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Abstract

Spear-phishing attacks pose a serious threat to sensitive
computer systems, since they sidestep technical secu-
rity mechanisms by exploiting the carelessness of au-
thorized users. A common way to mitigate such at-
tacks is to use e-mail filters which block e-mails with
a maliciousness score above a chosen threshold. Opti-
mal choice of such a threshold involves a tradeoff be-
tween the risk from delivered malicious emails and the
cost of blocking benign traffic. A further complicat-
ing factor is the strategic nature of an attacker, who
may selectively target users offering the best value in
terms of likelihood of success and resulting access priv-
ileges. Previous work on strategic threshold-selection
considered a single organization choosing thresholds
for all users. In reality, many organizations are poten-
tial targets of such attacks, and their incentives need
not be well aligned. We therefore consider the prob-
lem of strategic threshold-selection by a collection of
independent self-interested users. We characterize both
Stackelberg multi-defender equilibria, corresponding to
short-term strategic dynamics, as well as Nash equi-
libria of the simultaneous game between all users and
the attacker, modeling long-term dynamics, and exhibit
a polynomial-time algorithm for computing short-term
(Stackelberg) equilibria. We find that while Stackelberg
multi-defender equilibrium need not exist, Nash equi-
librium always exists, and remarkably, both equilibria
are unique and socially optimal.

1 Introduction
A number of high-profile targets have fallen victim to spear-
phishing attacks. In 2013, Target, the second largest gen-
eral merchandise retailer in the US, suffered a massive data
breach due to a spear-phishing attack (Smith 2014). As a
consequence, Target had to pay Visa issuers $67 million as
a reimbursement, and it is reportedly working on a simi-
lar deal with MasterCard (Sidel 2015). In 2014, the cor-
porate network of a German steel mill was infiltrated by
a spear-phishing attack (Zetter 2015). The attackers ma-
nipulated and disrupted control systems, resulting in mas-
sive physical damage. Further examples include one of the
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White House internal networks (McCullagh 2012), comput-
ers at the Nuclear Regulatory Commission (Rogers 2014),
and Oak Ridge National Laboratory (Zetter 2011).

To mitigate spear-phishing attacks, an organization may
set up an e-mail filter, which assigns a maliciousness score to
each incoming e-mail and delivers only those that are below
a given threshold (Hong 2012). Unfortunately, scoring is
inevitably imperfect, and threshold choice must necessarily
balance security (risk of delivering malicious e-mails) and
usability (blocking of benign traffic).

Unlike non-targeted malicious e-mails, such as spam,
spear-phishing e-mails must be customized to their tar-
gets, which means that an attacker must spend a substantial
amount of effort on each target (Herley and Florêncio 2008).
Consequently, attackers can only target a limited number of
users in any spear-phishing campaign. This limitation im-
plies that an attacker must select a subset of targets to max-
imize expected yield from an attack. Moreover, resource
limitation on the attacker links the decisions of otherwise
independent defenders: filtering decisions by some may re-
sult in others being targeted. If a single organization were re-
sponsible for setting filtering thresholds for all users, it could
optimally account for such interdependencies, as shown in
prior work (Laszka, Vorobeychik, and Koutsoukos 2015;
Zhao, An, and Kiekintveld 2015). Realistically, however,
numerous organizations are typically targeted, and their
goals are generally distinct. The externalities that users im-
pose upon one another therefore become strategically sig-
nificant, and no work to date analyzes the resulting strategic
dynamics in the spear-phishing context, even though prior
work has considered other, quite different, interdependent
security problems (Laszka, Felegyhazi, and Buttyan 2014;
Kunreuther and Heal 2003; Chan, Ceyko, and Ortiz 2012;
Lou and Vorobeychik 2015).

We address the problem of strategic e-mail threshold se-
lection by a collection of independent users, faced with a
threat of both spear-phishing and non-targeted (e.g., spam)
malicious e-mail campaigns. We consider short-term strate-
gic dynamics by appealing to a Stackelberg multi-defender
equilibrium concept, as well as long-term dynamics using
the Nash equilibrium concept. We offer a characterization of
both kinds of equilibria, and present a polynomial-time algo-
rithm for computing the Stackelberg multi-defender equilib-
rium. Remarkably, we demonstrate that while Stackelberg



multi-defender equilibria need not exist, Nash equilibrium
always exists. Furthermore, we show that both equilibria
are unique, and are socially optimal.

2 Model
Our model is based on the model introduced by Laszka,
Vorobeychik, and Koutsoukos (2015), which we now extend
for independent and self-interested defenders. For a list of
symbols used in our model, see Table 1.

Table 1: List of Symbols
Symbol Description

FP (f) false-positive probability given that the
false-negative probability is f

A number of users targeted by the attacker
Lu expected damage for delivering targeted

malicious e-mails to user u
Nu expected damage for delivering non-

targeted malicious e-mails to user u
Cu expected loss from filtering out non-

malicious e-mails to user u
fau
u optimal false-negative probability of user u

given that the user is targeted with proba-
bility au

Lau
u (fu) expected loss of user u given the user is

targeted with probability au

We model the strategic interactions of spear-phishing as a
game between multiple users and a targeting attacker. Note
that we refer to the defending players as users; however,
these players can naturally model groups of users having the
same e-mail filtering policy, or even entire organizations.

Users may receive three types of e-mails: non-malicious,
malicious non-targeted, and malicious targeted. If a non-
malicious e-mail is filtered out, which we call a false posi-
tive (FP), then the user suffers usability loss. If a malicious
e-mail is not filtered out, which we call a false negative
(FN), then the user might open that e-mail and suffer loss
from the attack. We assume that the attainable false-positive
and false-negative probability pairs are given by a function
FP : [0, 1] 7→ [0, 1], where FP (f) is the probability of false
positives when the the probability of false negatives is f .
In any practical e-mail classifier, FP (f) is a non-increasing
function of f (see Figure 1 for an illustration). For analyt-
ical tractability, we further assume that FP (f) is a contin-
uous, strictly decreasing, and strictly convex function of f .
Note that these assumptions hold approximately in practice.
For a discussion on how to handle problem instances that
violate these assumptions, we refer the reader to the work
by Laszka, Vorobeychik, and Koutsoukos (2015).

Malicious e-mails are divided into two categories: tar-
geted and non-targeted. The former includes spear-phishing
and whaling e-mails sent by the targeting attacker, while
the latter includes spam and non-targeted phishing e-mails.
Since the senders of non-targeted e-mails do not choose their
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Figure 1: False-negative to false-positive tradeoff curves for
the two datasets used by Laszka, Vorobeychik, and Kout-
soukos (2015) and Zhao, An, and Kiekintveld (2015).

targets in a strategic way in practice, we model them as non-
strategic actors instead of game-theoretic players (see con-
stant Nu below).

Strategies A pure strategy of user u is a false-negative
probability fu, and we let f denote the strategy profile of
the users. Note that we do not have to consider thresholds
explicitly in our model, since there is a bijection between
false-negative probabilities and thresholds values.

A pure strategy of the attacker is a set of usersA, who will
be attacked. Since targeted e-mails have to be customized,
which requires spending a considerable amount of effort on
each target, the number of users that can be targeted is lim-
ited. Formally, the attacker’s strategy is subject to a budget
constraint |A| ≤ A. For the same reason, we also assume
that the attacker is lazy in the sense that she does not target
a user when she would receive zero payoff for targeting the
user.

We will also consider mixed strategies, which are defined
naturally: a mixed strategy of the attacker is a distribution
over subsets of users, while a mixed strategy of user u is a
distribution over false-negative values from [0, 1].

Payoffs For a given pure-strategy profile (f ,A), the at-
tacker’s payoff is

U =
∑
u∈A

fuLu, (1)

where Lu > 0 is the expected amount of damage when user
u falls victim to a targeted attack.

If user u is targeted by the attacker (i.e., if u ∈ A), then
her loss (i.e., inverse payoff) is

L1
u(fu) = fu(Lu +Nu) + FP (fu)Cu, (2)

and if user u is not targeted (i.e., if u 6∈ A), her loss is
L0
u(fu) = fuNu + FP (fu)Cu, (3)

where Nu > 0 is the loss of user u for delivering non-
targeted malicious e-mails, and Cu > 0 is the loss for
not delivering non-malicious e-mails. Payoffs for mixed-
strategies are defined naturally as expectations of these
quantities. Note that in contrast with most multi-defender
security games, the only externality in our game stems from
a strategic attacker.



Solution Concepts In our analysis, we will study both
short-term and long-term strategic dynamics of the e-mail
filtering problem. As is typical in the literature, we study
them using two different solution concepts, Stackelberg
multi-defender equilibrium and Nash equilibrium.

In the short-term model, the game has two stages: in the
first stage, the users make their strategic decision simulta-
neously; while in the second stage, the attacker makes its
decision knowing which strategies the users have chosen.
We solve this model using the concept of Stackelberg multi-
defender equilibrium (SMDE), which is defined as follows.

Definition 1 (Stackelberg multi-defender equilibrium). A
strategy profile is an SMDE if each user’s strategy is a best
response to the others, assuming that the attacker will always
play a best-response strategy.

In the long-term model, the players make their strategic
decisions simultaneously. We solve this model using the
concept of Nash equilibrium (NE), which is defined as fol-
lows.

Definition 2 (Nash equilibrium). A strategy profile (f ,a)
is an NE if every player’s strategy is a best response, taking
the other players’ strategies as given.

3 Analysis
First, in Section 3.1, we provide necessary conditions on
the equilibria and introduce additional notation to facilitate
our analysis. Then, we study and characterize the Stackel-
berg multi-defender and Nash equilibria of the game in Sec-
tions 3.2 and 3.3, respectively. Finally, we show that these
equilibria are socially optimal in Section 3.4.

3.1 Preliminaries
We begin our analysis by providing a necessary condition on
the users’ mixed-strategy best responses, which applies both
to SMDE and NE.

Lemma 1. The best-response strategy for a user is always
a pure strategy.

As a consequence, for the remainder of this paper, we will
consider only pure strategies (i.e., single false-negative val-
ues) for the users.

Proof sketch. Suppose that we are given a mixed strategy
that is not a pure strategy (i.e., its support consist of more
than one false-negative value); then, we show that the ex-
pected false-negative value is a better strategy than the distri-
bution. Firstly, it is easy to see that the other players’ payoffs
(and, hence, their best responses) remain the same if the user
changes its strategy from a distribution to the expected value.
Secondly, since the function FP is strictly convex, we have
from Jensen’s inequality that the user’s loss is strictly less for
the expected value than for the distribution. Therefore, for
every mixed strategy that is not a pure strategy, there exists
a strictly better pure strategy.

Next, we introduce a simpler notation for the attacker’s
mixed strategies. Let au be the probability that user u is
targeted by the attacker, that is, the probability that u is an

element of a subset chosen randomly according to the at-
tacker’s mixed strategy. Using this notation, we can express
the attacker’s expected payoff as

U =
∑
u

aufuLu (4)

and user u’s expected loss as

Lau
u (fu) = fu(auLu +Nu) + FP (fu)Cu. (5)

For every mixed strategy of the attacker, we can easily com-
pute the corresponding vector of probabilities a, which must
satisfy

∑
u au ≤ A. Furthermore, it is also easy to see that

for every vector of probabilities a satisfying
∑

u au ≤ A,
there exists a mixed-strategy whose marginal is a. For the
remainder of this paper, we will represent the attacker’s
mixed-strategies as vectors of probabilities.

Now, we introduce some additional notation to facilitate
our analysis. Let fau

u denote user u’s optimal false-negative
probability given that the attacker targets it with probability
au, that is, let fau

u be the fu which minimizes Lau
u (fu). It

is easy to see that fau
u is well defined for any au, and it is a

non-increasing and continuous function of au.
Finally, consider the value f0

u , which is the optimal false-
negative probability given that the attacker never targets
user u (i.e., given au = 0). If f0

u = 0 for user u, then
it is easy to see that the user will always play the strategy
fu = 0, regardless of the other players’ strategies or the so-
lution concept used. Furthermore, such users do not affect
the other players’ strategic choices either, since an attacker
will never target user u if fu = 0. Consequently, for the
remainder of the paper, we can disregard these users and as-
sume that f0

u > 0 for every user u.

3.2 Stackelberg Multi-Defender Equilibrium
In this subsection, we characterize the Stackelberg multi-
defender equilibrium (SMDE) and design an algorithm to
find it. First, we show that in an SMDE, the attacker plays
a pure strategy and the users play f1

u or f0
u . Then, we show

that the SMDE is unique if it exists, and provide an efficient
algorithm for computing it. However, we also find that the
SMDE does not necessarily exist, but our algorithm can re-
turn “there is no SMDE” if it does not exist.

The following lemma shows that the attacker always plays
a pure strategy in an SMDE.
Lemma 2. A strategy profile is an SMDE only if for each
user u, either au = 0 or au = 1 holds.

Proof. We prove the claim by contradiction. If 0 < au < 1
for some user u, then her expected loss is

Lau
u (fu) =fu(auLu +Nu) + FP (fu)Cu. (6)

Since the attacker’s strategy is a best response, 0 < au < 1
implies that there exists some user v 6= u with 0 < av < 1
and fuLu = fvLv . Hence, if user u changes her strategy
to fu − ε (where ε is an arbitrarily small positive number),
the attacker will target user v (or some other user) instead of
user u. Then, the loss of user u will be

L0
u(fu − ε) = (fu − ε)Nu + FP (fu − ε)Cu, (7)



since she is no longer targeted. We can compute the decrease
in her loss due to deviating from her strategy as

Lau
u (fu)− L0

u(fu − ε)
=aufuLu + εNu + [FP (fu)− FP (fu − ε)]Cu.

(8)

Clearly, Lau
u (fu) − L0

u(fu − ε) can be greater than 0, as ε
can be arbitrarily small and FP (fu) − FP (fu − ε) can be
arbitrarily close to 0. Hence, user u can decrease her loss by
deviating from the strategy fu, which leads to a contradic-
tion with our initial assumption that the strategy profile is an
SMDE. Therefore, the claim of the lemma has to hold.

From Lemmas 1 and 2, we know that in an SMDE, both
the users and the attacker play pure strategies. Now, we fur-
ther constrain the users’ equilibrium strategies by showing
that user u plays either f1

u or f0
u in an SMDE.

Lemma 3. A strategy profile is an SMDE only if fu = f1
u

for every user u who is targeted, and fu = f0
u for every

user u who is not targeted.

Proof sketch. We prove the claim by contradiction. Suppose
that ∃u such that fu 6= f1

u and fu 6= f0
u . Based on Lemma

2, if the profile is an SMDE, then either au = 0 or au = 1,
i.e., user u is targeted with probability 1 or 0.

1) First, assume that user u is targeted. Then, we show that
strategy f1

u is better for user u than strategy fu. First,
if user u is still attacked after she switches to f1

u , then
we have by definition that f1

u is better since it minimizes
L1
u. On the other hand, if the attacker no longer targets

user u, then we have that the users’ loss is even lower:
L0
u(f1

u) ≤ L1
u(f1

u) < L1
u(fu). Hence, fu cannot be a

best response.
2) If user u is not targeted, there are two cases: fu > f0

u
or fu < f0

u . If fu > f0
u , she can switch to f0

u
to lower her loss without becoming a target of the at-
tacker. If fu < f0

u , then we consider another user
v = argminu∈A fuLu, i.e., the user in the targeted set
that makes attacker get lower payoff. Using an argu-
ment similar to the one used in the proof of Lemma 2,
we can show that fuLu < fvLv; otherwise, user v
could lower her loss by decreasing fv with an arbitrar-
ily small value. On one hand, when f0

uLu < fvLv ,
user u can switch to f0

u to lower her loss without be-
coming a target of the attacker. On the other hand, when
f0
uLu ≥ fvLv , user u can switch to some value f ′u such

that fuLu < f ′uLu < fvLv and still not be targeted.
Then, based on characteristics of L0

u(fu), we have that
user u can lower her loss by switching to strategy f ′u.

Consequently, user u has incentives to deviate from her strat-
egy in both cases, which implies that there is no SMDE in
which fu 6= f1

u and fu 6= f0
u for some user u.

Based on the above results, we first provide a neces-
sary and sufficient condition for a strategy profile being an
SMDE, and then present an algorithm to find an SMDE.

Theorem 1. A strategy profile (f ,A) is an SMDE if and
only if

1) ∀u ∈ A: fu = f1
u ,

2) ∀u /∈ A: fu = f0
u ,

3) F1 > F0,
4) ∀u ∈ A: L1

u(f1
u) ≤ L0

u( F0

Lu
),

where F1 = minu∈A f
1
uLu and F0 = maxu 6∈A f

0
uLu.

Proof sketch. First, we prove that the conditions of the the-
orem are necessary. From Lemma 3, we readily have that
fu = f1

u , ∀u ∈ A, and fv = f0
v , ∀v /∈ A hold in an

SMDE. Next, since the attacker’s best response must target
the users with the highest fuLu values, we also have that
minu∈A f

1
uLu ≥ maxu6∈A f

0
uLu has to hold in an SMDE.

Furthermore, this inequality has to be strict, otherwise a user
in A could decrease her loss by decreasing her strategy by
an arbitrarily small amount. Finally, in an SMDE, users inA
do not have incentive to deviate from their strategy. If some
user u ∈ A were to deviate, then she would pick a strategy
that would divert attacks to another user, that is, she would
consider a strategy fu ≤ F0

Lu
(otherwise, following f1

u would
obviously be better). Since f0

u > f1
u >

F0

Lu
, her best choice

would have to be F0

Lu
. Therefore, if user u has no incentive

to deviate, then L1
u(f1

u) ≤ L0
u( F0

Lu
) has to hold.

Second, we prove that the conditions of the theorem are
sufficient. For ∀u /∈ A, based on characteristics of the func-
tions L1

u(fu) and L0
u(fu), we have that L0

u(f0
u) is the mini-

mal loss user u can ever get, so she has no incentive to de-
viate. For ∀u ∈ A, L1

u(f1
u) is the minimal loss of user u

given that she is targeted. Hence, the only way that she
could decrease her loss is to avoid being targeted by the
attacker. In order to avoid being targeted, she has to pick
a strategy fu ≤ F0/Lu. From the convexity of L0

u and
f0
u > f1

u > F0/Lu, we have that L0
u(fu) is a decreasing

function when fu < F0/Lu. Hence, her best strategy that
avoids being targeted is F0/Lu; however, it follows from
∀u ∈ A: L1

u(f1
u) ≤ L0

u(F0/Lu) that this is inferior to
f1
u . Therefore, the users’ strategies are best responses un-

der the conditions of the theorem. Finally, it follows readily
from F1 > F0 that the attacker’s strategy is also best re-
sponse.

In Theorem 1, we provided conditions for determining
whether targeting a given set of users is an SMDE. In order
to find an equilibrium, we could enumerate every subset A
of users subject to |A| = A, and check whether targeting A
is an SMDE using Theorem 1. However, the running time
of this approach grows exponentially as a function of A,
and quickly becomes prohibitively large. We now provide
a rather strong and surprising result which states that in an
SMDE, the attacker will always target the set ofA users with
highest value of f1

uLu.

Lemma 4. Let A be a subset of users such that |A| = A
and minu∈A f

1
uLu > maxu/∈A f

1
uLu. In an SMDE, all of

the users in A will be targeted.

Proof. We prove the claim by contradiction. Suppose that
there is an SMDE such that some user v /∈ A is targeted.
Then, user v plays f1

v , and there exists some user w ∈ A



who is not targeted and plays f0
w. Since the attacker’s strat-

egy is a best response, we have that f1
vLv ≥ f0

wLw. From
minu∈A f

1
uLu > maxu/∈A f

1
uLu, we obtain f1

vLv < f1
wLw.

However, since ∀u : f1
u ≤ f0

u , we also have f1
vLv <

f1
wLw ≤ f0

wLw, which contradicts f1
vLv ≥ f0

wLw. Hence,
the original claim must hold.

Algorithm 1 Find a Stackelberg Multi-Defender Equilib-
rium (SMDE)
input: a set of users U, Lu, L1

u(fu) and L0
u(fu) for every

user u, and A for attacker
return: a SMDE or “there is no SMDE”

1: for each user u do
2: compute f1

u and f0
u based on L1

u(fu) and L0
u(fu)

3: end for
4: if |U| ≤ A then
5: A ← U
6: F0 ← 0
7: else
8: A ← the set of A users with highest f1

uLu value
9: F0 ← maxu 6∈A f

0
uLu

10: end if
11: F1 ← minu∈A f

1
uLu

12: if F1 > F0 and ∀u ∈ A, L1
u(f1

u) ≤ L0
u( F0

Lu
) then

13: return profile (f ,A) in which ∀u ∈ A: fu = f1
u ,

o.w. fu = f0
u

14: else
15: return “there is no SMDE”
16: end if

Then, based on Theorem 1 and Lemma 4, we propose Al-
gorithm 1 for finding an SMDE. We also find that an SMDE
may not necessarily exist, and we provide an example for
this case below. Furthermore, we find that the SMDE is
unique if it exists. To see this, recall that in an SMDE,
the attacker always plays a pure strategy targeting the set of
users with highest values of f1

uLu, and this set is obviously
unique. Algorithm 1 always finds the unique SMDE if it ex-
ists, and returns “no SMDE” if there is no SMDE. Finally, it
is also easy to see that the running time of the algorithm is
polynomial in the number of users.

Numerical Example Consider a game consisting of two
users (user 1 and user 2) and an attacker, who can target only
a single user (i.e., A = 1). Let L1 = L2 = 1, N1 = N2 =
1
2 , C1 = 1, and C2 = 2. Finally, let FP (f) = (1 − f)2,
which obviously satisfies our assumptions about FP . Then,
f1

1 = 1
4 , f0

1 = 3
4 , f1

2 = 5
8 , and f0

2 = 7
8 .

Now, we show that the game does not have an SMDE.
From Lemma 2, we know that the attacker will target either
user 1 or user 2. First, suppose that the attacker targets user
1 (i.e., A = {1}). Then, from Theorem 1, we have that the
users’ strategies must be f1 = f1

1 = 1
4 and f2 = f0

2 = 7
8 .

However, this contradicts that A is a best response, since
f1L1 = 1

4 <
7
8 = f2L2. Second, suppose that the attacker

targets user 2. Then, the user’s strategies must be f1 = f0
1 =

3
4 and f2 = f1

2 = 5
8 , which contradicts that A is a best

response, since f1L1 = 3
4 >

5
8 = f2L2.

3.3 Nash Equilibrium
We begin our analysis of long-term dynamics by providing
a necessary and sufficient conditions on the existence of a
pure-strategy Nash equilibrium.

Lemma 5. The game has a pure-strategy NE if and only if
there exists a set of A users A such that minu∈A f

1
uLu ≥

maxu6∈A f
0
uLu. If a pure-strategy NE exists, then it is

unique, and the attacker’s equilibrium strategy is A.

Proof sketch. First, it easy to see that there can exist at
most one set A satisfying the condition in the lemma, since
minu∈A f

1
uLu ≥ maxu6∈A f

0
uLu implies minu∈A f

1
uLu >

maxu6∈A f
1
uLu. Second, if such a set A exist, then the at-

tacker targetingA and the users playing their best responses
f1
u or f0

u is obviously an equilibrium. Finally, in any pure
strategy equilibrium, the set of users targeted by the attacker
must satisfy the condition in the lemma; otherwise, the at-
tacker’s strategy would not be a best response.

Next, we extend our analysis by considering both pure
and mixed strategies, and we show that a unique Nash equi-
librium always exists in this case.

Theorem 2. There always exists a unique Nash equilibrium.

Proof. Before we begin, observe that a strategy profile
(f ,a) forms a Nash equilibrium if and only if there exists a
value Λ such that for every user u,

• au = 0 =⇒ fu = f0
u and f0

uLu ≤ Λ;
• 0 < au < 1 =⇒ fu = fau

u and fuLu = Λ;
• au = 1 =⇒ fu = f1

u and f1
uLu ≥ Λ.

We provide a constructive proof, that is, we show how to
find a mixed-strategy Nash equilibrium. First, we define

fu(Λ) =


f0
u if f0

uLu ≤ Λ,

f1
u if f1

uLu ≥ Λ,
Λ
Lu

otherwise.
(9)

It is easy to see that these functions are well-defined. Fur-
thermore, they are continuous and non-decreasing in Λ.
Also notice that when the value of function fu(Λ) is strictly
greater than f1

u and strictly less than f0
u , the function is

strictly increasing.
Next, we define

au(Λ) =


0 if fu(Λ) = f0

u ,

1 if fu(Λ) = f1
u ,

a∗ such that fu(Λ) = fa
∗

u otherwise.
(10)

Notice that these functions are also well-defined, since f1
u ≤

fu(Λ) ≤ f0
u always holds and fu(Λ) is continuous. From

the characteristics of fu(Λ), we also have that each au(Λ)
is a continuous and non-increasing function of Λ. Further-
more, when the value of a function is strictly greater than 0
and strictly less than 1, the function is strictly decreasing.



Now, we let

Err(Λ) = A−
∑
u

au(Λ) . (11)

It is easy to see that Err(Λ) is a non-decreasing and con-
tinuous function of Λ. Furthermore, for Λ = 0, we have
Err(Λ) = A − number of users < 0; and when Λ is high
enough, we have Err(Λ) = A − 0 > 0. Consequently, we
can always find a value Λ∗ such that Err(Λ∗) = 0. On the
one hand, if the game has a pure strategy equilibrium, then
there is a gap between the Ath highest f1

uLu value and the
(A + 1)th highest f0

uLu value. Since the value of Err(Λ)
is 0 whenever Λ is in this gap, Λ∗ is not unique; however,
the strategies given by fu(Λ∗) and au(Λ∗) are unique. On
the other hand, if the game does not have a pure strategy
equilibrium, then Λ∗ is unique.

Finally, it is easy to see that the strategy profile given by
fu(Λ∗) and au(Λ∗) forms a Nash equilibrium, since they
satisfy the conditions established at the beginning of the
proof. Furthermore, for any Λ∗ value, the only strategy pro-
file that satisfies the conditions is the one given by fu(Λ∗)
and au(Λ∗). Since there is a unique Λ∗ value (or in the case
of pure-strategy equilibrium, a range of Λ∗ values) that re-
sults in a feasible attacker strategy, the equilibrium strategy
is unique.

Numerical Example In the previous subsection, we in-
troduced a numerical example, for which no SMDE ex-
ists. Using the constructive proof of Theorem 2, we
can find the unique mixed-strategy NE for this example:(
f1 = 2

3 , f2 = 2
3 , a1 = 1

6 , a2 = 5
6

)
.

It is easy to verify that these strategies form an NE. First,
since f1L1 = 2

3 = f2L2, the attacker’s strategy is ob-
viously a best response. Second, user 1’s best-response
strategy minimizes the loss La1

1 (f1) = f1(a1L1 + N1) +
FP (f1)C1 = f1

4
6 + (1 − f1)2 = (f1)2 − 4

3f1 + 1 =(
f1 − 2

3

)2
+ 5

9 , whose minimum is clearly attained at f1 =
2
3 . Finally, we can verify that user 2’s strategy is a best re-
sponse in the same way.

3.4 Social Optimum
In the preceding subsections, we have characterized SMDE
and NE, which are formed by the users’ selfish decisions. A
crucial question regarding these equilibria is how close they
are to the social optimum, i.e., to the strategies chosen by
a social planner who is interested in minimizing the players
losses. We define the social optimum formally as follows.
Definition 3 (Social Optimum). The users’ strategies con-
stitute a social optimum if they minimize the sum of the
users’ losses, given that the attacker always plays a best re-
sponse.

The following theorem establishes a very surprising re-
sult: even though users act in their self-interest, the Nash
equilibrium that they reach is a social optimum.
Theorem 3. The Nash equilibrium is a social optimum.

Before proving the theorem, we first have to establish the
following lemma.

Lemma 6. If f is a social optimum, then f1
u ≤ fu ≤ f0

u for
every u.

Proof sketch. For the sake of contradiction, suppose that the
claim does not hold, that is, suppose that there exists a social
optimum strategy f such that f1

u > fu or fu > f0
u for some

user u.
First, suppose that f1

u > fu. If there are less than A users
v who have greater fvLv values than u does, then the at-
tacker’s best response may include u. If there are multiple
users with the same value fuLu, then the attacker can choose
any of them, without changing the social cost. Hence, we
can assume that user u is targeted by the attacker. In this
case, increasing fu to f1

u will obviously be a socially bet-
ter strategy, since it does not change the attacker’s best re-
sponse and we have by definition that f1

u minimizes the loss
for user u.

If there are at least A users v who have greater fvLv val-
ues than u, then the attacker’s best response cannot include
u. In this case, increasing fu by a small amount such that
fuLu does not exceed the Ath greatest value will be a so-
cially better strategy, since it does not change the attacker’s
best response, but decreases the loss for user u (by increas-
ing fu towards f0

u). Hence, f1
u > fu must lead to a contra-

diction.
Second, suppose that fuLu > f0

uLu. Then, we can use a
similar argument as above to show that there exists a socially
better strategy, regardless of whether user u is targeted or
not. Therefore, the claim of the lemma has to hold.

Now, we can prove Theorem 3.

Proof sketch of Theorem 3. We prove the claim of the the-
orem by showing that for any social optimum strategy f ,
there exists an attacker strategy a such that the (f ,a) is a
Nash equilibrium. Since the equilibrium is unique, this will
prove that the social optimum is also unique and it is in fact
equivalent to the equilibrium.

First, suppose that the A highest fuLu values are strictly
greater than the remaining fuLu values. Then, it is easy to
see that for the A users with the highest values, fu = f1

u
must hold; otherwise, f cannot be a social optimum. Next,
it is also clear that for the remaining users, fu = f0

u must
hold; otherwise, f cannot be a social optimum. Finally, it
is easy to verify that the attacker strategy which targets the
first group of users forms an equilibrium with f .

Now, suppose that the Ath highest fuLu value is equal
to the (number of users − A)th lowest fuLu value, and let
this value be denoted by Λ. Then, for users u such that
fuLu < Λ, fu = f0

u must hold; otherwise, f cannot be a so-
cial optimum since changing fu towards f0

u would decrease
social cost. For these users, let au = 0, which ensures that
fu is a best response. Next, for users u such that fuLu > Λ,
fu = f1

u must hold; otherwise, f cannot be a social opti-
mum since changing fu towards f1

u would decrease social
cost. For these users, let au = 1, which ensures that fu is
a best response. Finally, for users u such that fuLu = Λ,
let au such that fu = fau

u , which again ensures that fu is a



best response. Note that in order for these au values to ex-
ist, fu must be between f1

u and f0
u , which we have shown in

Lemma 6.
From the construction of a, we readily have that the users’

strategies are best responses. Since the attacker is indiffer-
ent between users with fuLu = Λ, we also have that a is
a best response given that it is a feasible strategy. Hence,
it remains to show that a is feasible, i.e., the sum of the
probabilities is A. Suppose for the sake of contradiction that
this is not true, i.e., the sum of the probabilities assigned to
users with fuLu = Λ is not equal to A minus the number
of users with fu = f1

u . This means that the users fu val-
ues are either higher or lower than what would be the best
response to the sum of the actual probabilities. Hence, by ei-
ther decreasing or increasing Λ, the sum of the users losses
could be decreased to the optimal value for the sum of the
actual probabilities. Since this would contradict the assump-
tion that f is socially optimal, a must be a feasible strategy,
which concludes our proof.

Finally, we show that if an SMDE exists, then it is also an
NE, which proves that the SMDE is also socially optimal.

Theorem 4. The SMDE is a social optimum.

Proof. We prove that an SMDE is an NE by showing that
if a strategy profile satisfies Theorem 1, then the players’
strategies are best responses. First, it follows from the first
condition that users in A play their best responses. Second,
it follows from the second condition that remaining users
play their best responses. Finally, it follows from the third
condition that the attacker’s strategy is a best response. Con-
sequently, an SMDE is also an NE, which proves that it is a
social optimum.

4 Related Work
Strategic selection of thresholds for filtering spear-phishing
e-mails has been considered in the research literature only
very recently. Laszka, Vorobeychik, and Koutsoukos (2015)
model the decision problem faced by a single defender
who has to protect multiple users against targeted and non-
targeted malicious e-mail. Their work focuses on charac-
terizing and computing optimal defense strategies, and they
use numerical results to demonstrate that strategic thresh-
old selection can substantially decrease losses compared to
naı̈ve thresholds. Zhao, An, and Kiekintveld (2015) study
a variant of the previous model: they assume that the tar-
geting attacker can launch an unlimited number of costly
spear-phishing attacks in order to learn a secret, which only
a subset of the users know. Their work also focuses on the
computational aspects of finding an optimal defense strat-
egy; however, their variant of the model does not consider
non-targeted malicious e-mails.

Similar problems in adversarial classification have been
studied in the research literature earlier. For example, Drit-
soula, Loiseau, and Musacchio (2012) consider the problem
of choosing a threshold for classifying an attacker into two
categories, spammer and spy, based on its intrusion attempts.
More recently, Lisỳ, Kessl, and Pevnỳ (2014) study adver-
sarial classification in a general model, which can be applied

to e-mail filtering, intrusion detection, steganalysis, etc., and
analyze Nash and Stackelberg equilibria based on the ROC
curve of the classifier. However, both of these research ef-
forts consider only a single defender.

Strategic interactions between multiple, interdependent
defenders have been extensively studied (Laszka, Felegy-
hazi, and Buttyan 2014). The two models that are most
similar to ours are by Bachrach, Draief, and Goyal (2013)
and Lou and Vorobeychik (2015). In the former, the at-
tacker may target only one defender, and the NE may be
arbitrarily worse than the social optimum. In the latter, the
defenders’ strategies are discrete and the utility function is
linear, whereas our model involves non-linear utilities. Our
model has similarities to congestion games as well, which
also consider interdependent players. Briefly, the central
difference from these games is the presence of a strategic
attacker, which significantly changes strategic dynamics.

Finally, the problem of designing e-mails classifiers for
detecting spam and phishing has also been extensively stud-
ied (Blanzieri and Bryl 2008). Note that these results are
complementary to the strategic threshold-selection problem,
since the latter builds on an exogenously given classifier. Po-
tentially malicious e-mails can be classified based on many
attributes. For example, Fette, Sadeh, and Tomasic (2007)
build a classifier for detecting phishing e-mails using a vari-
ety of features, such as the number of links in the e-mail and
the age of the linked-to domain names. When evaluated on
a real-world dataset, the false negative rate of the classifier
was less than 4%, while its false positive rate was around
0.1%. As another example, Bergholz et al. (2010) design
an e-mail classifier for detecting spam and phishing e-mails,
and they describe a number of novel features, such as de-
sign elements of known brands and intentional distortion of
content not perceivable by the reader.

5 Conclusion
In order to mitigate the serious threat posed by spear-
phishing attacks, defenders can deploy e-mail filters. How-
ever, the strategic nature of these attacks and the independent
configuration of the e-mail filters may lead to a coordination
problem. In this paper, we studied this coordination problem
by extending previous work on strategic threshold-selection.
We considered both short-term and long-term dynamics, and
found that the defenders’ selfish choices need not to lead to
an equilibrium on the short term, but they definitely lead to
one on the long-term. Finally, we found that – quite remark-
ably – these equilibria are socially optimal.

These results are in stark contrast with the majority of
multi-defender and interdependent security games. Usually,
these games exhibit socially suboptimal equilibria, in which
defenders “free-ride” on others, whereas equilibria are so-
cially optimal in our model. The explanation for these dif-
ferences lies in the problem-specific assumptions on which
the exact formulations of the players’ utility functions are
based. These differences are very important from a prac-
tical perspective (e.g., devising regulations), and provide a
motivation for our alternative model.

There are multiple natural future research directions. In
this paper, we have shown that the defenders may reach an



NE on the long term; however, it remains an open question
how quickly they converge to the equilibrium. This ques-
tions is especially interesting in a setting where the parame-
ters of the game and, hence, the NE evolve over time. As an-
other direction, one could consider alternative core assump-
tions, such as incomplete or imperfect information, which
might lead to qualitatively different results.
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