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ABSTRACT
Traffic signals were originally standalone hardware de-
vices running on fixed schedules, but by now, they have
evolved into complex networked systems. As a conse-
quence, traffic signals have become susceptible to at-
tacks through wireless interfaces or even remote attacks
through the Internet. Indeed, recent studies have shown
that many traffic lights deployed in practice have eas-
ily exploitable vulnerabilities, which allow an attacker
to tamper with the configuration of the signal. Due
to hardware-based failsafes, these vulnerabilities can-
not be used to cause accidents. However, they may
be used to cause disastrous traffic congestions. Build-
ing on Daganzo’s well-known traffic model, we intro-
duce an approach for evaluating vulnerabilities of trans-
portation networks, identifying traffic signals that have
the greatest impact on congestion and which, therefore,
make natural targets for attacks. While we prove that
finding an attack that maximally impacts congestion
is NP-hard, we also exhibit a polynomial-time heuris-
tic algorithm for computing approximately optimal at-
tacks. We then use numerical experiments to show that
our algorithm is extremely efficient in practice. Finally,
we also evaluate our approach using the SUMO traf-
fic simulator with a real-world transportation network,
demonstrating vulnerabilities of this network. These
simulation results extend the numerical experiments by
showing that our algorithm is extremely efficient in a
microsimulation model as well.
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1. INTRODUCTION
The evolution of traffic signals from standalone hard-

ware devices to complex networked systems has pro-
vided us with many benefits, such as reducing wasted
time and environmental impact. However, it has also ex-
posed traffic signals to cyber-attacks. While traditional
hardware systems were susceptible only to attacks based
on direct physical access, modern systems are vulnerable
to attacks through wireless interfaces or even to remote
attacks through the Internet. A recent case study by
Ghena et al. analyzed the security of traffic infrastruc-
ture in cooperation with a road agency located in Michi-
gan [9]. This agency operates around a hundred traffic
signals, which are all part of the same wireless network,
but the signals at every intersection operate indepen-
dently of the other intersections. The study found three
major weaknesses in the traffic infrastructure: lack of
encryption for the network, lack of secure authentica-
tion due to the use default usernames and passwords on
the devices, and vulnerability to known exploits.

Even if every weakness discovered by the investigation
of [9] were corrected, it is extremely difficult to prevent
all future software vulnerabilities. In addition to the
general difficulty of this task, traffic signals pose further
challenges, such as long system lifetime and complicated
software-upgrade procedures. Consequently, ensuring
that there will not be any opportunities for attack dur-
ing the lifetime of a system is practically impossible, and
we must consider the impact of successful attacks.

Due to hardware-based failsafes, compromising a traf-
fic signal does not allow an attacker to set the signal
into an unsafe configuration, which could lead to traffic
accidents. However, compromising a signal does enable
tampering with its schedule, which allows an attacker to



cause disastrous traffic congestions. In order to increase
the resilience of transportation networks to tampering
attacks, we must first be able to assess how vulnerable
a given network is, that is, we must be able to esti-
mate the potential impact of tampering attacks. Since
this impact depends on both the transportation net-
work and the schedules of the uncompromised signals
in a non-trivial way, vulnerability assessment is a chal-
lenging problem.

Building on Daganzo’s well-known traffic model [7],
we propose an approach for evaluating the vulnerability
of a transportation network to traffic signal tampering
attacks. We provide theoretical results on the computa-
tional complexity of our approach, and introduce an ef-
ficient heuristic algorithm for practical application. We
show that the proposed algorithm is extremely effica-
cious using numerical results based on large numbers of
randomly generated networks, which mimic real-world
road networks. Finally, we evaluate our approach on an
actual transportation network using SUMO, a micro-
model traffic simulator.

The remainder of this paper is organized as follows.
In Section 2, we discuss the traffic and attacker models,
and formulate the problem of evaluating vulnerability.
In Section 3, we study computational complexity and in-
troduce our heuristic algorithm. In Sections 4 and 5, we
evaluate our approach using numerical results based on
random networks and simulations based on a real-world
network. In Section 6, we give a brief overview of the
related work. Finally, in Section 7, we offer concluding
remarks and outline directions future work.

2. MODEL
In this section, we introduce the traffic and attacker

models on which our approach is built, and then define
the vulnerability of transportation networks. A list of
symbols used in this paper can be found in Table 1.

2.1 Cell Transmission Model
To model traffic, our approach employs Daganzo’s cell

transmission model for transportation networks. Here,
we provide a summary of this traffic model; for a more
detailed discussion, we refer the reader to [7, 8, 19].

In the cell transmission model, the road network is
divided into cells, which represent homogeneous road
segments, and time is divided into uniform intervals.
The length of a road segment corresponding to a cell
is equal to the distances traveled in light traffic by a
typical vehicle in one time interval. Each cell has three
parameters:
• N t

i is the maximum number of vehicles that can
be present in cell i at time t,
• Qt

i is the maximum number of vehicles that can
flow into or out of cell i during time interval t,

Table 1: List of Symbols
Symbol Description

Cell Transmission Model

xti number of vehicles in cell i at time t
ytij number of vehicles moving from cell i to

cell j at time t
Qt

i maximum number of vehicles that can flow
into or out of cell i during time interval t

δti ratio between free-flow speed and backward
propagation speed of cell i at time t

N t
i maximum number of vehicles in cell i at

time t
Γ(i) set of successor cells to cell i

Γ−1(i) set of predecessor cells to cell i
dti demand (inflow) at source cell i during time

interval t
Signalized Intersection Model

ptki inflow proportion from from cell k to signal-
ized intersection i

S set of signalized intersections

Attacker Model

B attacker’s budget

A attack reconfiguring cells in Ŝ ⊆ S to inflow
proportions p̂ki

T (A) total travel time resulting from attack A

• and δti is the ratio between the free-flow speed and
the backward propagation speed of cell i at time
t (see [19] for a detailed explanation). This con-
stant is used to quantify how the speed of traffic
decreases as the cell becomes congested, and can
model traffic phenomena such as shockwaves.

Every cell is connected to one or more other cells (i.e.,
cells that correspond to consecutive road segments or
road segments that are joined by an intersection are
connected). The set of cells from which vehicles can
move into cell i is called the set of predecessor cells,
denoted by Γ−1(i); similarly, the set of cells to which
vehicles can move from cell i is called the set of successor
cells, denoted by Γ(i).

At a given time t, the state of the transportation net-
work is given by the vector xt, where the value xti is the
number of vehicles in cell i. The traffic model defines
how the state of the network xt evolves over time from
an initial state x0 = (0, . . . , 0)′. In each time interval,
for every pair of connected cells i and k, the number of
vehicles ytik moving from cell i to cell k is determined
by the state of both cells (see below).

Based on their connections, the cells can be divided
into five types: ordinary cells, diverging cells, merging
cells, source cells, and sink cells. Next, we describe how
the state xti of each cell i evolves.



Ordinary Cells.
Ordinary cells have only one successor cell and one

predecessor cell. For every ordinary cell i and time in-
terval t, the state evolves as follows:

xti = xt−1
i + yt−1

ki − y
t−1
ij , (1)

where k ∈ Γ−1(i) and j ∈ Γ(i) (note that since cell i is
ordinary, k and j are uniquely defined).

The flow ytki between ordinary cells k and i is

ytki = min{xtk, min{Qt
i, Q

t
k}, δti(N t

i − xti)}. (2)

According to the above equation, the flow is limited by
three terms:
• xtk, since the number of vehicles leaving cell k can-

not be greater than the number of vehicles present
in cell k;
• Qt

i and Qt
k by definition;

• and δti(N
t
i − xti), which limits the flow as cell i

becomes congested.
By setting ytki equal to the minimum of these terms, we
assume that drivers do not stop without a traffic reason
(until they reach their destination).

Diverging Cells.
Diverging cells differ from ordinary cells in that they

have multiple successor cells. For every diverging cell i
and time interval t,

xti = xt−1
i + yt−1

ki −
∑

j∈Γ(i)

yt−1
ij , (3)

where k ∈ Γ−1(i) (note that since cell i is diverging, k
is unique).

The inflow ytki is the same as in the case of ordinary
cells. The outflows ytij are subject to the following con-
straints:

∀j ∈ Γ(i) : ytij ≤ min
(
Qt

j , δ
t
j(N

t
j − xtj)

)
(4)∑

j∈Γ(i)

ytij ≤ min
(
xti, Q

t
i

)
. (5)

Notice that these constraints are analogous to the ones
for ordinary cells, with the exception that the limits
posed by xti and Qt

i apply to the sums of the outflows.

Merging Cells.
Merging cells differ from ordinary cells in that they

have multiple predecessor cells. For every merging cell
i and time interval t,

xti = xt−1
i +

 ∑
k∈Γ−1(i)

yt−1
ki

− yt−1
ij , (6)

where j ∈ Γ(i) (note that since cell i is ordinary, j is
unique).

The outflow ytij is the same as in the case of ordi-
nary cells. The inflows ytki are subject to the following
constraints:

∀k ∈ Γ−1(i) : ytki ≤ min
(
xtk, Q

t
k

)
(7)∑

k∈Γ−1(i)

ytki ≤ min
(
Qt

i, δ
t
i(N

t
i − xti)

)
. (8)

Again, notice that these constraints are natural exten-
sions of the ones for ordinary cells, except that the limits
posed by Qt

i and δti(N
t
i − xti) apply to the sums of the

inflows.

Sink and Source Cells.
Sink cells have infinite capacity and allow infinite in-

put flows (i.e., N t
i =∞ and Qt

i =∞ for every sink cell i
and time interval t); hence, the input flow of sink cell i
is ytki = min{xtk, Qt

k}.
Source cells have infinite capacity but allow only fi-

nite output flows (i.e., N t
i = ∞ for every source cell i

and time interval t). For every source cell i and time
interval t, xti = xt−1

i +dt−1
i −yt−1

ij , where j ∈ Γ(i) (note

that j is unique) and dti is the demand (inflow) at cell
i in time interval t (i.e., dti is the number of vehicles
entering traffic at cell i in time interval t).

2.1.1 Signalized Intersections
To account for signal control at intersections, we fol-

low Daganzo’s proposition [8] and introduce the time-
dependent parameter ptki controlling the inflow propor-
tions of merging cells. Then, for every signalized merg-
ing cell i ∈ S and time interval t, the inflows must also
satisfy

∀k ∈ Γ−1(i) : ytki ≤ ptkiQt
i (9)

∀k ∈ Γ−1(i) : ytki ≤ ptkiδti(N t
i − xti), (10)

where
∑

k∈Γ−1(i) p
t
ki = 1.

2.1.2 Solving the Traffic Model
In order to solve the traffic model, that is, to find xt

for every t > 0, we use Ziliaskopoulos’s linear program-
ming approach [19], and formulate the following pro-
gram:

min
∑
t

∑
i

xti (11)

subject to Equations (1) to (10), where xti ∈ R≥0 for
every time t > 0 and cell i, ytki ∈ R≥0 for every time
t > 0 and connected cells k and i, and the number of
time intervals is chosen so that xt reaches (0, . . . , 0) by
the last time interval. Note that we assume fractional
xti values, since we are interested in a macro solution,
not individual vehicles.

Now, observe that the objective of the above linear
program is the sum of the number of vehicles traveling



(i.e., number of vehicles on the road) over time, which
is clearly equal to the total travel time of all the vehi-
cles. In other words, the above solution assumes that
vehicles will travel efficiently (i.e., in a way that mini-
mizes their travel time) given that they have to abide
the constraints of the traffic model, including the in-
flow proportions dictated by the traffic signals. As a
consequence, we can use the value of the above linear
program – which can be computed efficiently for a given
instance – as a measure of network congestion.

2.2 Attacker Model
Next, we introduce our attacker model, which de-

fines the attacker’s action space and goal. In our ap-
proach, we model attackers who can compromise some
of the traffic signals and tamper with their configuration
(i.e., schedule), thereby dramatically increasing the to-
tal travel time in the transportation network. Further-
more, we consider only relatively short-term scenarios,
in which the parameters of the cells and the default (i.e.,
unattacked) schedules of the traffic signals are constant.
Hence, for the remainder of this paper, we will omit the
superscript t from Qt

i, N
t
i , δti , and ptki.

2.2.1 Action Space
We assume that the attacker is resource bounded,

which means that it can compromise at most B ≤ |S|
intersections at the same time. Hence, the attacker’s ac-
tion choice is to select a subset of at most B cells from
the signalized cells S and reconfigure the traffic signals
at the selected cells. In other words, an attack A con-
sists of a set Ŝ of signalized cells and a set of new inflow
proportions p̂ki for the cells in Ŝ. Formally, an attack
A is a pair (

Ŝ,
{
p̂ki

∣∣∣ ∀i ∈ Ŝ, k ∈ Γ−1(i)
})

, (12)

where Ŝ ⊆ S and p̂ki ∈ [0, 1].
Due to the attacker’s budget constraint, an attack is

feasible only if

|Ŝ| ≤ B. (13)

Furthermore, we also assume that due to hardware-
based failsafes, the signals at an intersection can be re-
configured only to a valid setting. Consequently, the
inflow proportions of a feasible attack must sum up to
1 for each merging cell. Formally, an attack A has to
abide the constraint

∀i ∈ Ŝ :
∑

k∈Γ−1(i)

p̂ki = 1. (14)

2.2.2 Goal
We assume a worst-case attacker, whose goal is to

minimize the network’s utility, that is, to maximize the

total travel time. For a given attack A, let us denote
by T (A) the total travel time computed from the traffic
model for the attacked network. In other words, for an
attack A =

(
Ŝ, {p̂ki| . . .}

)
, let T (A) =

∑
t

∑
i x

t
i where

xti constitute the solution of the traffic model with the

inflow proportions of the cells in Ŝ replaced by the values
p̂ki. Then, we can express the attacker’s problem as

max
A=(Ŝ,{p̂ki|...})

T (A) (15)

subject to

|Ŝ| ≤ B (16)

∀i ∈ Ŝ :
∑

k∈Γ−1(i)

p̂ki = 1 (17)

where Ŝ ⊆ S and p̂ki ∈ [0, 1].

2.3 Network Vulnerability
Based on the traffic and attacker models introduced in

the preceding sections, we can define the vulnerability of
a transportation network in an intuitive way as follows.

Definition 1. The vulnerability of a transportation net-
work to traffic-signal tampering attacks is

T (A)− T
T

, (18)

where A is the worst-case attack given by our attacker
model and T is the total travel time of the network with
the default configurations of the traffic signals.

Besides quantifying the vulnerability of a network, our
approach also enables us to identify critical traffic sig-
nals, which have the greatest impact on traffic conges-
tion and which, therefore, make natural targets for at-
tacks.

Definition 2. A traffic signal (i.e., merging cell) s ∈ S
is critical if s ∈ Ŝ for a worst-case attack A.

Identifying these critical signals is beneficial, since it
allows us to locate the most vulnerable elements of a
network, which should be strengthened first to increase
the resilience of a network. For example, if we have a
limited security budget which permits us to replace only
a subset of the traffic signals with more secure ones, then
we should start with the critical signals Ŝ.

3. COMPUTATIONAL COMPLEXITY AND
HEURISTIC ALGORITHM

To compute the vulnerability of a transportation net-
work, we first have to solve the attacker’s problem, that
is, we have to find a worst-case attack. However, this
problem is challenging, as the number of feasible at-
tacks is an exponential function of B. Consequently,
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Figure 1: Illustration for the proof of Theorem 1.

an exhaustive search for finding the worst-case attack is
impractical, since its running time can quickly become
prohibitively high. To meet this challenge, we focus our
analysis on the computational aspects of our approach.

3.1 Computational Complexity
We begin our analysis by showing that the attacker’s

problem (i.e., finding a worst-case attack) is computa-
tionally hard. First, we formulate a decision version of
the attacker’s problem as follows.

Definition 3. Attacker’s Decision Problem: Given a
transportation network, a budget B, and a threshold
travel time T ∗, determine if there exists an attack A
satisfying the budget constraint such that T (A) > T ∗.

We show that the above problem is computationally
hard by reducing a well-known NP-hard problem, the
Set Cover Problem, to the above problem.

Definition 4. Set Cover Problem: Given a base set U ,
a collection C of subsets of U , and a number k, determine
if there exists a subcollection C′ ⊆ C of at most k subsets
such that every element of U is contained by at least one
subset in C′.

The following theorem establishes the computational
complexity of the attacker’s problem.

Theorem 1. Attacker’s Decision Problem is NP -hard.

Proof. Given an instance of the Set Cover Problem
(i.e., a set U , a collection C of subsets, and a num-
ber k), we construct an instance of the Attacker’s Deci-
sion Problem as follows:
• let the transportation network be the following (see

Figure 1 for an illustration):
– there is one source cell r, with Qr = k + 1, d1

r =
k + 1, and dtr = 0 for t > 1;

– there is one sink cell s;
– for every element u ∈ U , there is a merging cell u;

– for every subset C ∈ C, there is a diverging cell C;
– each diverging cell C is connected to every merg-

ing cell u ∈ C;
– for every cell i, Ni = k + 1 and δi = 1;
– for every merging cell u, Qu = k + 1;
– for every diverging cell C, QC = 1;
• let the attacker’s budget be B = |U |;
• let the threshold travel time be T ∗ = 3(k + 1).

Clearly, the above reduction can be carried out in time
that is polynomial in the size of the Set Cover Problem
instance.

It remains to show that the above instance of the At-
tacker’s Decision Problem has a solution A if and only
if the given instance of the Set Cover Problem has a so-
lution C′. Before we proceed to prove this equivalence,
notice that the values Qr, Ni and δi for every cell i,
and Qu for every merging cell u will not play any role,
since they are high enough to allow any traffic to pass
through. Furthermore, since B = |U |, the attacker will
be able to reconfigure every traffic signal; hence, the
attacker’s problem is simply to pick the values p̂Cu for
every u ∈ C.

First, suppose that there exists a set cover C′ of size
at most k. Then, we construct an attack as follows: for
every merging cell u, choose one diverging cell C from
C′ that is connected to u (if there are multiple, then
choose an arbitrary one), and let p̂Cu = 1. We have
to show that the total travel time in the transportation
network is greater than 3(k + 1) after the attack. Since
the distance between the source cell and the sink cell
is 3 hops and there are k + 1 vehicles, all the vehicles
must move one step closer to the sink in every time
interval in order for the total travel time to be at most
3(k + 1). However, from the source cell, the vehicles
may only move to the cells in C′; otherwise, they would
get “stuck” at one of the diverging cells that are not in
C′. Consequently, in the second time interval, at most
k of the k + 1 vehicles may move on, which means that
the total travel time has to be greater than 3(k + 1).

Second, suppose that there does not exist a set cover
C′ of size at most k. Then, we have to prove that there
cannot exist an attack which increases the total travel
time to more than 3(k+ 1). Firstly, we show that there
exists an optimal attack which assigns either 0 or 1 to
every p̂Cu. To prove this, consider an attack in which
there is a merging cell v with a p̂Cv value other than 0 or
1. If none of its predecessor cells C has a positive p̂Cw

value for some other merging cell w, then the assignment
for v can clearly be changed to 0 and 1 values without
changing the total travel time. Next, suppose that one
(or more) of the predecessor cells C of the merging cell
has a positive p̂Cw value for some other merging cell w.
Then, the total travel time maximizing assignment is
clearly one which assigns p̂Cv = 1 to a predecessor cell



C for which
∑

u∈C p̂Cu is maximal, since this “wastes”
the most “merging capacity.” Thus, for the remainder
of the proof, it suffices to consider only attacks where
every p̂Cu value is either 0 or 1.

Now, consider an optimal attack A against the trans-
portation network, and let C∗ be the set of diverging
cells C for which there exists a merging cell u such that
p̂Cu = 1. Clearly, C∗ forms a set cover of U since for ev-
ery element u, there is a subset C ∈ C∗ such that u ∈ C
(i.e., C is connected to u). From our initial supposition,
it follows readily that the cardinality of set C∗ must be
at least k + 1. However, this also implies that the total
travel time after the attack is equal to 3(k + 1): in the
second time interval, all k + 1 vehicles may move for-
ward to the diverging cells in set C∗; in the third time
interval, all the vehicles may again move forward to the
merging cells (since every cell in C has at least one “en-
abled” connection); and all the vehicles may leave the
network by the next interval through the sink cell. Since
the total travel time after an optimal attack A is equal
to T ∗ = 3(k + 1), the attacker’s problem does not have
a solution. Therefore, the constructed instance of the
Attacker’s Decision Problem has a solution if and only
if the given instance of the Set Cover Problem has one,
which concludes our proof.

3.2 Heuristic Algorithm
Since the attacker’s problem is NP -hard, we cannot

hope for a polynomial-time algorithm that always finds
a worst-case attack (unless P = NP ). Hence, to provide
an alternative to the computationally infeasible exhaus-
tive search, we turn our attention to designing an effi-
cient heuristic algorithm.

The attacker’s problem can be viewed as the compo-
sition of two problems: finding a subset Ŝ of signalized
intersections and finding new inflow proportions p̂ki for
the cells in Ŝ. For finding a subset Ŝ, we propose to use
a greedy heuristic, which starts with an empty set and
adds new cells to it one-by-one, always picking the one
that leads to the greatest increase in travel time. Find-
ing new inflow proportions p̂ki is especially challenging,
since the set of possible choices is continuous. However,
we observe that in most networks, the worst-case con-
figuration is an “extreme” one, which assigns proportion
p̂ki = 1 to one predecessor cell k and proportion p̂ji = 0
to every other predecessor cell j. 1 Hence, for every
new cell i added to the set of attacked intersections, we
propose to search over the possible extreme configura-
tions by iterating over the predecessors of cell i. Based
on the above propositions, we formulate Algorithm 1.

It is fairly easy to see that the running time of Algo-

1In fact, this property holds for every network that we have
encountered so far. Proving analytically that this property
holds for all networks is left for future work.

Algorithm 1 Polynomial-Time Heuristic Algorithm for
Finding an Attack

A ← (∅, ∅)
for b = 1, . . . , B do

for s ∈ S do
for k ∈ Γ−1(s) do
A′ ← A∪ ({s}, {p̂ks = 1,∀j 6= k : p̂js = 0})
if T (A′) ≥ T (A∗) then
A∗ ← A′

end if
end for

end for
A ← A∗

end for
Output A

rithm 1 isO
(
B · |S| ·

(
maxs∈S |Γ−1(s)|

)
· computing T

)
.

Since B ≤ |S| and we can compute T (A) for any at-
tack A using a linear program, it follows readily that
the running time of the algorithm is upper bounded by
a polynomial function of the input size (i.e., size of the
transportation network and B).

4. NUMERICAL RESULTS
In this section, we present numerical results on the

heuristic algorithm proposed in the previous section.
We compare the heuristic algorithm to an exhaustive-
search algorithm, which always finds the worst-case at-
tack (i.e., optimal from the attacker’s perspective), but
has exponential running time. We study two perfor-
mance metrics: the travel times resulting from attacks
found by the algorithms and the running times of the
algorithms.

4.1 Setup
In order for the comparison to be reliable, we have

to evaluate the algorithms on a large number of trans-
portation networks. To obtain these networks, we use
the Grid model with Random Edges (GRE) to generate
random network topologies [15], which closely resemble
real-world transportation networks. For a detailed de-
scription of this model, we refer the reader to [15, 14].

We set both the width and height of the generated
grids to be 4, and let the bottom-left corner be a source
and the upper-right corner be a sink. For the parameters
controlling the randomness of the generation, we use the
values from [15], which were derived from measurements
on actual road networks from Europe and the USA. We
let the inflow at the source cell be d0 = 8, d1 = 12, d2 =
8, and dt = 0 for t ≥ 3. For every other cell i, we let the
parameters be Qi = 6, δi = 1.0, and Ni = 10. Finally,
we let every merging cell be a signalized intersection,
and set the inflow proportions to be uniform over the



predecessors of each intersection.
Due to the randomness of the generation, some of

the generated networks pose trivial problems for the at-
tacker, since they allow the sink to be simply cut from
the source using the attacker’s budget. To make our
comparison fair (and pessimistic), we discard these in-
stances, and only use the non-trivial ones. This leaves
us with 264 and 122 networks mimicking road networks
from the USA and Europe, respectively.

Finally, note that the attacker’s action space is con-
tinuous since an inflow proportion p̂ki can take any real
value from [0, 1]. Consequently, to perform an exhaus-
tive search, we must quantize the attacker’ action space.
For the numerical results, we restricted the proportions
to values from (0, 1/3, 2/3, 1) since more fine-grained
quantizations did not lead to higher travel times.

4.2 Travel Times
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Figure 2: Travel times resulting from attacks
found by the heuristic algorithm and by exhaus-
tive search, for randomly generated networks
mimicking road networks of the USA.

Figures 2 and 3 show travel times resulting from at-
tacks found by the heuristic algorithm and by exhaus-
tive search, as well as travel times without an attack.
Note that the plotted values are averages taken over
large numbers of random networks, which were gener-
ated using parameters mimicking road networks of the
USA for Figure 2 and road networks of Europe for Fig-
ure 3. The figures show that the heuristic algorithm
performs very well, as the average difference to the ex-
haustive search remains below 3.4% in all cases.

4.3 Running Times
Figures 4 and 5 show the running times of the heuris-

tic algorithm and the exhaustive search. Again, note
that the plotted values are averages taken over large
numbers of random networks. As expected, the fig-
ures show that the running time of exhaustive search

Without attack 1 2 3

160

180

200

220

Attacker’s budget B

T
ot

al
tr

av
el

ti
m

e
T

Heuristic algorithm

Exhaustive search

Figure 3: Travel times resulting from attacks
found by the heuristic algorithm and by exhaus-
tive search, for randomly generated networks
mimicking road networks of Europe.
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Figure 4: Running times of the heuristic algo-
rithm and the exhaustive search, for randomly
generated networks mimicking road networks of
the USA.

grows exponentially, and it is multiple orders of mag-
nitude higher than that of the heuristic algorithm even
for B = 3. Higher values of B are not plotted, as the
prohibitively high running time of the exhaustive algo-
rithm prevented us from evaluating the algorithms on a
sufficiently large number of networks.

5. SIMULATION RESULTS
So far, we have studied the vulnerability of traffic net-

works using Daganzo’s cell-transmission model, which
can be viewed primarily as a macro model. Now, we take
a micro-modeling approach, and study the vulnerabil-
ity of a real-world road network using simulations. The
network topology and traffic data used in these exper-
iments is available at http://aronlaszka.com/data/

http://aronlaszka.com/data/laszka2016vulnerability.zip
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Figure 5: Running times of the heuristic algo-
rithm and the exhaustive search, for randomly
generated networks mimicking road networks of
Europe.

laszka2016vulnerability.zip.

5.1 Setup

Figure 6: Topology of the real-world transporta-
tion network used in the simulations. Possible
targets for an attack are marked by red disks.

To perform the simulations, we employ SUMO (Sim-
ulation of Urban MObility) 2, a well-known and widely-
used micro simulator [12, 3]. We retrieved a map of
the road network around Vanderbilt University campus
from OpenStreetMap 3 (see Figure 6). We selected five
major intersections around the campus as possible tar-
gets S for an attack (marked by red disks on Figure 6).
The default configurations for these traffic signals were
selected to minimize total travel time without consider-
ing an attack.

For the supply of vehicles passing through the road
network, we generated four traffic scenarios:

2http://sumo.dlr.de/wiki/Main_Page
3https://www.openstreetmap.org/

• morning: primarily moving from outside of the
area to internal destinations (i.e., morning com-
mute), with some traffic between internal points;
• midday: primarily moving between internal points;
• afternoon: primarily moving from internal points

to outside of the area (i.e., afternoon commute),
with some traffic between internal points;
• nighttime: mostly random traffic traffic.

Finally, we measured the average travel time over all the
vehicles instead of their total travel time in this exper-
iment. Since the number of vehicles can differ greatly
between traffic scenarios, this facilitates the comparison
of the scenarios.

5.2 Varying Budget
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Figure 7: Travel times resulting from attacks
found by the heuristic algorithm and by exhaus-
tive search for the road network around Vander-
bilt University in the afternoon scenario.

Figure 7 shows the travel times resulting from at-
tacks found by the heuristic algorithm and by exhaus-
tive search, as well as the travel time without any at-
tacks. In this experiment, we used the afternoon sce-
nario. Again, the heuristic algorithm performs excep-
tionally well, the difference being less than 0.8% to the
exhaustive search in terms of the resulting travel time.
Due to space limitations, we do not plot the running
times of the algorithms for this experiment. The run-
ning time of the whole experiment was 8 hours, with
the same quantization for the exhaustive search as in
the previous section.

5.3 Varying Traffic Scenarios
Finally, Figure 8 shows the travel times with heuristic

attack and without attack for various scenarios. In this
experiment, we fixed the attacker’s budget to B = 3.
The figure shows that the vulnerability of the trans-

http://aronlaszka.com/data/laszka2016vulnerability.zip
http://sumo.dlr.de/wiki/Main_Page
https://www.openstreetmap.org/
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Figure 8: Travel times with heuristic attack and
without attack for various traffic scenarios on the
road network around Vanderbilt University.

portation network varies between 51% (midday scenario)
and 92% (morning scenario).

6. RELATED WORK
In this section, we give a brief overview of the related

work on the vulnerability of transportation networks.
Due to space limitations, we omit reviewing other, less
related areas, such as the vast literature on traffic mod-
eling and assignment [6, 13] and vulnerability analyses
from the complex-networks community [1].

A number of research efforts have studied the vulner-
ability of transportation networks to natural disasters
and attacks. However, to the best of our knowledge,
our paper is the first one to consider traffic-signal tam-
pering attacks against general transportation networks.

Reilly et al. consider the vulnerability of freeway con-
trol systems to attacks on the sensing and control infras-
tructure [16]. They present an in-depth analysis on the
takeover of a series of onramp-metering traffic lights us-
ing a methodology based on finite-horizon optimal con-
trol techniques and multi-objective optimization.

Sullivan et al. study short-term disruptive events, such
as partial flooding, and propose an approach that em-
ploys various link-based capacity-disruption values [18].
The proposed approach can be used to identify and rank
the most critical links and to quantify transportation
network robustness (i.e., inverse vulnerability).

Scott et al. propose a comprehensive, system-wide ap-
proach for identifying critical links and evaluating net-
work performance [17]. Using three hypothetical net-
works, the authors demonstrate that their approach yields
different highway planning solutions than traditional
approaches, which rely on volume/capacity ratios to
identify congested or critical links.

Bell introduces a two-player non-cooperative game be-

tween a network user, who seeks to minimize expected
travel cost, and an adversary, who chooses link perfor-
mance scenarios to maximize the travel cost [4, 5]. The
Nash equilibrium of this game can be used to measure
network performance when users are pessimistic and,
hence, may be used for cautious network design.

Jenelius proposes a methodology for vulnerability anal-
ysis of road networks and considers the impact of road-
link closures [10]. The author considers different aspects
of vulnerability, and explores the dichotomy between
system-wide efficiency and user equity.

Jenelius and Mattson introduce an approach for sys-
tematically analyzing the robustness of road networks
to disruptions affecting extended areas, such as floods
and heavy snowfall [11]. Their methodology is based
on covering the area of interest with grids of uniformly
shaped and sized cells, where each cell represents the
extent of an event. The authors apply their approach
to the Swedish road network, and find that the impact
of area-covering disruptions are largely determined by
the internal, outbound, and inbound travel demands of
the affected area itself.

Alpcan and Buchegger investigate the resilience as-
pects of vehicular networks using a game-theoretic model,
in which defensive measures are optimized with respect
to threats posed by intentional attacks [2]. The game
is formulated in an abstract manner, based on central-
ity values computed by mapping the centrality values
of the car communication network onto the road topol-
ogy. The authors consider multiple formulations based
on varying assumptions on the players’ information, and
evaluate their models using numerical examples.

7. CONCLUSION & FUTURE WORK
We introduced an approach for evaluating transporta-

tion-network vulnerability, provided computational-com-
plexity results and an efficient heuristic algorithm, and
evaluated our approach on both randomly-generated and
real-world networks. The primary application of our
approach is assessing the vulnerability of a given trans-
portation network and traffic-signal configuration, which
is a key step in designing resilient networks and signal
configurations. Furthermore, our approach also identi-
fies critical signals, which have the highest impact on
congestion. Identifying these critical signals enables the
optimal planning and deployment of defensive counter-
measures and resources.

Our paper constitutes the necessary first step towards
more resilient transportation networks. In future work,
we will extend our results in multiple directions. Firstly,
we will study how to configure traffic signals in a re-
silient way, so that even if some of the signals are com-
promised and tampered with, the default configuration
of the uncompromised signals ensures relatively conges-



tion-free traffic flow. We will propose efficient algo-
rithms for finding a resilient configuration, and demon-
strate that resilience can be achieved without substan-
tially increasing travel time in the no-attack case. Sec-
ondly, we will analyze what makes a traffic signal an at-
tractive target by studying the characteristics of critical
signals. We will consider basic graph-theoretic metrics
(e.g., node degree), characteristics of the traffic flowing
through the intersection, and centrality metrics (e.g.,
betweenness centrality).
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