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Abstract—As the Industrial Internet of Things (IIot) becomes
more prevalent in critical application domains, ensuring security
and resilience in the face of cyber-attacks is becoming an
issue of paramount importance. Cyber-attacks against critical
infrastructures, for example, against smart water-distribution
and transportation systems, pose serious threats to public health
and safety. Owing to the severity of these threats, a variety of
security techniques are available. However, no single technique
can address the whole spectrum of cyber-attacks that may be
launched by a determined and resourceful attacker. In light
of this, we consider a multi-pronged approach for designing
secure and resilient IIoT systems, which integrates redundancy,
diversity, and hardening techniques. We introduce a framework
for quantifying cyber-security risks and optimizing IIoT design
by determining security investments in redundancy, diversity, and
hardening. To demonstrate the applicability of our framework,
we present a case study in water-distribution systems. Our nu-
merical evaluation shows that integrating redundancy, diversity,
and hardening can lead to reduced security risk at the same cost.

I. INTRODUCTION

Emerging industrial platforms such as the Industrial Internet
(II) in the US and Industrie 4.0 in Europe are creating novel
systems that include the devices, systems, networks, and
controls used to operate and/or automate Industrial Internet
of Things (IIoT) systems. IIoT systems abound in modern
society, and it is not surprising that many of these systems
are targets for attacks. Critical infrastructure such as water
management and transportation systems, in particular, have
been growing more connected following recent advances in
co-engineered interacting networks of physical and compu-
tational components. Due to the tightly coupled nature be-
tween the cyber and physical domains, new attack vectors are
emerging. Attacks can include physical destruction, network
spoofing, malware, data corruption, malicious insiders, and
others. Further, the impacts of attacks propagate because of
tight interactions. As IIoT systems become more ubiquitous,
the risks posed by cyber-attacks becomes severe. The steady
increase in the number of reported cyber-incidents evidences
how difficult it is in practice to secure such systems against
determined attackers.

A variety of techniques have been proposed for providing
resilience against cyber-attacks, ranging from hardening tech-
niques (e.g., address-space layout randomization) to increasing

system diversity (e.g., [1]). However, defending complex and
large-scale IIoT systems is particularly challenging. These sys-
tems often face a variety of threats, have large attack surfaces,
and may contain a number of undiscovered vulnerabilities. In
light of these factors, it is clear that there is no “silver bullet”
technique that could protect a complex system against every
kind of attack. Instead of relying on a single technique, de-
fenders must employ multi-pronged solutions, which combine
multiple techniques for improving the security and resilience
of IIoT. We can divide many of existing techniques into three
canonical approaches:
• Redundancy for deploying additional redundant components

in a system, so that even if some components are compro-
mised or impaired, the system may retain normal (or at least
adequate) functionality;

• Diversity for implementing components using a diverse set
of component types, so that vulnerabilities which are present
in only a single type have limited impact on the system; and

• Hardening for reinforcing individual components or com-
ponent types (e.g., tamper-resistant hardware and firewalls),
so that they are harder to compromise or impair.
While it is possible to combine these approaches easily by

designing and implementing them independently, security and
resilience of IIoT systems can be significantly improved by
designing and implementing them in an integrated manner.
However, a sound framework and methodology for combining
techniques from different approaches is lacking. In lieu of a
unified framework or methodology, defenders must follow best
practices and intuition when integrating techniques, which can
result in the deployment of ineffective—or even vulnerable—
combinations.

In this paper, we propose a framework for integrating
redundancy, diversity, and hardening techniques for designing
secure and resilient IIoT systems. The objective is to develop a
systematic framework for prioritizing investments for reducing
security risk. The contributions of the paper are as follows:
• Establishing a system model that can capture (1) a wide

variety of components that are found in IIoT as well as
the interactions between them, (2) a security investment
model for redundancy, diversity, and hardening, and (3) a
security risk model which quantifies the impact of attacks
and defense mechanisms (Section II).
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Fig. 1. Example cyber-physical system. Arrows represent flows of sensor
data and control signals.

• Formulating the resilient IIoT design problem as an opti-
mization problem for prioritizing security investments and
showing that the problem is NP-hard (Section III).

• Developing an efficient meta-heuristic design algorithm for
finding near-optimal designs in practice (Section III).

• Evaluating the applicability of the approach using two case
studies in canonical IIoT domains of water distribution and
transportation systems (Sections IV and V and [2]).

We give an overview of related work in Section VI.

II. MODEL

An IIoT system is comprised of a variety of components:
sensors, controllers, actuators, and human-machine interfaces
for interacting with users as shown in Figure 1. Our first step
introduces a general system model for evaluating security risk.
First, we present a high-level model of IIoT systemts. Then,
we introduce a model of security investments in redundancy,
diversity, and hardening, and we quantify risks posed by cyber-
attacks, considering both probability and impact. Based on this
model, we formulate the problem of optimal system design.
For a list of symbols used in this paper, see [2].

A. System Model

We model the cyber part of the system as a directed graph
G = (C,E). The set of nodes C represents the components
of the system, while the set of directed edges E represents
connections between the components, which are used to send
data and control signals. For each component c ∈ C, we let
Oc ⊆ C denote the set of origin components of the incoming
edges of component c. Further, we let Tc denote the type of
component c, which is one of the following:
• sensor: components that measure the state of physical

processes (e.g., pressure sensors);
• actuator: components that directly affect physical pro-

cesses (e.g., valves);
• processing: components that process and store data and

control signals (e.g., PLCs);
• interface: components that interact with human users

(e.g., HMI workstations).
The implementation of each component is chosen from a

set of implementation types. We let Ic denote the set of types
that may be used to implement component c, and we let I

denote the set of all implementation types that may be used
in the system (i.e., I = ∪c∈CIc).

B. Security Investment Model

1) Redundancy: We model redundancy as deploying mul-
tiple instances of the same component. For simplicity, we
assume that for each component, at most one instance of
each suitable implementation type is deployed. 1 We make this
assumption because our goal is to address security risks posed
by deliberate attacks, and if a security vulnerability exists in an
implementation type, then attackers can typically compromise
all instances of that type.

We let rc ⊆ Ic denote the set of implementation types that
are deployed for component c ∈ C. To quantify the cost of
redundancy, we let Ri denote the cost of deploying an instance
of type i ∈ Ic. Then, the total cost of redundancy is

cost of redundancy =
∑
c∈C

∑
i∈rc

Ri. (1)

2) Diversity: We model diversity as deploying a diverse set
of implementation types. In other words, diversity is modeled
as selecting different implementations rc to be deployed for
each component c ∈ C (or at least attempting to use as many
distinct sets as possible).

To quantify the cost of diversity, we let Di denote the cost of
using an implementation type i ∈ I in any non-zero number
of components (i.e., Di is the cost incurred when the first
instance of type i is deployed). Then, the cost of diversity is

cost of diversity =
∑

i∈
⋃

c∈C rc

Di. (2)

3) Hardening: We model the hardening of an implementa-
tion type as decreasing the probability that a zero-day security
vulnerability is discovered by an attacker. We assume that
hardening is applied in steps (e.g., performing a code review),
resulting in a discrete set of hardening levels.

We let Li denote the set of hardening levels available
for implementation type i ∈ I , and we let li denote the
chosen level. To model the amount of security provided by
hardening level l ∈ Li, we let Sl denote the probability
that the implementation type will be secure (i.e, no zero-day
vulnerability is discovered) if level l is chosen. To quantify
the cost of hardening, we let Hl denote the cost of attaining
level l ∈ Li. Then, the total cost of hardening is

cost of hardening =
∑
i∈I

Hli . (3)

C. Security Risk Model

Next, we quantify the risks faced by a system with given
redundancy, diversity, and hardening design. In principle, risk
can be quantified as

Risk =
∑

outcome

Pr[outcome] · Impact(outcome). (4)

1Note that relaxing this assumption would be straightforward; however,
such a generalization would provide little further insight into security.
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In our model, an outcome can be represented as a set of
components that have been compromised by an attacker:

Risk(r, l) =
∑
Ĉ⊆C

Pr[Ĉ is compromised] · Impact(Ĉ), (5)

where Impact(Ĉ) is the amount of loss inflicted on the system
by an attacker who has compromised components Ĉ. In the
remainder of this subsection, we discuss how to measure
Pr[Ĉ is compromised] and Impact(Ĉ).

1) Probability: We quantify the probability that an attacker
compromises a set of components Ĉ ⊆ C implicitly by
describing a probabilistic process that models how an attacker
can take control of the components of a system one-by-one.
We consider two alternative attack models in our framework:
non-stealthy attacks and stealthy attacks. The two attack
models are summarized in Table I.

TABLE I
COMPONENT COMPROMISE RULES

Attack Component Type

Type sensor actuator processing interface

stealthy
attack

if all instances
are compromised

if all instances are compromised or all
input components are compromised

non-
stealthy
attack

if majority of in-
stances are com-
promised

if majority of instances are compro-
mised or majority of input compo-
nents are compromised

a) Non-Stealthy Attacks: First, an attacker attempts to
find exploitable vulnerabilities in the implementation types
that are deployed in the system. Based on our hardening
model, the attacker discovers a zero-day vulnerability in each
implementation type i ∈ I with probability 1− Sli (indepen-
dently of the other types). We then consider all instances of
the vulnerable implementation types to be compromised, and
let Î denote the set of vulnerable implementations.

Next, we determine the set of compromised components Ĉ.
We start with Ĉ = ∅, and then extend the set Ĉ in iterations
based on the following rules:
• a sensor component c is considered to be compromised

if the majority of its instances rc are vulnerable (i.e., if
|rc ∩ Î| ≥ |rc|/2),

• an actuator, processing, or interface component c is
considered to be compromised if the majority of its
instances rc are vulnerable or if the majority of its inputs
are compromised (i.e., if |Oc ∩ Ĉ| ≥ |Oc|/2).

We repeat the above steps until the set of compromised
components Ĉ cannot be extended any further.

b) Stealthy Attacks: For stealthy attacks, the process is
the same except that “majority” is replaced in both rules with
“all” (i.e., |rc ∩ Î| = |rc| and |Oc ∩ Ĉ| = |Oc|).

2) Impact: We let Impact(Ĉ) denote the financial and
physical loss resulting from an attack that compromises and
maliciously controls components in Ĉ. The exact formulation
of Impact(Ĉ) depends on the system and the characteristics
of its physical processes. We present examples from two

domains, water-distribution (Section IV) and transportation
systems [2].

Finally, we formulate the problem of finding an optimal
design as follows.

Definition 1 (Optimal Design Problem). Given redundancy,
diversity, and hardening investments R, D, and H , an optimal
design (r, l) is

argminr,l Risk(r, l) (6)

subject to

∀c ∈ C : rc ⊆ Ic; ∀l ∈ I : li ∈ Li∑
c∈C

∑
i∈rc

Ri ≤ R;
∑

i∈∪c∈Crc

Di ≤ D;
∑
i∈I

Hli ≤ H.

III. COMPUTATIONAL ANALYSIS AND META-HEURISTIC
ALGORITHMS

Since the number of feasible designs to choose from may be
very large even for small systems, finding an optimal design
using exhaustive search is computationally infeasible. In light
of this, a key question for the practical application of the
proposed framework is whether there exist efficient algorithms
for finding optimal or near-optimal designs. We first show that
finding an optimal design is computationally hard. Then, we
introduce an efficient meta-heuristic algorithm that can find a
near-optimal solution in polynomial time.

A. Computational Complexity

The objective of the design problem depends on the impact
function, which could be any function, even one that is hard
to compute. To show that the design problem is inherently
hard (not only due to the potential complexity of computing
the impact function), we assume a simplistic impact function,
whose value is simply the number of compromised compo-
nents. Formally, we consider Impact(Ĉ) = |Ĉ|.

Theorem 1. The Optimal Design Problem is NP-hard.

The proof of Theorem 1 can be found in [2].

B. Meta-Heuristic Design Algorithm

We propose an efficient meta-heuristic algorithm for find-
ing near-optimal designs in practice. Our algorithm is based
on simulated annealing, which requires randomly generating
feasible solutions that are “neighbors” of (i.e., similar to) a
given solution. Unfortunately, in our solution space (i.e., in the
set of designs that satisfy the budget constraints), the feasible
neighbors of a solution are not naturally defined. Hence, we
first introduce an alternative representation of feasible designs,
which we call design plans.

Definition 2 (Design Plan). A design plan is a pair (ro, lo),
where
• ro is a list of component-implementation pairs (c, i) ∈
C × I such that i ∈ Ic holds for every pair (c, i) ∈ ro,
and each possible pair (c, i) appears exactly once in ro;
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• lo is an ordered multiset of implementation types such
that each implementation type i ∈ I appears exactly
|Li| − 1 times in lo.

ALGORITHM 1: MapToDesign(ro, lo)
Data: optimal design problem, list ro, ordered multiset lo
Result: design (r, l)
∀c ∈ C : rc ← ∅; ∀i ∈ I : li ← argminl∈Li

Hl
for (c, i) ∈ ro do

r′ ← r ; r′c ← rc ∪ {i}
if (r′, l) is feasible then

r ← r′

end
end
for i ∈ lo do

l′ ← l; l′i ← argminl∈Li:Hl>Hli
Hl

if (r, l′) is feasible then
l← l′

end
end
output (r, l)

Next, we show how to translate a design plan (ro, lo)
into a feasible design. The translation is presented formally
in Algorithm 1, and it is described in detail in the extended
version of our paper [2].Note this mapping is surjective.

ALGORITHM 2: Meta-Heuristic Design Algorithm
Data: optimal design problem, number of iterations kmax, initial

temperature T0, cooling parameter β
Result: design (r, l)
choose (ro, lo) at random
ρ← Risk(MapToDesign(ro, lo))
for k = 1, . . . , kmax do

(ro′, lo′)← Perturb(ro, lo)
ρ′ ← Risk(MapToDesign(ro′, lo′))
T ← T0 · e−βk ; pr ← e(ρ

′−ρ)/T

if (ρ′ < ρ) ∨ (rand(0, 1) ≤ pr) then
ro← ro′, lo← lo′

end
end
output MapToDesign(ro, lo)

Finally, we present our meta-heuristic design algorithm (see
Algorithm 2), which can find a near-optimal design in polyno-
mial time. The algorithm starts by choosing a random design
plan (ro, lo). In practice, we can implement this simply as
choosing a random permutation of the list of component-
implementation pairs and a random permutation of the multiset
of implementation types. The algorithm is described in detail
in the extended version of our paper [2].

IV. EVALUATION

To demonstrate the applicability of our framework, we
present a case study from a canonical IIoT domain, water
distribution. We present an additional case study from the
transportation domain in the extended version of our paper [2].

IIoT systems have a particularly significant and wide ap-
plication in water distribution systems. Examples include

monitoring water quality and detecting leaks. On the one hand,
IIoT offers significant advantages, such as improved service
and better maintenance at a low cost, but on the other hand,
potential challenges include cost of the cyber infrastructure,
reliability of communications, and of course, cyber-security.

As evidenced by the recent water crisis in Flint, MI [3],
ensuring the quality of drinking water is of critical im-
portance. Compromising systems that control the treatment
and distribution of drinking water may allow adversaries to
suppress warnings about contaminations or to decrease the
quality of water [4]. Cyber-attacks can also have a devastating
environmental impact. For example, in 2000, a disgruntled ex-
employee launched a series of attacks against the SCADA
system controlling sewage equipment in Maroochy Shire,
Australia [5], [6]. As a result of these attacks, approximately
800,000 liters of raw sewage spilt out into local parks and
rivers, killing marine life.

Here, we apply our framework to model cyber-physical
contamination attacks against water-distribution systems. The
system is modeled as a graph, in which links represent pipes,
and nodes represent junctions of pipes, residential consumers,
reservoirs, pumps, etc. IIoT components include:
• Sensors: water-quality sensors, which are located at cer-

tain nodes of the water-distribution network;
• Processing: components that collect, process, and forward

water-quality data;
• Interfaces: components with human-machine interfaces,

which can alert operators about contaminations.
We consider a malicious adversary who tries to cause harm
by contaminating the water network with harmful chemicals.
We assume that the adversary can introduce contaminants
at certain nodes, such as unprotected reservoirs or tanks,
which will then spread in the network, eventually reaching the
residential consumers. We measure the impact of this physical
attack as the amount of contaminants consumed by residential
consumers before the detection of the attack.

To detect contaminations, each sensor continuously moni-
tors the water flowing through the node at which it is deployed,
and raises an alarm when the concentration of a contaminant
reaches a threshold level. The alert generated by a sensor node
is sent to a processing node, which forwards the alert to an
interface node that can notify operators. Once operators are
alerted, they respond immediately by warning residents not to
consume water from the network.

We measure the impact of a physical attack as the amount of
contaminants consumed by residential consumers before they
are warned. This amount depends on the time between the
physical attack and its detection, the contaminant concentra-
tion levels at the consumer nodes in this time interval, and
the amount of water consumed in this interval. To increase
the impact of the physical attack, the adversary launches a
cyber-attack, which compromises and disables some of the
components Ĉ. Since the adversary’s goal is to suppress
warnings, this attack can be modeled as a stealthy attack (Sec-
tion II-C1b). We assume that the adversary first compromises
a set of components Ĉ, and then decides where to introduce
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the contaminant, maximizing the impact Impact(Ĉ).

V. NUMERICAL RESULTS

We evaluate our approach numerically using a case study of
a real-world water distribution network. We present additional
numerical results in the extended version of our paper [2].

We use a real-world water-distribution network from Ken-
tucky, which we obtained from the Water Distribution System
Research Database[7]. The topology of this network, which is
called KY3 in the database, is shown by Figure 2. In addition
to topology, the database also contains hourly water-demand
values for each network node.

Fig. 2. Topology of the water-distribution network. Colors show the spread
of the contaminant from the first reservoir two hours after its introduction.

We assume that the adversary can introduce a contaminant
at one of six given nodes in the network, which model three
tanks and three reservoirs. Once the contaminant is introduced,
we simulate its spread throughout the network using EPANET.
From the simulation, we obtain the contaminant concentration
values at the various nodes as functions of time. For a given
set of compromised components Ĉ, we then use these values
to compute the time of detection and the resulting impact
Impact(Ĉ) (i.e., amount of contaminant consumed by the
time of detection). Finally, we use the following numerical
parameter values: I = {i1, i2, i3, i4, i5}; for every c ∈ C,
Ic = I; Ri1 = Ri2 = Ri3 = 0and Ri4 = Ri5 = 1;
Di1 = 0and Di = 1 for every i ∈ {i2, i3, i4, i5}; for
every i ∈ I , Li = {1, 2, 3, . . . , 10}; for every l ∈ Li,
Sl = 1− 0.50.5·l+1 and Hl = 4 · l2.

Figure 3 shows the security risk in the water-distribution
network for various budget values invested into the canonical
approaches (i.e., redundancy, diversity, or hardening) and their
optimal combination. Again, we note the logarithmic scaling
on the vertical axis. We see that investing in a combination
of redundancy, diversity, and hardening results in significantly
lower risks than investing in only one of these approaches,
thus demonstrating the efficacy and superior performance of a
synergistic approach.

Figure 4 shows the optimal combination of redundancy,
diversity, and hardening investments in the water-distribution
network for various budget values. In this example, the optimal
design is primarily a combination of diversity and hardening.
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Fig. 3. Security risk in the water-distribution network when investing only
in redundancy, only in diversity, only in hardening, or in their combination.

20 40 60 80 100 120
0

20

40

60

80

Budget B
In

ve
st

m
en

t

Redundancy R
Diversity D

Hardening H

Fig. 4. Optimal combination of redundancy, diversity, and hardening invest-
ments in the water-distribution network.

However, with higher budget values, designers also need to
invest in redundancy.

To illustrate the performance of the proposed design algo-
rithm, we use the water-distribution network with R = 10
and D = H = 100. We find that the meta-heuristic algorithm
(Algorithm 2) is very efficient: a single iteration takes less than
6.4 × 10−4 seconds (more than 1,500 iterations per second)
on an average laptop computer. To determine the number of
iterations that are necessary to find a good solution in practice,
we focus on the solution quality (i.e., security risk) as a
function of the number of iterations.
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Fig. 5. Security risk in each iteration of one execution of the the meta-heuristic
algorithm (Algorithm 2).

Figure 5 shows the security risk in each iteration of one
particular execution of the meta-heuristic algorithm (Algo-
rithm 2) with the current solution (solid red line) and with

5



the best solution found so far (dashed blue line). Please note
the logarithmic scaling on the vertical axis. We have executed
the algorithm a number times, but since the results are qual-
itatively the same, we plot only one particular execution for
illustration. The figure shows that risk decreases rapidly in the
first few hundred iterations, but after around 400 iterations,
the decrease becomes much slower. At around one thousand
iterations, the risk reached its lowest value, so we omit the
remaining iterations from the plot. In light of this, it is clear
that the running time of the meta-heuristic algorithm is very
low since it settles in a matter of seconds.

VI. RELATED WORK

IIoT and cyber-physical systems (CPS) have significantly
improved the overall functionality, reliability, observability,
and operational efficiency of industrial control systems and
critical infrastructure networks [8], [9]. The integration and
connectivity between various system components allow data
exchange and information processing to fine tune system
processes, but this integration and connectivity also opens
new threat channels in the form of cyber- and cyber-physical
attacks, against which these systems need to be secured [10],
[11]. Conventional cybersecurity mechanisms are inadequate
and thus need to be expanded to incorporate the complexity
and physical aspects of such systems [10], [11], [12]. A de-
tailed overview of the security issues in industrial automation
systems that are based on open communication systems is
provided in [13]. Similarly, security issues associated with var-
ious documented standards in SCADA systems are highlighted
in [14], [15], and it is concluded that such issues cannot be
resolved by employing only IT security mechanisms. There are
various other studies that mainly highlight the security threats
and associated risk assessment in the domain of industrial IoT,
for instance [16], [17], [18]. All of these studies discuss and
point towards a holistic security framework to address the
security issues in industrial IoT. In this paper, we provide
a framework for synergistic security that combines various
security mechanisms to effectively secure such systems.

The water-supply industrial sector can benefit significantly
from applying the ideas and technology of industrial Internet
[19]. The adoption of new technologies (such as IoT, CPS) and
networking devices enhances the monitoring capability, service
reliability, and operational efficiency of water distribution sys-
tems, but also exposes them to malicious intrusions in the form
of cyber- and cyber-physical attacks [4], [20]. A number of
attack scenarios against water distributions systems are speci-
fied and demonstrated through simulations in [4]. Recently, in
[21], several attacks on simulated and a real water distribution
testbed (WADI [22]) are demonstrated through cyber-physical
botnets capable of performing adversarial control strategies
under CPS constraints. The security breach in the SCADA
system of Maroochy Water Services, Australia [6] is a famous
incident, which also highlights the need for effective security
mechanisms. To effectively address the security challenge in
such complex, interconnected, and spatially expanded systems,

we need to employ a combination of security mechanisms to
protect them against cyber-physical attacks.
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