both the detector configuration chosen
by the defender in the first stage as well as the de-
fender’s possible mitigation actions in the third stage.
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III. Mitigation of Attack: In the third stage, the de-
fender attempts to mitigate the attack by changing
the configuration of uncompromised traffic-control de-
vices to minimize congestion. As this is the final
stage, mitigation simply needs to respond to the par-
ticular attack that was launched in the second stage.
Note that once the defender detects an ongoing at-
tack, it should also try to regain control of the com-
promised devices as soon as possible. However, since
the devices may be physically scattered throughout
the transportation network, regaining control of them
can take a long time. For instance, an attacker could
have changed remote login passwords, severed commu-
nication-network connections, etc., forcing the de-
fender to physically reset or reinstall compromised
devices. Meanwhile, disastrous traffic congestions
may form in the transportation network, which the
defender must mitigate immediately.

2.2.1. Stages and Strategic Choices

Next, we provide a detailed description of the three
stages of the game and the players’ action spaces.

Stage I: Detector Configuration. To detect stealthy cyber-
attacks, detectors are deployed on the traffic-control de-
vices at a subset ID of the signalized intersections I. These
detectors can be either traffic-anomaly based detectors,
such as the one that we will introduce in Section 4, or con-
ventional cyber-security intrusion detection systems. We
assume that detectors are imperfect, which means that
they may raise false alarms (when there is no attack in
progress) and they may detect actual attacks with some
delay. The rate of false-positive errors and detection delay
both depend on how sensitive a detector is: a more sensi-
tive detector is more likely to raise false alarms but detects
actual attacks earlier, and vice versa. We assume that the
operator can configure the sensitivity of every one of the
|ID| detectors individually.

Specifically, in the first stage of the game, the defender
chooses a sensitivity configuration D for the detectors. For
ease of presentation, we let the sensitivity of the detector
at each intersection i ∈ ID be represented by the false-
positive rate of the detector. Formally, a detector con-
figuration D is an |ID|-dimensional non-negative vector,
where Di is the rate of false alarms raised by the detector
at intersection i ∈ ID.

Stage II: Cyber-Attack on Traffic Control. In the second
stage of the game, the attacker compromises a subset of the
traffic signals and changes their schedule. We let IA ⊆ I
denote the set of traffic signals that the attacker chooses
to compromise. We assume that the attacker is resource
bounded, which means that it can compromise signals in
at most B ≤ |I| intersections at the same time. Hence,
the attacker’s choice IA must satisfy |IA| ≤ B.

Once the attacker has compromised a set of traffic sig-
nals IA, it can reconfigure every one of them. However,

most traffic control devices have hardware-level safety mech-
anisms in practice (see, e.g., [1]), which constrain the con-
figurations that may be set by an adversary. In particular,
traffic signals typically use malfunction management units
as a safety feature against controller faults (e.g., overriding
a faulty controller that would give green lights to two in-
tersecting directions). These hardware-based failsafes also
limit the impact of cyber attacks (e.g., preventing the at-
tacker from causing traffic accidents) by overriding invalid
configurations. In our traffic model, the attacker’s recon-
figuration corresponds to setting new inflow proportions
p̂ki for the cells in IA. Therefore, we can model hardware-
level failsafes by requiring the inflow proportions chosen by
the attacker to constitute a valid configuration. Specifi-
cally, we assume that the inflow proportions set by a fea-
sible attack must sum up to 1 for each compromised inter-
section:

∀i ∈ IA :
∑

k∈Γ−1(i)

p̂ki = 1. (1)

In sum, we can represent a feasible attack action A as a
pair A = (IA, p̂) that satisfies |IA| ≤ B and

∑
k∈Γ−1(i) p̂ki =

1 for every i ∈ IA, where IA is the set of compromised sig-
nals, and p̂ are the tampered signal schedules.

Between Stages II and III: Detection. Once the attacker
has perpetrated its attack in the second stage, the compro-
mised signals begin to operate with tampered schedules,
which results in increased congestion in the transporta-
tion network. Eventually, the detectors deployed by the
defender will detect the attack (based on either traffic or
cyber anomalies). We let ∆D denote the detection delay,
that is, the amount of time between the launch and detec-
tion of the attack. The detection delay depends on both
the configuration D chosen by the defender and the attack
A chosen by the attacker, which we express by represent-
ing delay as a function ∆D(D,A) of D and A. Once the
attack is detected, the game progresses to the third stage.

Stage III: Mitigation of Attack. In the third stage, the
defender mitigates the detected attack by reconfiguring
traffic-control devices to alleviate congestion. We assume
that the defender can reconfigure any device that is still
under its control, that is, any traffic signal that is not
compromised by the attacker. Since the attacker has com-
promised signals IA, the defender can set new inflow pro-
portions p̂ki for the cells i in I \ IA. We again require
the new configuration to be valid, which means that the
inflow proportions must sum up to 1 for each reconfigured
intersection:

∀i ∈ I \ IA :
∑

k∈Γ−1(i)

p̂ki = 1. (2)

Finally, we let M = {p̂ki | i ∈ I\IA} denote the defender’s
mitigation (i.e., reconfiguration) action.
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2.2.2. Player’s Utilities

We now define the defender’s and the attacker’s utili-
ties resulting from the various strategic choices that they
can make in the game. First, we let T denote the level
of congestion in the transportation network with the de-
fault configuration of traffic-control devices (i.e., with in-
flow proportions p). In practice, we can quantify con-
gestion T as, e.g., the average or total travel time of the
vehicles in the transportation network between their ori-
gin and destination. Recall from Section 2.1 that we can
efficiently compute travel time with default proportions p
in our traffic model using a linear program.

Next, we let TA(A) denote the level of congestion after
the attack but before the mitigation, which depends on the
attacker’s action A chosen in the second stage. Similar to
T , we can compute TA(A) using our traffic model with the
default proportion pki for every cell i ∈ I\IA but with the
adversarial proportion p̂ki for every cell i ∈ IA. Finally, we
let TM (A,M) denote the level of congestion after the at-
tack has been mitigated, which depends on both attacker’s
action A and the defender’s mitigation action M .

We let the attacker’s gain G (i.e., positive utility) for
actions (D,A,M) be the total impact of the attack in
terms of increased congestion level:

G(D,A,M)

= (TA(A)− T ) ·∆D(D,A) + (TM (A,M)− T ) ·∆M ,
(3)

where ∆M is the amount of time between mitigation and
the transportation network returning to normal operation
(e.g., manually resetting compromised devices). The first
term quantifies the impact of the attack before mitigation,
while the second term quantifies impact after mitigation
but before returning to normal operation.

Next, we define the defender’s loss (i.e., negative util-
ity) resulting from actions (D,A,M). Recall that the
detectors deployed in the transportation network are im-
perfect, and each detector i ∈ ID is continuously generat-
ing false alerts (i.e., false-positive errors) at rate Di. Since
the defender cannot tell which alerts are false, it has to
investigate every single alert, which costs manpower and
resources. Hence, we define the defender’s loss considering
both the total impact of attacks and the cost of investi-
gating false alerts:

L(D,A,M) = G(D,A,M) +
∑
i∈ID

Di · C, (4)

where C is the cost of investigating an alert. The first
term quantifies the total impact of the attack, while the
second term captures the cost of investigating false alerts.

2.3. Solution Concept and Problem Formulation

We assume that both players have perfect information:
in the second stage, the attacker knows the detector con-
figuration D chosen by the defender in the first stage; and

in the third stage, the defender knows the attack action
A chosen by the attacker in the second stage. We assume
that the attacker has perfect information because we are
considering a sophisticated, worst-case attacker, who has
extensive knowledge of its target (i.e., Kerckhoffs’s princi-
ple) and may know the algorithms or techniques employed
by the defender for configuring the detectors. On the other
hand, we assume that the defender has perfect information
because we are considering a smart transportation net-
work with monitoring capabilities; however, this assump-
tion could be relaxed.

Under this assumption, we can model the players’ op-
timal choices most naturally using the solution concept of
subgame perfect equilibrium. Our goal is to find an optimal
strategy for the defender by solving the game. We can do
so by finding the players’ best-response actions for every
stage using backward induction, that is, by solving each
stage starting with the third and finishing with the first,
in each stage building on the solutions for the subgame
formed by the subsequent stages. Given detector configu-
ration D and attack A, a best-response mitigation is

argmin
M

L(D,A,M). (5)

Note that the best-response mitigation does not actually
depend on the detector configuration D. To prove this,
observe that the only term of L(D,A,M) that depends
on mitigation action M is (TM (A,M)− T ) · ∆M . Since
this term does not depend on detector configuration D,
neither does the best-response mitigation. Intuitively, the
explanation for this is that once the defender has detected
the attack, it does not matter how it was detected (and all
costs associated with detection are sunk).

Given detector configuration D, a best-response attack
is

argmax
A

G(D,A,M)
∣∣
M∈ argminM′ L(D,A,M ′)

= argmax
A

G(D,A,M)
∣∣
M∈ argminM′ G(D,A,M ′)+

∑
i∈ID

Di·C

(6)

= argmax
A

G(D,A,M)
∣∣
M∈ argminM′ G(D,A,M ′)

(7)

= argmax
A

min
M
G(D,A,M). (8)

Note that the attacker must anticipate the defender’s mit-
igation action in the next stage; however, since the game is
strategically equivalent to a zero-sum game, the attacker’s
problem simplifies to a maximin optimization. Our threat
model assumes a worst-case attacker, whose goal is to min-
imize the defender’s utility. This is a safe assumption since
the defender’s utility can only be higher if the attacker be-
haves differently. In contrast, if our threat model assumed
a particular attacker behavior, then the defender’s strat-
egy would be vulnerable to deviations from that assumed
behavior.

Finally, an optimal (i.e., equilibrium) detector config-
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uration is

argmin
D

min
M
L(D,A,M)

∣∣
A∈argmaxA′ minM′ G(D,A′,M ′)

= argmin
D

max
A

min
M
L(D,A,M). (9)

Note that the defender needs to anticipate the attacker’s
attack action in the next stage; however, since the game is
strategically equivalent to a zero-sum game, the defender’s
problem simplifies to a minimax optimization (i.e., mini-
maximin if we consider the mitigation choice as well).

3. Analysis

Even though we can express the players’ optimal strate-
gies as relatively simple maximin and minimax optimiza-
tion problems, actually finding optimal strategies is com-
putationally challenging due to the sizes of the players’
strategy spaces. Hence, we focus our analysis on the com-
putational aspects of solving the transportation security
game. First, in Section 3.1, we show that finding an op-
timal action for the attacker is a computationally hard
problem. Although we study the complexity of only the at-
tacker’s problem in this paper, our computational-complexity
argument could be easily extended to the defender’s prob-
lem. Due to the complexity of solving the game, we focus
the remainder of this section on providing efficient heuris-
tic algorithms: we introduce a greedy heuristic for the
attacker in Section 3.2.1, and a metaheuristic search algo-
rithm for the defender in Section 3.2.2.

3.1. Computational Complexity

We begin our analysis by showing that the attacker’s
problem (i.e., finding a worst-case attack) is computation-
ally hard. Given a detector configuration D, the attacker’s
problem is to find an optimal attack A∗ that maximizes
minM G(D,A∗,M). Following the backward-induction
approach, we assume that we have an oracle that finds the
optimal mitigation action M for any attack A, and we
study the attacker’s problem by building on this oracle.
In practice, the oracle can be replaced with, for example,
a linear program for finding optimal traffic control. Fur-
ther, for ease of presentation, we overload the notation G
as follows

G(D,A) = min
M
G(D,A,M). (10)

First, we formulate a decision version of the attacker’s
problem as follows.

Definition 1. Attacker’s Decision Problem: Given a trans-
portation network, a budget B, a detector configuration
D, and a threshold gain G∗, determine if there exists
an attack A∗ satisfying the budget constraint such that
G(D,A∗) > G∗.

We show that the above problem is computationally
hard by reducing a well-known NP-hard problem, the Set
Cover Problem, to the above problem.

r
...

C

∀C ∈ C :
QC = 1

...

U

∀u ∈ U :
Qu = k + 1

s

Figure 1: Illustration for the proof of Theorem 1.

Definition 2. Set Cover Problem: Given a base set U , a
collection C of subsets of U , and a number k, determine
if there exists a subcollection C′ ⊆ C of at most k subsets
such that every element of U is contained by at least one
subset in C′.

The following theorem establishes the computational
complexity of the attacker’s problem.

Theorem 1. The Attacker’s Decision Problem is NP -hard.

Proof. Given an instance of the Set Cover Problem (i.e.,
a set U , a collection C of subsets, and a number k), we
construct an instance of the Attacker’s Decision Problem
as follows:

• let the transportation network be the following (see
Figure 1 for an illustration):

– there is one source cell r, with Qr = k + 1,
d1
r = k + 1, and dtr = 0 for t > 1;

– there is one sink cell s;

– for every element u ∈ U , there is a merging
cell u;

– for every subset C ∈ C, there is a diverging
cell C;

– each diverging cell C is connected to every merg-
ing cell u ∈ C;

– for every cell i, Ni = k + 1 and δi = 1;

– for every merging cell u, Qu = k + 1;

– for every diverging cell C, QC = 1;

• let the attacker’s budget be B = |U |;

• let the detector configuration be such that ∀A :
∆D(D,A) ≡ 1

• let the default congestion be T = 0, let the conges-
tion after the attack TA(A) be equal to the total
travel time of the vehicles, and let the mitigation
time be ∆M = 0;
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• let the threshold gain be G∗ = 3(k + 1).

Clearly, the above reduction can be carried out in time
that is polynomial in the size of the Set Cover Problem
instance.

It remains to show that the above instance of the At-
tacker’s Decision Problem has a solution A∗ if and only
if the given instance of the Set Cover Problem has a so-
lution C′. Before we proceed to prove this equivalence,
notice that the values Qr, Ni and δi for every cell i, and
Qu for every merging cell u will not play any role, since
they are high enough to allow any traffic to pass through.
Furthermore, since B = |U | and ∆D ≡ 1, the attacker
will be able to reconfigure every traffic signal without de-
creasing detection time. Hence, the attacker’s problem is
simply to pick the values p̂Cu for every u ∈ C so that the
total travel time is at least G∗ = 3(k + 1).

First, suppose that there exists a set cover C′ of size at
most k. Then, we construct an attack as follows: for every
merging cell u, choose one diverging cell C from C′ that
is connected to u (if there are multiple, then choose an
arbitrary one), and let p̂Cu = 1. We have to show that the
total travel time in the transportation network is greater
than 3(k+ 1) after the attack. Since the distance between
the source cell and the sink cell is 3 hops and there are k+1
vehicles, all the vehicles must move one step closer to the
sink in every time interval in order for the total travel time
to be at most 3(k+ 1). However, from the source cell, the
vehicles may only move to the cells in C′; otherwise, they
would get “stuck” at one of the diverging cells that are not
in C′. Consequently, in the second time interval, at most
k of the k+1 vehicles may move on, which means that the
total travel time has to be greater than 3(k + 1).

Second, suppose that there does not exist a set cover
C′ of size at most k. Then, we have to prove that there
cannot exist an attack which increases the total travel time
to more than 3(k + 1). Firstly, we show that there exists
an optimal attack which assigns either 0 or 1 to every
p̂Cu. To prove this, consider an attack in which there is
a merging cell v with a p̂Cv value other than 0 or 1. If
none of its predecessor cells C has a positive p̂Cw value for
some other merging cell w, then the assignment for v can
clearly be changed to 0 and 1 values without changing the
total travel time. Next, suppose that one (or more) of the
predecessor cells C of the merging cell has a positive p̂Cw

value for some other merging cell w. Then, the total travel
time maximizing assignment is clearly one which assigns
p̂Cv = 1 to a predecessor cell C for which

∑
u∈C p̂Cu is

maximal, since this “wastes” the most “merging capacity.”
Thus, for the remainder of the proof, it suffices to consider
only attacks where every p̂Cu value is either 0 or 1.

Now, consider an optimal attack A∗ against the trans-
portation network, and let C∗ be the set of diverging cells
C for which there exists a merging cell u such that p̂Cu = 1.
Clearly, C∗ forms a set cover of U since for every element
u, there is a subset C ∈ C∗ such that u ∈ C (i.e., C is
connected to u). From our initial supposition, it follows

readily that the cardinality of set C∗ must be at least k+1.
However, this also implies that the total travel time after
the attack is equal to 3(k+1): in the second time interval,
all k + 1 vehicles may move forward to the diverging cells
in set C∗; in the third time interval, all the vehicles may
again move forward to the merging cells (since every cell
in C has at least one “enabled” connection); and all the ve-
hicles may leave the network by the next interval through
the sink cell. Since the total travel time after an optimal
attack A∗ is equal to T ∗ = 3(k + 1), the attacker’s prob-
lem does not have a solution. Therefore, the constructed
instance of the Attacker’s Decision Problem has a solution
if and only if the given instance of the Set Cover Problem
has one, which concludes our proof.

3.2. Algorithms

Mitigation—in our model—means adapting the sched-
ule of uncompromised traffic signals given the schedule
of compromised signals, which is equivalent to optimizing
traffic control in a non-adversarial setting, with the com-
promised signals acting as fixed-schedule signals. Since
optimizing traffic control in non-adversarial settings has
been studied in prior work, we focus on providing efficient
algorithms for solving the first two stages of the game.

3.2.1. Greedy Algorithm for Attacks

Since the attacker’s problem is NP -hard, we cannot
hope for a polynomial-time algorithm that always finds
a worst-case attack (unless P = NP ). Hence, to pro-
vide an alternative to computationally infeasible exhaus-
tive search, we turn our attention to designing an efficient
heuristic algorithm.

ALGORITHM 1: Polynomial-Time Greedy Heuristic for
Finding an Attack

Data: transportation network security game, detector
configuration D

Result: attack A∗

I∗A ← ∅, p̂∗ ← p ;
for b = 1, . . . , B do
I′A ← I∗A, p̂′ ← p̂∗ ;
for i ∈ I do
IA ← I∗A ∪ {i} ;
for k ∈ Γ−1(i) do

∀l, j : p̂lj ←


1 if j = i ∧ l = k

0 if j = i ∧ l ∈ Γ−1(i) \ {k}
p̂∗lj otherwise.

;

if G(D, (IA, p̂)) ≥ G(D, (I′A, p̂′)) then
I′A ← IA, p̂′ ← p̂ ;

end

end

end
I∗A ← I′A, p̂∗ ← p̂′ ;

end
output A∗ = (I∗A, p̂∗)
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The attacker’s problem can be viewed as the compo-
sition of two problems: finding a subset IA of at most
B signalized intersections and finding new inflow propor-
tions p̂ki for the cells i ∈ IA. For finding a subset IA,
we propose to use a greedy heuristic, which starts with
an empty set and adds new cells to it one-by-one, always
picking the one that leads to the greatest increase in the
attacker’s gain. Finding new inflow proportions p̂ki is par-
ticularly challenging, since the set of possible choices is
continuous. However, we observe that in most networks,
the worst-case configuration is an “extreme” one, which
assigns proportion p̂ki = 1 to one predecessor cell k and
proportion p̂ji = 0 to every other predecessor cell j [3].
In fact, we have tested this property on hundreds of net-
works that we generated according to the Grid model with
Random Edges (see Section 5.2), resembling road networks
from the U.S. and Europe, and we have not found a sin-
gle counterexample. Based on these numerical results, we
conjecture that this property holds in general, that is, for
any network.3 Hence, for every new cell i added to the set
of attacked intersections, we propose to search over the
possible extreme configurations by iterating over the pre-
decessors of cell i. Based on the above ideas, we formulate
Algorithm 1.

It is fairly easy to see that we can implement Algo-
rithm 1 as a polynomial-time algorithm. Due to the three
nested iterations, the running time of Algorithm 1 is O

(
B ·

|I| ·
(
maxi∈I |Γ−1(i)|

) )
times the running time of comput-

ing G. Since we can compute G(D,A) for any attack A
using a linear program, it follows readily that the running
time of the algorithm can be upper bounded by a polyno-
mial function of the input size (i.e., size of the transporta-
tion network and budget B). We can formally state this
observation as the following proposition.

Proposition 1. With a polynomial-time oracle for com-
puting G, the running time of Algorithm 1 is a polynomial
function of the input size.

3.2.2. Metaheuristic Search Algorithm for Detector Con-
figuration

Next, we present an algorithm for finding a detector
configuration (i.e., false-positive rates) based on a meta-
heuristic approach. In particular, we use simulated an-
nealing to find a near-optimal detector configuration D.
The basic idea of this approach is to start with an arbi-
trary configuration D, which we then improve iteratively.
In each iteration, we generate a new solution D′ in the
neighborhood of D. If the new configuration D′ is bet-
ter in terms of minimizing the defender’s loss (against an
attacker playing a best response), then the current con-
figuration D is replaced with the new one. On the other
hand, if the new configuration D′ increases the defender’s
loss, then new configuration replaces the current one with

3We leave the theoretical proof of this claim for future work.

only a small probability. This probability depends on the
difference between the two solutions in terms of loss as
well as a parameter commonly referred to as “tempera-
ture,” which is a decreasing function of the number of
iterations. These random replacements prevent the search
from “getting stuck” in a local minimum. The algorithm
is presented below as Algorithm 2.

ALGORITHM 2: Polynomial-Time Metaheuristic for Find-
ing a Detector Configuration

Data: transportation network security game, iterations kmax,
initial temperature T0, cooling parameter β

Result: detector configuration D∗

D ← 1 ;
L← maxA G(D,A) +

∑
i∈ID

Di · C ;

for k = 1, . . . , kmax do
D′ ← Perturb(D) ;
L′ ← maxA G(D,A) +

∑
i∈ID

D′i · C ;

T ← T0 · e−βk ;

pr ← e(L
′−L)/T ;

if (L′ < L) ∨ (rand(0, 1) ≤ pr) then
D ←D′, L← L′

end

end
output D

In Algorithm 2, Perturb(D) picks a random configu-
ration D′ from the neighborhood of D. In particular, we
implement Perturb(D) as choosing a value for each D′i
uniformly at random from [Di ·(1−ε), Di ·(1+ε)], where ε
is a small constant (e.g., 0.1). For solving maxA G(D,A)
in practice, we can use the greedy heuristic (Algorithm 1).
The temperature T is decreasing exponentially with itera-
tion number k, and the rate of the decrease is controlled by
the “cooling” parameter β. Finally, we note that a simpler
algorithm could also be obtained, in which D is updated
with D′ in each iteration if and only if D′ is strictly bet-
ter than D. This heuristic search, commonly known as
hill climbing, also works well for our problem; however,
Algorithm 2 gives better results.

4. Anomaly-based Detector

Now, we introduce a traffic-anomaly based detector
against stealthy attacks that tamper with traffic control.
The core idea of anomaly-based detection is to build a
probabilistic model of normal traffic conditions, which can
then be used to estimate the likelihood that observed traf-
fic conditions are normal. Note that we must employ
a probabilistic model to account for the uncertainty in
parameter values since many parameters (e.g., traffic de-
mand) can only be estimated in practice. We can esti-
mate the likelihood that the observed traffic is normal as
the probability that our model of normal traffic would gen-
erate the observed traffic. We can then compare the likeli-
hood value to a threshold, and if the likelihood is lower, we
can raise an alarm. In our detector, the model of normal
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traffic is based on Gaussian processes, which have been
successfully used in prior work for traffic volume forecast-
ing [8, 9]. Note that we cannot use macroscopic traffic
models, such as the cell transmission model, to detect at-
tacks because these models abstract away details for the
sake of tractability (e.g., inflow proportions instead of ac-
tual traffic light schedules); however, such details can be
crucial for the detection of stealthier attacks that alter
traffic control only slightly.

4.1. Gaussian Processes

We begin giving a very brief overview of Gaussian pro-
cesses. For a comprehensive discussion of Gaussian pro-
cesses in machine learning, we refer the reader to [10].

In principle, Gaussian processes are an extension of
multivariate Gaussian distributions to infinite collections
of random variables. Formally, a Gaussian process is a
stochastic process such that any finite collection of vari-
ables (X1, . . . , Xn) follows a multivariate Gaussian distri-
bution. A Gaussian process is typically described using a
mean function

µ(X) = E(X) (11)

and a covariance function

k(X1, X2) = E [(X1 −m(X1))(X2 −m(X2))] . (12)

The covariance function is often chosen to be some well-
known kernel function, such as squared exponential, whose
parameters can be estimated from a training dataset (x1,
. . . , xn). A common application of Gaussian processes is
regression: given the values of a set of training variables
(x1, . . . , xn), we can easily compute the expected value
and variance of a target variable Y using the mean and
covariance functions. Gaussian-process based regression
models have been successfully applied to a wide range of
problem, such as traffic volume forecasting [8, 9], spatial
modeling of extreme snow depth [11], wind power forecast-
ing [12], estimation of water chlorophyll concentration [13],
and spectrum sensing [14].

4.2. Model

We assume that traffic sensors, such as induction loop
sensors, have been deployed for monitoring the transporta-
tion network. Since modeling an entire network would
be computationally challenging—and would certainly not
scale well—we divide sensors into subsets, and we build
a separate model and detector for each one of these sub-
sets. For example, traffic sensors that are deployed next to
the same intersection i ∈ I may be grouped together and
provide traffic data for one detector (see, e.g., Figure 2 in
Section 5.1). The outputs of all the detectors deployed in
a transportation network can then be combined together
to form a single detector for the entire network.

We assume that sensors measure and report traffic val-
ues, such as traffic flow or occupancy, in fixed-length in-
tervals (e.g., report one measurement value for every 15-

minute intervals).4 In our Gaussian-process model, we
model each one of these measurements as a random vari-
able. Formally, for every sensor s and time interval t, there
exists a random variable Xt

s whose value is equal to the
traffic value measured by sensor s in interval t. Hence, our
model has a discrete but—due to the time dimension—
potentially infinite set of variables.

A key part of modeling is establishing mean and co-
variance functions for these variables. For each sensor s,
we model the mean values µ(Xt

s) of variables Xt
s using a

periodic function:

µ
(
Xt

s

)
≡ µ

(
Xt+P

s

)
, (13)

where P is the length of the period. We call this time
period, which is measured in number of discrete time in-
tervals, the detector window W . Similarly, for sensors s1

and s2, we model the covariance values k
(
Xt1

s1 , X
t2
s2

)
be-

tween variables Xt1
s1 and Xt2

s2 using a periodic function:

k
(
Xt1

s1 , X
t2
s2

)
≡ k

(
Xt1+P

s1 , Xt2+P
s2

)
. (14)

Further, we assume that k
(
Xt1

s1 , X
t2
s2

)
≡ 0 if |t1 − t2| > P .

To train the model, the actual values of these functions
must be learned from traffic values observed during normal
operation.

4.3. Training

Before training, our model has S ·P+ S·(S−1)·P ·(2P+1)
2 +

S ·P · (2P + 1) unknown values, where S is the number of
sensors:

• S ·P mean values: for each sensor s, the mean func-
tion µ can be described by P values since its period
length is P ;

• S·(S−1)·P ·(2P+1)
2 covariance values: for each distinct

pair of sensors s1 and s2, the covariance function k
can be described by P · (2 · P + 1) values since its
period length is P , the maximum difference between
t1 and t2 is P , and covariance values are symmetric;

• and S · P · (2P + 1) variance values: for each sensor
s, the covariance function k can be described by P ·
(2 · P + 1).

Training the model means learning these mean and covari-
ance values for normal traffic. In practice, we can train the
model by observing sensor measurements (xt1s1 , x

t2
s1 , x

t1
s2 , . . .)

of traffic under normal conditions, and then simply esti-
mating the most likely mean and covariance values from
these observations (i.e., maximum likelihood estimation).

4Note that the length of these measurement intervals is indepen-
dent of the time intervals of the cell-transmission model. However,
for ease of presentation, we will reuse notation t to identify measure-
ment intervals.
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4.4. Detection

Once we have trained the model, we can use it to de-
tect attacks against traffic control. First, we take sensor
measurements (xts, . . .), which are observed in the network
that might be under attack, and we use the Gaussian pro-
cess to compute the likelihood of these measurement values
being generated by our model of normal traffic. 5 Since
the measurement values are continuous, we can use the
probability density of the Gaussian distribution (Xt

s, . . .)
at (xts, . . .) as the likelihood value. We then interpret this
likelihood as the likelihood of the network operating un-
der normal control (i.e., not being under attack). Finally,
we compare the likelihood to a detector threshold τi, and
raise an alarm if the likelihood is lower than the thresh-
old. Thus, our detector has two parameters, the detector
window W and the detector threshold τi, which together
determine the rate of false alarms Di and the detection
delay. Note that the detector threshold τi and the rate
of false alarms Di are closely related to each other: lower
thresholds result in fewer false alarms since more observa-
tions are accepted as likely; and vice versa. Hence, we can
express τi(Di) and Di(τi) as increasing functions, and we
may specify the configuration of the detector either as the
desired false-positive rate Di or as the threshold τi. We
chose to use representation Di in our game-theoretic model
and analysis for ease of presentation. The exact relation
τi(Di) can be determined experimentally by evaluating the
detector with various configurations on normal traffic.

5. Numerical Results

In this section, we present numerical results on our
heuristic algorithms from Section 3 and our anomaly-based
detector from Section 4.

5.1. Anomaly-based Attack Detection

We begin by training and evaluating our detector based
on simulated flows of traffic under normal conditions and
under attacks. We will then use the results of this evalua-
tion to instantiate our game-theoretic model. In particu-
lar, we will use the measured false-alarms rate and detec-
tion delay values as numerical parameters for our game-
theoretic model.

5.1.1. Setup

For these experiments, we simulate the signalized four-
way intersection shown by Figure 2 using SUMO (Simula-
tion of Urban MObility) 6, a well-known and widely-used
micro simulator [15, 16]. Signals are deployed on both
the incoming and outgoing lanes (represented by yellow

5Due computational limitations, we restrict detection to observa-
tions from a single detector window (i.e., measurement values from
some range (t, t+P −1)). If more observations are available, we can
evaluate the detector multiple times.

6http://sumo.dlr.de/wiki/Main_Page

Figure 2: Intersection used for evaluating the detector. Yellow rect-
angles represent induction-loop sensors.

rectangles in the figure), and these signals measure traf-
fic flow in 15-second intervals. We generate one month of
traffic data with the original signal schedule (45 seconds
for both roads, including left-turning and yellow phases)
for training the Gaussian-process based model. In these
simulations, vehicles enter the intersection from all four
directions, and each car turns left, continues straight, or
turns right with probability 5.3%, 73.7%, and 21.1%, re-
spectively. From each direction, 0.19 vehicles arrive each
second on average. We also generate one month of test
traffic-data with the original schedule for measuring the
false-positive rate of the detector. Finally, for each of the
attacks considered below, we generate one day of traffic
data, which includes 1 hour with the original schedule and
then 23 hours with the tampered schedule.

Posterior Predictive Check. To confirm that our Gaussian-
process based traffic model fits observations well, we per-
form posterior predictive checking [17]. The idea of pos-
terior predictive checking is to draw simulated samples
from the joint posterior predictive distribution and com-
pare them to the observed sample. If there were signifi-
cant systematic differences between the simulated and ob-
served samples, that would indicate that our model did
not fit well. Note that the applicability of our model is
also demonstrated by the low false-positive rate exhibited
by our detector.

The significance of difference can be quantified as the
classical p-value [17, Chapter 6.3]:

p = Pr [T (xrep) ≥ T (x) |µ, k] , (15)

where xrep is the replicated data generated according to
our model, x is the observed data, µ and k are the model
parameters (see Section 4), and T is a test statistic. In
our checks, we compute p values for various standard test
statistics, including mean, variance (with Bessel’s correc-
tion), median, and quantiles. Note that a perfectly fitting
model will yield p-values around 0.5. To reliably estimate
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Table 2: Posterior Predictive Checking p-Values

Sensor Test statistic T
mean variance median quantile Q(0.3) quantile Q(0.7)

east in 0.54 0.52 0.54 0.79 0.49
east out 0.51 0.47 0.66 0.78 0.36
south in 0.46 0.53 0.49 0.79 0.26
south out 0.49 0.48 0.66 0.79 0.28
west in 0.54 0.52 0.55 0.80 0.49
west out 0.50 0.47 0.66 0.78 0.36
north in 0.47 0.52 0.64 0.84 0.57
north out 0.49 0.48 0.66 0.79 0.28

the probability p, we generate and evaluate the test statis-
tics on 10,000 replicated samples (drawn independently
according to our trained model).

Table 2 shows the p-values for various statistical tests
(p-values around 0.5 indicate a perfect fit). Since our sam-
ples are multidimensional (i.e., one value for each sensor
around the intersection), we apply the statistical tests to
the marginal distributions corresponding to the individual
sensors. We list sensors in clockwise order, starting with
the sensors on the incoming and outgoing lanes of the road
eastward of the intersection (see Figure 2), denoted ‘east
in’ and ‘east out.’ For mean and variance statistics, we see
that our model produces an almost perfect fit for all sen-
sors, which is important since these play key role in deter-
mining likelihood, on which our detector is built. Further,
we see that our model produces a good fit for the median
statistic as well, which indicates that there is no signifi-
cant asymmetry that could not be captured by our model.
Finally, we test quantiles Q(0.3) and Q(0.7), and see a
reasonable fit for most sensors. The worst fit is for sensor
‘north in’ (i.e., inward lane of the road northwards) and
Q(0.3); however, we see an almost perfect fit for the same
sensor for Q(0.7), indicating a skewed distribution. Next,
we study the detection performance of our model, show-
ing that observations under normal conditions and under
attacks exhibit significantly different likelihood values.

5.1.2. Detector Configuration

We first consider the defender’s problem of balancing
the number of false-positive errors and the detection delay.
For this experiment, we assume an attack which changes
4.4% of the traffic-signal schedule.

Figure 3 shows the trade-off between the false-positive
rate and the detection delay. Each point on the curve is a
Pareto optimal point that is attainable with some detector
window W and threshold τ . The figure shows that with a
negligible false-positive rate, even the stealthy attack con-
sidered in this example can be detected in approximately
one hour. The configuration of the detector when the false-
positive rate reaches zero is detector window being equal to
W = 48 minutes and log-likelihood threshold being equal
to ln τ = −112.58.

Figure 4 shows the likelihood values output by the
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Figure 3: Trade-off between false-positive rate and detection delay.
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Figure 4: Likelihood values output by the Guassian-process based
model.

Gaussian-process model for traffic data resulting from the
original and the attacked traffic-signal schedules. For this
figure, we set the detector window to be W = 3 minutes,
which results in highly variable likelihood values. The fig-
ure shows that after one hour (i.e., when the attack starts),
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the likelihood values for the tampered schedule become
much lower than for the original one. In other words, the
detector correctly estimates that the traffic with tampered
schedule is less likely to be normal.

5.1.3. Stealthy Attacks

Next, we consider the attacker’s problem of balanc-
ing stealthiness and impact. If stealthy attacks could
avoid detection for extended periods of time while hav-
ing substantial impact on traffic, they could pose a sig-
nificant threat to the transportation network. To show
that stealthy attacks are not effective against our detec-
tor, we compare a wide range of attacks, from stealthy ones
that change control only slightly to non-stealthy ones that
change control fundamentally. To maximize the advan-
tage of stealthiness, we consider a low detection thresh-
old, which allows attacks to remain undetected for long
periods of time. In particular, for this experiment, we
assume a detector window of W = 48 minutes and a log-
likelihood threshold of ln τ = −112.58, which result in zero
false-positive rate for the one-month test interval (see the
discussion of Figure 3).
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Figure 5: Impact and detection delay for various attacks.

Figure 5 shows detection delay and impact for attacks
of various magnitudes. The impact of an attack is mea-
sured as the fraction of traffic that is “blocked” by the
attack, i.e., the decrease in the number of vehicles passing
through the intersection compared to the normal traffic-
signal schedule; the magnitude of an attack is the fraction
of the traffic-signal schedule that is modified by the at-
tacker. The figure shows that attacks with higher magni-
tude may be less stealthy (i.e., detected earlier), but they
cause much more significant impact. In fact, the total im-
pact of attacks, measured as the number of vehicles that
could not pass through the intersection due to the attack
until its detection, is a strictly increasing function of the
attack magnitude. This means that our detector can make
stealthy attacks essentially pointless in this example.

5.2. Multi-Stage Security Game Strategies

Next, we provide numerical results on the algorithms
that we proposed in Section 3.2 for finding strategies in
practice. We first compare the proposed greedy heuristic
for finding attacks (Algorithm 1) to an exhaustive search,
and then study the metaheuristic search algorithm for find-
ing detector configurations (Algorithm 2).

5.2.1. Setup

To provide meaningful numerical results, we have to
evaluate our algorithms on a large number of transporta-
tion networks. Every point plotted in the figures of this
subsection represents a mean value computed over a large
number of random networks with the same parameters. To
obtain these networks, we use the Grid model with Ran-
dom Edges (GRE) to generate random network topolo-
gies [18], which closely resemble real-world transportation
networks. For a detailed description of this model, we refer
the reader to [18, 19].

We set both the width and height of the generated
grids to be 4, and let the bottom-left corner be a source
and the upper-right corner be a sink. For the parameters
controlling the randomness of the generation, we use the
values from [18], which were derived from measurements
on actual road networks from the USA. We let the inflow
at the source cell be d0 = 8, d1 = 12, d2 = 8, and dt = 0 for
t ≥ 3. For every other cell i, we let the parameters be Qi =
6, δi = 1.0, and Ni = 10. Finally, we let every merging
cell be a signalized intersection, and optimize the inflow
proportions for every intersection using a linear program.

We assume that there is an anomaly detector deployed
in each intersection (i.e., ID = I). We also assume that
every one of these detectors exhibits the false-positive rate
and detection delay characteristics observed in Section 5.1.
In other words, for each intersection, the defender chooses
one of the Pareto optimal configurations that were identi-
fied in the experiments of Section 5.1 by choosing a false-
positive rate Di; the delay of this detector is then deter-
mined by the magnitude of the attack against the corre-
sponding intersection. Finally, we assume that the attack
is detected as soon as one detector raises an alarm, that
attack mitigation takes ∆M = 20 minutes, and that con-
gestion levels T , TA, and TM are measured in travel time.

5.2.2. Attacks

We begin by comparing the greedy attack heuristic to
an exhaustive search. To perform an exhaustive search,
we quantize the space of possible schedules for each inter-
section, so that we have a finite and discrete search space.
For this experiment, we assume that the defender uses a
detector configuration that sets the false-positive rate of
every intersection i ∈ ID to Di = 1.

Figure 6 shows the impact of attacks found by exhaus-
tive and greedy (Algorithm 1) searches for various budget
values. The vertical axis shows the total impact G of the
attacks, which includes impact that was caused both be-
fore and after detection. The figure shows that the attacks
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Figure 6: Impact resulting from attacks found by exhaustive and
greedy searches.

found by the greedy search are very close to the ones found
by the exhaustive search in terms of total impact, with the
largest difference being 5%.
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Figure 7: Running time of exhaustive and greedy searches.

Figure 7 compares the greedy heuristic (Algorithm 1)
to the exhaustive search in terms of running time. Note
that we used fairly small problem instances for our exper-
iments in order to be able to apply the algorithms to a
large number of networks. We observe that the running
time of the greedy heuristic is much lower than that of the
exhaustive search, and it grows slower as the attacker’s
budget increases.

5.2.3. Detector Configuration

Next, we evaluate the metaheuristic search algorithm
for finding detector configurations. We compare our strate-
gic configurations to a non-strategic baseline represented
by uniform configurations, which assign the same false-
positive rate to all detectors. We find quasi-optimal uni-

form configurations using the same search algorithm, but
restricting the search space to a single scalar value, which
is used for all detectors. For these experiments, we let
the attacker’s budget be enough to compromise B = 2
intersections; we assume that the attacker always mounts
a best-response attack; and we let the unit cost of false
positives be equal to C = 10.
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Figure 8: Defender’s loss resulting from uniform and strategic detec-
tor configurations output by the metaheuristic search algorithm.

Figure 8 shows the defender’s total loss—which in-
cludes both the cost of investigating false alarms and the
total impact of the attack—with strategic and uniform de-
tector configurations. The horizontal axis shows the num-
ber of iterations kmax for which the search algorithms was
run. We can learn two important lessons from this fig-
ure. First, strategic thresholds result in much lower losses
than uniform ones, which suggests that game-theoretic op-
timization can have a significant practical impact. Second,
losses decrease rapidly in the first 100 or 500 hundred it-
erations, but they do not decrease further even after a
significant number of additional iterations 7, which sug-
gests that the search algorithm is a very efficient practical
approach for finding near optimal detector configurations.

Figure 9 shows the cost of false positives and the to-
tal impact of attacks with strategic and uniform detector
configurations found by the search algorithm. We observe
that strategic detector configurations may result in slightly
more false-positive errors, but they can significantly de-
crease the impact of attacks.

6. Related Work

In this section, we briefly survey related work on the
vulnerability of transportation networks, the optimal con-
figuration of attack detectors, and game theory for security
of cyber-physical systems.

7We actually run the search with kmax = 100, 000 iterations, but
plot only the first 2,000 for clarity, since losses do not decrease sig-
nificantly after 2,000 iterations.
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Figure 9: Defender’s false-positive cost and attack impact resulting
from uniform and strategic configurations output by the metaheuris-
tic search algorithm.

6.1. Vulnerability of Transportation Networks

We first give a brief overview of the related work on
the vulnerability of transportation networks. A number
of research efforts have studied the vulnerability of trans-
portation networks to natural disasters and attacks. How-
ever, to the best of our knowledge, our work is the first one
to consider traffic-signal tampering attacks against general
transportation networks.

In a closely related work, Reilly et al. consider the
vulnerability of freeway control systems to attacks on the
sensing and control infrastructure [20]. They present an
in-depth analysis on the takeover of a series of onramp-
metering traffic lights using a methodology based on finite-
horizon optimal control techniques and multi-objective op-
timization.

Prior work has studied the impact of other disruptive
events as well. Sullivan et al. study short-term disruptive
events, such as partial flooding, and propose an approach
that employs various link-based capacity-disruption val-
ues [21]. The proposed approach can be used to identify
and rank the most critical links and to quantify trans-
portation network robustness (i.e., inverse vulnerability).
Jenelius and Mattson introduce an approach for system-
atically analyzing the robustness of road networks to dis-
ruptions affecting extended areas, such as floods and heavy
snowfall [22]. Their methodology is based on covering the
area of interest with grids of uniformly shaped and sized
cells, where each cell represents the extent of an event. The
authors apply their approach to the Swedish road network,
and find that the impact of area-covering disruptions are
largely determined by the internal, outbound, and inbound
travel demands of the affected area itself.

In addition to assessing vulnerability, prior work has
also considered the problems of identifying critical links
and studying other aspects of vulnerabiltiy. Scott et al.
propose a comprehensive, system-wide approach for identi-

fying critical links and evaluating network performance [23].
Using three hypothetical networks, the authors demon-
strate that their approach yields different highway plan-
ning solutions than traditional approaches, which rely on
volume/capacity ratios to identify congested or critical
links. Jenelius proposes a methodology for vulnerability
analysis of road networks and considers the impact of road-
link closures [24]. The author considers different aspects of
vulnerability, and explores the dichotomy between system-
wide efficiency and user equity.

Prior work has also considered game-theoretic models
of attacks against transportation. Alpcan and Buchegger
investigate the resilience aspects of vehicular networks us-
ing a game-theoretic model, in which defensive measures
are optimized with respect to threats posed by intentional
attacks [25]. The game is formulated in an abstract man-
ner, based on centrality values computed by mapping the
centrality values of the car communication network onto
the road topology. The authors consider multiple for-
mulations based on varying assumptions on the players’
information, and evaluate their models using numerical
examples. Bell introduces a two-player non-cooperative
game between a network user, who seeks to minimize ex-
pected travel cost, and an adversary, who chooses link per-
formance scenarios to maximize the travel cost [26, 27].
The Nash equilibrium of this game can be used to mea-
sure network performance when users are pessimistic and,
hence, may be used for cautious network design. Wu and
Amin study normal-form and sequential attacker-defender
games over transportation networks to understand how a
defender should prioritize its investment in securing a set
of facilities [28].

6.2. Configuration of Detectors

The problem of configuring the sensitivity of intrusion
detection systems in the presence of strategic attackers has
been studied in a variety of different ways in the academic
literature [29]. For example, Alpcan and Basar study dis-
tributed intrusion detection in access control systems as
a security game between an attacker and an IDS, using a
model that captures the imperfect flow of information from
the attacker to the IDS through a network [30, 31]. The
authors investigate the existence of a unique Nash equilib-
rium and best-response strategies under specific cost func-
tions, and analyze long-term interactions using repeated
games and a dynamic model. As another example, Drit-
soula et al. consider the problem of setting a threshold for
classifying an attacker into one of two categories, spammer
and spy, based on its intrusion attempts [32]. They give a
characterization of the Nash equilibria in mixed strategies,
and show that the equilibria can be computed in polyno-
mial time. More recently, Lisỳ et al. study randomized
detection thresholds using a general model of adversarial
classification, which can be applied to e-mail filtering, in-
trusion detection, steganalysis, etc. [33]. The authors an-
alyze both Nash and Stackelberg equilibria based on the
true-positive to false-positive curve of the classifier, and
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find that randomizing the detection threshold may force a
strategic attacker to design less efficient attacks. Finally,
Zhu and Basar study the problem of optimal signature-
based IDS configuration under resource constraints [34].

The strategic configuration of the sensitivity of e-mail
filtering against spear-phishing and other malicious e-mail
is also closely related to the problem considered in this
paper. Laszka et al. study a single defender who has to
protect multiple users against targeted and non-targeted
malicious e-mail [35]. The authors focus on characteriz-
ing and computing optimal filtering thresholds, and they
use numerical results to demonstrate that optimal thresh-
olds can lead to substantially lower losses than näıve ones.
Zhao et al. study a variant of the previous model: they as-
sume that the attacker can mount an arbitrary number of
costly spear-phishing attacks in order to learn a secret,
which is known only by a subset of the users [36, 37].
They also focus on the computational aspects of finding
optimal filtering thresholds; however, their variant of the
model does not capture non-targeted malicious e-mails,
such as spam.

6.3. Game Theory for Security of Cyber-Physical Systems

Beyond the configuration of detectors, prior efforts have
also used game-theory to study a variety of other security
problems in cyber-physical systems. For instance, Zhu and
Basar introduce a game-theoretic framework for resilient
control design and studying the trade-off between robust-
ness, security, and resilience [38]. They employ a hybrid
model, which integrates a discrete-time Markov model that
captures the evolution of cyberstates with continuous-time
dynamics that capture the underlying controlled physical
process. Backhaus et al. consider the problem of designing
attack-resilient power grids and control systems [39]. They
use game theory to model the conflict between a cyber-
physical intruder and a system operator, and use simula-
tion results to assess design options. Pawlick et al. con-
sider Advanced Persistent Threats (APTs) against cloud-
controlled cyber-physical systems and design a framework
that specifies when a devices should trust commands from
the cloud [40]. They model this scenario as a three player
game between the cloud administrator, the attacker, and
the device by combining the FlipIt game [41, 42] with a
signaling game. Li et al. consider jamming attacks against
remote state estimation[43]. In particular, they assume
that a sensor and an estimate have to communicate over
a wireless, formulate a game-theoretic model, and provide
Nash equilibrium strategies.

7. Conclusion

As traffic-control devices in practice evolve into com-
plex networks of smart devices, the risks posed to trans-
portation networks by cyber-attacks increases. Thus, it
is imperative for traffic-network operators to be prepared
to detect and mitigate attacks against traffic control. To

provide theoretical foundations for planning and imple-
menting countermeasures, we introduced a game-theoretic
model of cyber-attacks against traffic control. Our security
game model consists of three stages: defender configuring
detectors, attacker mounting a tampering attack against
traffic signals, and defender mitigating the attack. Since
mitigation—in our model—means adapting the schedules
of some traffic signals given the schedules of other signals
(set by the adversary in the previous stage), it is equivalent
to optimizing traffic control in a non-adversarial setting,
which has been studied in prior work. In light of this, we
focused on the computational problem of finding optimal
actions in the first two stages. We showed that this is
a computationally hard problem, which prompted us to
propose efficient heuristic algorithms.

Using numerical results, we demonstrated that the pro-
posed algorithms are practical. In particular, we first
showed that the greedy algorithm for attackers is close to
optimal and computationally very efficient. Second, we
showed that the metaheuristic search algorithm for de-
tector configuration is effective, and it can significantly
decrease losses compared to non-strategic detector con-
figuration. We also introduced and studied a Gaussian-
process based traffic-anomaly detector, which we showed
to be very effective at detecting tampering attacks against
traffic signals.
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[31] T. Alpcan, T. Başar, A game theoretic analysis of intrusion
detection in access control systems, in: Proceedings of the 43rd
IEEE Conference on Decision and Control (CDC), Vol. 2, IEEE,
2004, pp. 1568–1573.

[32] L. Dritsoula, P. Loiseau, J. Musacchio, Computing the Nash
equilibria of intruder classification games, in: Proceedings of
the 3rd International Conference on Decision and Game Theory
for Security (GameSec), Springer, 2012, pp. 78–97.

[33] V. Lisỳ, R. Kessl, T. Pevnỳ, Randomized operating point se-
lection in adversarial classification, in: Proceedings of the 2014
European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD),
Part II, Springer, 2014, pp. 240–255.
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