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1. INTRODUCTION
Nowadays the success of economic and political organizations depends less on the con-
ventional factors capital and labor, but increasingly on making the right strategic de-
cisions. These decisions require careful preparation, often involving large numbers of
staff, and for a variety of reasons their outcomes must be protected until the official
release. At the same time, the proliferation of information technology makes organiza-
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tions more transparent and vulnerable to information leaks, turning effective protec-
tion of organizational secrets, including intellectual property, into a hard problem.

Providing effective access control in organizations has been referred to as the “tradi-
tional center of gravity of computer security” since it is a melting pot for human factors,
systems engineering and formal computer science approaches [Anderson 2008]. Over
the last decades, a large number of important contributions have been made to address
various technical challenges to the problem of access control for critical systems and
sensitive data [Saltzer and Schroeder 1975; Sandhu and Samarati 1994]. Beyond the
technical level, the management literature distinguishes four thrusts of organizational
measures to prevent information leaks: deterrence, prevention, detection, and reme-
dies [Straub and Welke 1998]. Our work addresses prevention on a non-technical level
by studying the composition of the teams who prepare or work with organizational
secrets. In particular, we study how to compose teams in such a way that the risk of
information leakage is minimized.

This research is motivated by the steady rise of cyber-espionage activities, in par-
ticular the threat scenario of employees stealing information for monetary rewards.
A recent article summarized publicly-known United States legal data from the past
four years and stated that “nearly 100 individual or corporate defendants have been
charged by the Justice Department with stealing trade secrets or classified informa-
tion” [Finn 2013]. Data theft by trusted employees covers a significant share of insider
attacks. For example, a CERT investigation of 23 attacks showed that “in 78% of the
incidents, the insiders were authorized users with active computer accounts at the
time of the incident. In 43% of the cases, the insider used his or her own username and
password to carry out the incident” [Randazzo et al. 2005].

The interpretation of such statements is not always fully conclusive because insider
threat tends to be a catch-all term for attacks that involve privileged users [Schultz
2002]. However, it is important to distinguish between intrinsically motivated insider
threats – the disgruntled employee – and those with external cause. Arguably the
latter are more relevant in the described scenarios. They include passive observation
of insiders’ actions, which might reveal secrets if an employee’s observable behavior is
correlated with the secret state he knows about, as well as active variants ranging from
deception (social engineering), coercion, extortion, to bribery; depending on the level of
voluntary cooperation of the target person. Evidently, the employees of an organization
differ in their ability to successfully reject advances by an attacker.

Turning a trusted employee into a spy provides a number of benefits for an out-
side attacker. First, a security compromise by an insider might be harder to detect
than external network-based attacks, which might leave traces identifiable for foren-
sics teams. Second, an insider can point the attacker towards particularly valuable
secrets by identifying the so-to-speak needle in the haystack. Given the accelerating
data growth within corporations, it makes sense to assume that attackers are also
suffering from information overload as a result of their successful but unguided net-
work penetrations. Third, an insider can help the attacker interpret the stolen data
through complementary communications that do not have to take place at the work
location. Lastly, having an insider conduct the attack might be the only feasibly way
for an attacker to circumvent the defenses of particularly well-defended targets such
as military and intelligence services, i.e., the attacker makes use of the human as the
weakest link.

In this article, we study a two-player stochastic game for modeling secure team com-
position to add resilience against insider threats with external cause. A project man-
ager, Alice, has a secret she wants to protect but must share with a team of individuals
selected from within her organization; while an adversary, Eve, wants to learn this se-
cret by bribing one potential team member. Eve does not know which individuals will

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2014.



Secure Team Composition 0:3

be chosen by Alice, but both players have information about the bribeability of each po-
tential team member. Specifically, the amount required to successfully bribe each such
individual is given by a random variable with a known distribution but an unknown
realization.

We give necessary conditions on both players’ best-response strategies and on the
Nash equilibria of the game. We find that Alice’s equilibrium strategy involves mini-
mizing the information available to Eve about the team composition. In particular, she
should select each potential team member with a non-zero probability, unless she has
a perfectly secure strategy. In the special case where the bribeability of each employee
is given by a uniformly-distributed random variable, the equilibria can be divided into
two outcomes – either Alice is perfectly secure, or her protection is based only on the
randomness of her selection.

This article extends previous work [Laszka et al. 2013] addressing team composi-
tion, and offers a number of new contributions. We have expanded our framework to
more broadly consider previous work on insider threats. We show that a manager’s
mixed strategy can be efficiently computed from our simplified representation of the
strategy (Theorem 3.1). We exhibit a computable Nash equilibrium (Theorem 4.7), and
prove the uniqueness of the manager’s non-perfectly-secure equilibrium strategy (The-
orem 4.8). Finally, we prove uniqueness of the attacker’s equilibrium payoff (Corol-
lary 4.9). With these new contributions, we continue the discussion of the composition
of project teams as a formal and critical dimension of a comprehensive corporate secu-
rity policy.

The remainder of the article is structured as follows: Section 2 provides the back-
ground for our research and considers related work. In Section 3, we define the basic
properties of our model. The conditions for Nash equilibria are given in Section 4. Sec-
tion 5 instantiates our model with explicit distributions, including additional theoreti-
cal analysis and numerical illustrations. We discuss our results and provide concluding
remarks in Section 6.

2. BACKGROUND AND RELATED WORK
2.1. Studies on Insider Threats and Cyber-espionage
Over the last years, several reports have been published in the area of insider threats,
using different models and loss figures. For example, Carnegie Mellon University’s
CERT has published several reports concerning the field of insider threats, and in-
dustrial and economic espionage. Their 2011 report identifies two different models of
espionage [Moore et al. 2011]. Motivating for our scenario is the so-called Ambitious
Leader Model, where a leader (either from the inside or the outside of the organiza-
tion), tries to convince (other) employees to follow her and to divulge secrets. In an
earlier work, CERT identified several indicators that preceded either industrial espi-
onage or sabotage, and thus could give hints if an employee might be vulnerable to
being bribed [Band et al. 2006]. In our research, we do not explicitly model behavioral
and motivational factors that influence the trustworthiness of an employee (see also
[Schultz 2002] for an overview). Instead, we assume that the defender has an indicator
available to measure the level of trustworthiness.

The awareness of this threat is represented, for example, by a brochure published
by the Federal Bureau of Investigation (FBI) [FBI 2013], that lists:

“A domestic or foreign business competitor or foreign government intent on
illegally acquiring a company’s proprietary information and trade secrets
may wish to place a spy into a company in order to gain access to non-public
information. Alternatively, they may try to recruit an existing employee to do
the same thing.”
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Additionally, the FBI “estimates that every year billions of U.S. dollars are lost to for-
eign and domestic competitors who deliberately target economic intelligence in flour-
ishing U.S. industries and technologies [Federal Bureau of Investigation 2013].” The
FBI further lists the following recommended activities for organizations: “Implement
a proactive plan for safeguarding trade secrets, and confine intellectual knowledge on
a need-to-know basis [Federal Bureau of Investigation 2013].”

Another example from Germany includes a 2012 report which identifies the loss for
the German industry caused by industrial espionage to be around 4.2 billion e [Cor-
porate Trust (Business Risk & Crisis Mgmt. GmbH) 2012]. In that study, over 70% of
these losses were caused by members of their own organization, through a combina-
tion of giving away intellectual property (47.8%) and failing to disclose their knowl-
edge due to social factors (22.7%). Note that these numbers might be unreliable and
interest-driven, as highlighted in [Anderson et al. 2013].

2.2. Related Work
This article touches several different research areas. One directly connected area is the
organization of firms under weak intellectual property rights. For example, in [Rønde
2001], the author considers a situation in which a monopolist may distribute intellec-
tual property across two employees. There is also a competitor who might hire one of
these two to gain access to the intellectual property. The author models this situation
as a leader–follower game, and derives equilibria.

Proposals for deterrence strategies to prevent misuse of computing resources are
complementary to our work [D’Arcy et al. 2009]. These strategies may include secu-
rity education and training, awareness programs, and computer monitoring. However,
the effectiveness of such approaches against sophisticated insider threats is a cause
for concern. A report from the intelligence community on insider threats therefore
highlighted the importance of monitoring by suggesting that researchers should “focus
on detection, not prevention” when fighting insider threats [Brackney and Anderson
2004]. The apparent lack of ability to focus on prevention might partly rest on the lack
of appropriate models and methods (beyond the basic strategies outlined above). Our
research on secure composition of teams addresses this problem space.

Also complementary to our work are models and other approaches to exhaustively
find ways for an insider attacker to gain access to a specific resource (see, for exam-
ple, [Chinchani et al. 2005]). These models typically assume that a willing insider is
already in place and the obstacle is merely how to extract information from the organi-
zation. Our work is focused on preventing an outside attacker to successfully “turn” an
insider who has knowledge of a business secret or intellectual property (and does not
necessarily need to breach sophisticated access control systems to leak information to
the outsider).

There are many additional research directions covering the subject of insider
threats, including game theory [Liu et al. 2008] and trust models [Colwill 2009], which
are all tangent to our model. But, to the best of our knowledge, none of the published
models gives directions for a project manager on how to staff a team, that has to know
a specific intellectual property, while being aware that an attacker might try to bribe
one of his personnel. We respond to the call for research that looks “beyond information
technology to the organization’s overall business processes” to prevent insider threats
from causing substantial harm [Cappelli et al. 2009].

3. MODEL DEFINITION
In this section, we describe a two-player, simultaneous, non-deterministic game which
models the team composition scenario. First, we describe the general context and en-
vironment of the game and introduce the two players. Then, we define these players’
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pure strategies and the payoffs resulting from the pure-strategy choices. Finally, we
introduce notation to represent mixed strategies and express the players’ expected
payoffs in terms of this notation. Figure 1 illustrates our game setup.

secret of (expected) value S

N employees

Alice, the manager, selects
k employees

Eve, the adversary

targets an employee and tries to
bribe her with an amount b

Fig. 1. Illustration for our model with N = 5 and k = 2.

3.1. Environment
In our model, an organization with a secret of high value has N employees who are
qualified to work on projects that require knowledge of the secret. The organization
must share the secret with at least k employees in order to operate. The employ-
ees have varying levels of trustworthiness, which can only be estimated. For a given
employee i, this uncertain trustworthiness level is modeled by a random variable Ti,
whose distribution Ti is known to all players.1 We explicitly disregard other constraints
on team composition and assume that all aspects of the trustworthiness of an employee
are captured by the random variable Ti. If Ti = ti, then employee i will reveal what
she knows whenever she is bribed2 with an amount greater than or equal to ti, but she
will never reveal the secret if she is bribed with an amount less than ti. We use the
standard cumulative distribution function notation

FTi
(b) = Pr[Ti ≤ b] (1)

to denote the probability that the trustworthiness level of employee i is at most b.

3.2. Players
The players in our game are named Alice and Eve. Alice is the project manager of the
organization, who is responsible for selecting a team of qualified employees to work on
a confidential project. The project requires each team member to know a secret of the

1Our game is complete information only in the sense that all players know its parameters. However, as
we will see, the players’ payoffs are non-deterministic for a given strategy profile, due to the randomness of
the trustworthiness levels.

2For brevity, we use this bribe interpretation for our formal analysis. Our results generalize to cases
where trustworthiness measures the susceptibility to eavesdropping, deception, coercion, extortion, or other
forms of social engineering that impose a variable cost on the attacker.
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organization, and this secret has (expected) value S, which is assumed to be known to
both players.3 Alice needs to share this secret with k of her N qualified employees to
ensure the operation of the company.

Eve is a spy from either inside or outside of the organization. Eve wants to learn
the secret and has the resources to bribe or eavesdrop on one of Alice’s employees.
If she eavesdrops on an employee, the trustworthiness level of the employee can be
interpreted as a measure of the difficulty of eavesdropping on that employee.

Note that, since our game is simultaneous, Eve does not know which employees are
on the team, and Alice does not know which employee is bribed.

3.3. Pure-Strategy Sets
Alice’s pure strategy choice is to select exactly k of her N employees with whom she
shares the secret. Formally, she chooses a size-k subset I of {1, . . . , N}.

Eve’s pure strategy choice is to select one employee4 and an amount to bribe. For-
mally, she chooses a pair (i, b) consisting of an employee index i ∈ {1, . . . , N} and a
bribe value b ∈ R≥0.

3.4. Payoffs
Suppose that Alice plays a pure strategy I, and Eve plays a pure strategy (i, b). If
i ∈ I and Ti ≤ b, then Eve receives the value of the secret S minus the amount of
the bribe b, and Alice loses the value of the secret S. In all other cases, Eve loses the
amount of the bribe b, and Alice loses nothing. The payoffs for the different scenarios
are summarized by Table I. Recall that each Ti is a random variable, and the players
only know its distribution Ti.

Table I. Payoffs for Alice and Eve for the strat-
egy profile I, (i, b)

Strategy profile Payoff for
and outcome Alice Eve
i ∈ I and Ti ≤ b −S S − b
i /∈ I or Ti > b 0 −b

3.5. Representation of Mixed Strategies
A player’s mixed strategy is a distribution over the set of her pure strategies. For Al-
ice, the canonical representation of her mixed-strategy space is a finite probability
distribution over the set of size-k subsets of {1, . . . , N}. For Eve, the canonical repre-
sentation of her mixed strategy space is a continuous probability distribution over the
set {1, . . . , N} × R≥0. Because of the structure of the game, the expected payoffs for
both players can be determined by representations of the mixed-strategy spaces that
are simpler than the canonical ones. In the following subsections, we introduce these
representations and use them to express the players’ expected payoffs.

3.5.1. Mixed Strategy for Alice. In the canonical representation of Alice’s mixed strategy,
we would let αI denote the probability that she recruits the members of the size-k set I
into the project team. However, since Eve can bribe only one employee, the payoffs for

3Our analysis does not require the secret to be equally valuable to both players. Furthermore, our anal-
ysis does not change if we assume the secret’s value is a random variable with expectation S.

4The restriction of Eve’s choice to bribe only one employee can be motivated by the adversary’s incentive
to keep her operation covert and, thus, to minimize the number of interactions with employees. For example,
unsuccessful bribes may be reported by the employee, making the success of repeated attempts unlikely.
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any mixed-strategy profile depend only on the probabilities of Alice sharing the secret
with each employee. More specifically, the probability of Eve learning the secret is∑

i∈{1,...,N} Pr[Alice shares the secret with i]·
Pr[Eve succeeds with her bribe | Eve targets i]·
Pr[Eve targets i] . (2)

In other words, Alice’s strategy choice influences the payoffs only through the probabil-
ities of sharing with each employee, not the actual distribution over the subsets. Since
several different mixed strategies might induce the same marginal probabilities for the
employees, we gain simplicity by restricting our attention to these marginal sharing
probabilities. Our goal here is to describe the space of these marginal probabilities.

For each i = 1, . . . , N , we let ai denote the probability that Alice shares the secret
with employee i. Formally,

ai =
∑
I: i∈I

αI . (3)

The requirement that Alice has to share the secret with k employees then induces the
constraint

N∑
i=1

ai = k. (4)

It is easy to see that, for any mixed strategy of Alice, the vector of marginal proba-
bilities a satisfies 0 ≤ ai ≤ 1 for every i, and

∑N
i=1 ai = k. However, it remains to show

that this is also true vice versa; that is, to show that, for any vector a of N probabili-
ties whose sum is k, there exists a mixed strategy for Alice whose vector of marginal
probabilities is a. The following theorem shows that this is indeed true.

THEOREM 3.1. For any vector of probabilities a that satisfies
∑

i ai = k, there exists
a mixed strategy α for Alice such that, for every i, the probability of sharing the secret
with employee i is ai. Furthermore, there is such a mixed strategy whose support consists
of at most N sets.

PROOF. Our proof is constructive, and it is based on the following algorithm.

(1) For every k-subset I, let αI = 0.
(2) Let I be a k-subset consisting of the positions with the k highest ai (if there are

multiple such subsets, select an arbitrary one).
(3) Let p be the maximum value subject to

— for every i ∈ I, ai − p ≥ 0 and
— for every i 6∈ I, ai satisfies the MaxProb constraint (for the definition of this

constraint, see below).
(4) Increase αI by p and, for every i ∈ I, decrease ai by p.
(5) If there is an ai > 0, then continue from Step 2.

Now, we introduce the MaxProb constraint. First, notice that a non-negative vector a
has to satisfy two necessary constraints to be a mixed strategy over k-subsets:

∑
i ai =

k and, for every i, ai ≤ 1. It is easy to see that a vector cannot be a mixed strategy over
k-subsets if it violates one of the constraints. Similarly, at any step of the algorithm’s
execution, it has to hold that ai ≤ k′ for every i, where k′ =

∑
i ai/k. From this, we

can formulate the MaxProb constraint as p ≤
∑

j aj/k − ai. Finally, we call a vector a
proper if, for every i, ai ≥ 0 and ai ≤ k′. Obviously, we have that the input vector is
proper.
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Next, we prove the correctness of the algorithm. First, it is easy to see that the vector
a stays non-negative (first constraint of Step 3). Second, we can show that the vector
a stays proper. Every element i ∈ I is decreased by p, but the sum is decreased by k · p;
thus, if the elements of I satisfied ai ≤

∑
j aj/k before the decrease, they still satisfy

it after the decrease. As for the non-elements i 6∈ I, the MaxProb constraint ensures
that the vector stays proper. Third, it is easy to see that if a vector is proper and non-
zero, then it has at least k positive elements (as no element can be higher than the
sum over k). Fourth, it can be shown that if there are k positive elements, then the
maximum p of Step 3 has to be positive (as there are at most k elements for which the
equality ai =

∑
j aj/k holds; hence, p =

∑
j aj/k − ai does not hold for p = 0 and i 6∈ I).

Note that, at this point, we already have that the algorithm starts with a proper non-
zero vector, it decreases the elements (possibly an infinite number of times) keeping
the vector proper and non-negative, and finally decreases the last k positive elements
to zero at once. It remains to show that the algorithm terminates after a finite number
of iterations. However, we can do much better than that. Let M be the set of elements i
for which the equality ai =

∑
j aj/k holds (i.e., the set of maximal elements), let Z be

the set of zero elements, and let O be the set of elements neither in M nor in Z. First,
if an element belongs to Z, then it obviously remains there after a decrease. Second,
if an element belongs to M , then it remains there after a decrease (as any element
of M has to be a member of I). Third, in every iteration, at least one element of O is
moved to either M or Z (as one of the constraints of Step 3 has to be an equality for
at least one element for the maximum p). Fourth, |O| ≤ N trivially. Therefore, there
are at most N iterations, as we remove an element from the set O in every iteration
and |O| is at most N initially. Notice that this also implies that the cardinality of the
resulting distribution’s support (the number of k-subsets with non-zero probability) is
also at most N .

Finally, we have to show that the resulting α is indeed a distribution, but this is
very easy. First,

∑
I αI = 1, as

∑
i ai = k initially and we decrease it by k · p when

we assign p probability to one of the subsets. Second, for every i,
∑

I3i αI = ai, as we
increase the probability of a containing subset by p when we decrease the value of ai
by p.

Note that we not only proved the existence of a mixed strategy, but also devised an
algorithm for finding a simple one. This is important from a practical point of view,
as we will establish results in Section 4 on best-response and equilibrium strategies
based on the marginal probabilities representation. The above algorithm can be used
in practice to find a feasible mixed strategy.

3.5.2. Mixed Strategy for Eve. To represent Eve’s mixed strategies, which are distribu-
tions over the set {1, . . . , N} × R≥0, we introduce two random variables, Y and B.
Random variable Y takes values in {1, . . . , N}, and it represents the employee Eve has
chosen to bribe. Random variable B takes values in R≥0, and represents the amount
of the bribe.

Similarly to what we did for Alice, for each i = 1, . . . , N , we define ei to be the
probability that Eve bribes employee i, so that we have

ei = Pr[Y = i]. (5)

Since Eve always chooses exactly one employee, we have

N∑
i=1

ei = 1. (6)
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To describe a distribution over bribes, we employ the notation

FB(b) = Pr[B ≤ b], (7)

which gives the probability that the value of the bribe chosen by Eve is at most b. It is
also useful to describe the conditional distributions over bribes focused on a particular
employee i. For each i = 1, . . . , N , let Bi be the random variable whose range is the set
of all possible bribes to player i, and whose distribution Bi is defined by

FBi(b) = Pr[Bi ≤ b] = Pr[B ≤ b|Y = i]. (8)

In what follows, we will represent Eve’s mixed strategies as pairs (e,B), where each
ei is the probability that Eve bribes the employee i, and each Bi is a distribution over
bribe values, conditioned on the assumption that Eve chooses to bribe employee i.

3.6. Payoffs for Mixed Strategies
In order to use the simplified mixed-strategy representation defined above, we have to
express the players’ expected payoffs in terms of these representations. If Alice plays a
mixed strategy represented by a and Eve plays a mixed strategy represented by (e,B),
then the expected payoff for Alice is

−S ·
N∑
i=1

ai · ei · Pr[Ti ≤ Bi] (9)

and the expected payoff for Eve is

S ·
N∑
i=1

(ai · ei · Pr[Ti ≤ Bi])−
N∑
i=1

ei · E[Bi], (10)

where E[Bi] denotes the expected value of Bi under the distribution Bi.

4. ANALYTICAL RESULTS
Our goal in this section is to derive analytical results on the structure of our game’s
Nash equilibria. We begin with giving necessary conditions on Alice’s and Eve’s best-
response strategies. Then, we use these conditions to constrain the players’ strategies
in an equilibrium. Finally, based on these constraints, we provide results on the exis-
tence and uniqueness of the equilibrium strategies and payoffs.

4.1. Best-Response Strategies
4.1.1. Alice’s Best Response. For a fixed strategy of Eve, Alice’s best response minimizes

the probability of the secret being compromised. Since the probability of employee i
being targeted and successfully bribed is ei · Pr[Ti < Bi], Alice has to choose a set I of
k employees that minimizes

∑
i∈I ei · Pr[Ti ≤ Bi]. However, as the set of k employees

minimizing the probability of the secret being disclosed may be non-unique, Alice’s best
response can be a mixed strategy a whose support consists of more than k employees.
This notion is formalized by the following lemma.

LEMMA 4.1. Given Eve’s mixed strategy (e,B), any best-reponse strategy for Alice
has to satisfy the following properties.

— For any employee i, if there are at least N − k employees whose probabilities of being
targeted and successfully bribed are strictly greater than that of i, then ai = 1.

— For any employee i, if there are at least k employees whose probabilities of being
targeted and successfully bribed are strictly less than that of i, then ai = 0.
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PROOF. First, for any employee i, if there are at least N − k employees whose prob-
abilities of sharing the secret are strictly greater than that of i, then i is a member of
every size-k subset of employees that minimizes the probability of the secret being dis-
closed. Thus, in any best response, Alice always shares the secret with this employee i.

Second, for any employee i, if there are at least k employees whose probabilities of
sharing he secret are strictly less than that of i, then i cannot be a member of any
k-subset that minimizes the probability of the secret being disclosed. Thus, i cannot be
in the support of any mixed strategy that is a best response for Alice.

4.1.2. Eve’s Best Response. Suppose that Alice is playing a mixed strategy where ai is
the probability that she shares the secret with employee i. We define MaxUE(Ti, ai) to
be the maximum payoff that Eve can attain from targeting employee i. Formally,

MaxUE(Ti, ai) = max
b∈R≥0

(ai · S · Pr[Ti ≤ b]− b) . (11)

See Figure 2 for an example satisfying MaxUE(Ti, ai) > 0.

b

MaxUE(Ti, ai) −→

{

ArgMaxBE(Ti, ai)0

not profitable profitable not profitable

0

S · ai

Eve’s bribing cost b

Eve’s expected benefit
Pr[Ti ≤ b] · S· ai

Fig. 2. Results of Eve targeting employee i as a function of her bribe amount b.

LEMMA 4.2. For any employee i and trustworthiness distribution Ti, Eve’s maxi-
mum payoff MaxUE(Ti, ai) as a function of Alice’s secret-sharing probability ai has the
following properties:

(1) MaxUE(Ti, 0) = 0,
(2) MaxUE(Ti, x) is increasing in x,
(3) if MaxUE(Ti, z) > 0 for some z, then MaxUE(Ti, x) is strictly increasing in x on (z, 1],
(4) MaxUE(Ti, x) is uniformly continuous in x.

PROOF.

(1) First, it is clear that the maximum of MaxUE(Ti, 0) = 0 · S · Pr[Ti ≤ b] − b = −b,
given that b ∈ R≥0, is attained at b = 0.
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(2) To show that the function is increasing in x, let x, y ∈ [0, 1] with x < y. Let bx be a
bribe value at which the maximum payoff is attained for secret-sharing probabil-
ity x, that is, MaxUE(Ti, x) = x · S · Pr[Ti ≤ bx]− bx. Then, we have

MaxUE(Ti, y) ≥ y · S · Pr[Ti ≤ bx]− bx
≥ x · S · Pr[Ti ≤ bx]− bx
= MaxUE(Ti, x).

(3) To show that the function is strictly increasing in x on (z, 1], let x, y ∈ (z, 1] with
x < y. Let bx be a bribe value at which the maximum payoff is attained for
secret-sharing probability x, that is, MaxUE(Ti, x) = x · S · Pr[Ti ≤ bx] − bx. Since
MaxUE(Ti, x) ≥ MaxUE(Ti, z) > 0 (see previous case), we have Pr[Ti ≤ bx] > 0.
Then,

MaxUE(Ti, y) ≥ y · S · Pr[Ti ≤ bx]− bx
> x · S · Pr[Ti ≤ bx]− bx
= MaxUE(Ti, x).

(4) Finally, to show uniform continuity in x, let x, y ∈ [0, 1] with x < y, and let by be a
bribe value at which the maximum payoff is attained for secret-sharing probability
y, that is, MaxUE(Ti, y) = y · S · Pr[Ti ≤ by] − by. Using the previous result that
MaxUE(Ti, y) is increasing, we have

0 < MaxUE(Ti, y)−MaxUE(Ti, x)
≤ (y · S · Pr[Ti ≤ by]− by)− (x · S · Pr[Ti ≤ by]− by)
= (y − x) · S · Pr[Ti ≤ by]
≤ (y − x) · S.

So MaxUE(Ti, x) satisfies a Lipschitz condition in the variable x with Lipschitz
constant S; and hence, it is uniformly continuous.

For a given employee, it is possible for more than one bribe value to give Eve the
maximal payoff. We define ArgMaxBE(Ti, x) to be the set of bribes that give Eve her
maximum payoff for employee i, which is a function of the employee’s trustworthiness
level distribution and the probability of receiving the secret from Alice. Formally,

ArgMaxBE(Ti, ai) = argmax
b∈R≥0

(ai · S · Pr[Ti ≤ b]− b) . (12)

Using this notation, we may define constraints on Eve’s best response strategy as
follows.

LEMMA 4.3. Given Alice’s mixed strategy a, Eve’s best response selects an employee
i with the largest MaxUE(Ti, ai) over all i ∈ {1, . . . , N}, and then chooses a bribe value b
from ArgMaxBE(Ti, ai). If there are multiple pairs (i, b) satisfying these constraints, then
Eve may choose any distribution whose support is a subset of these payoff-maximizing
pure strategies.

PROOF. Follows readily from Equations (10), (11), and (12).

4.2. Strategies in Nash Equilibria
Above, we introduced constraints on best-response strategies. In the following subsec-
tions, we introduce additional constraints on equilibrium strategies.

4.2.1. Alice’s Strategy in an Equilibrium. It is generally in Alice’s interest to minimize the
maximum attainable payoff for Eve, as this generally (but, since the game is non-zero
sum, not necessarily) minimizes her loss. We know that Eve’s best response is always
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to choose an employee (or a set of employees) which will maximize MaxUE(Ti, ai) over
i. Therefore, in an equilibrium, Alice’s strategy should try to equalize these quantities,
subject to the constraints that her sharing probabilities cannot exceed 1 and that they
sum to k.

This notion is made formal in the following theorem.

THEOREM 4.4. In any Nash equilibrium, Alice’s strategy satisfies the following con-
straints.

(1) For any pair of employees i and j, if ai, aj < 1, then MaxUE(Ti, ai) = MaxUE(Tj , aj).
(2) For any pair of employees i and j, if aj < ai = 1, then MaxUE(Ti, ai) ≤

MaxUE(Tj , aj).
PROOF. Let a, (e,B) be Alice’s and Eve’s mixed strategies and assume that this

strategy profile is a Nash equilibrium.

(1) For the sake of contradiction, suppose that ai, aj < 1 and it holds that
MaxUE(Ti, ai) 6= MaxUE(Tj , aj). We can assume without loss of generality that
MaxUE(Ti, ai) < MaxUE(Tj , aj). Then, MaxUE(Tj , aj) > 0, which (from
Lemma 4.2.1) implies that aj > 0. From Lemma 4.3, we have that the sup-
port of Eve’s best-response mixed strategy does not include i. Thus, Alice may
strictly increase ai towards 1, and strictly decrease every other non-zero compo-
nent of her strategy for employees other than i, while still satisfying the constraint∑

m am = k. By decreasing her secret-sharing probability on every employee that
Eve might bribe, Alice necessarily decreases the total probability of Eve learning
the secret. Therefore, Alice can improve her expected payoff by changing her strat-
egy, which contradicts the equilibrium condition.

(2) For the sake of contradiction, suppose that aj < ai = 1 and that
MaxUE(Ti, ai) > MaxUE(Tj , aj). Then, MaxUE(Ti, ai) > 0, which (based on
Lemma 4.2) implies that ai > 0. Consequently, we have (from Lemma 4.3) that
the support of Eve’s mixed strategy does not include employee j. So Alice may si-
multaneously increase aj towards 1 and decrease her non-zero secret-sharing prob-
abilities for employees other than j, all while satisfying the constraint

∑
m am = k.

Again, by decreasing her secret-sharing probability on every employee that Eve
might bribe, Alice necessarily decreases the total probability of Eve learning the
secret. Hence, this strategy change will increase her expected payoff, contradicting
the equilibrium condition.

It follows from Theorem 4.4 that Alice’s equilibrium strategy a may have some em-
ployees with whom she shares the secret with certainty, but for all other employees,
her secret-sharing distribution is only constrained by a smoothness constraint on the
quantities MaxUE(Ti, ai). Furthermore, these quantities do not depend on Eve’s strat-
egy, a fact on which we will rely when computing an equilibrium.

From Theorem 4.4, we also have that:

COROLLARY 4.5. In any Nash equilibrium,

— Alice is either perfectly secure, that is, Eve has no strategy against her with a positive
payoff, or else Alice shares the secret with every employee with a non-zero probability.
Formally, either MaxUE(Ti, ai) = 0 for every employee i, or ai > 0 for every employee i.

— The employees with whom Alice shares the secret with certainty are at most as likely
to be targeted by Eve as the other employees, with whom Alice is less likely to share
the secret.

It is interesting to compare the first point of the above corollary with Lemma 4.3. The
former says that Alice shares the secret with every employee with a non-zero proba-
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bility (when she cannot be secure), while Lemma 4.3 says that Alice never shares the
secret with an employee if there are at least k employees that have lower probabilities
of being targeted and successfully bribed. Since an equilibrium strategy is necessarily
a best response, it has to satisfy both constraints. This implies that, in an equilib-
rium, Eve equalizes the probability of targeting and successfully bribing over the set
of employees that maximize her expected payoff.

4.2.2. Eve’s Strategy in an Equilibrium. In this section, we build on the constraints on
Alice’s equilibrium strategies presented in Theorem 4.4 to describe Eve’s strategy in
an equilibrium. In the previous paragraph, we argued that, in an equilibrium, Eve
equalizes the probability of targeting and successfully bribing over the set of employees
that maximize her payoff.

This notion is made formal by the following theorem.

THEOREM 4.6. In a Nash equilibrium, if ai, aj < 1 for a pair of employees i and j,
then ei · Pr[Ti ≤ Bi] = ej · Pr[Tj ≤ Bj ].

PROOF. Let a, (e,B) be Alice’s and Eve’s mixed strategies, and assume that this
strategy profile is a Nash equilibrium. For the sake of contradiction, suppose that ei ·
Pr[Ti ≤ Bi] is non-uniform over the set of employees with whom Alice does not always
share the secret. Furthermore, let Imax be the set of employees i for which ei·Pr[Ti ≤ Bi]
is maximal.

First, suppose that k ≤ N−|Imax|. Then, Alice’s best response never shares the secret
with the employees in Imax, that is, ai = 0 for all i ∈ Imax, as there are k strictly better
employees (as stated in Lemma 4.1). Consequently, we have ei = 0 for every i ∈ Imax,
as Eve’s strategy also has to be a best response. But this implies that ei ·Pr[Ti ≤ Bi] = 0
for every i such that ai < 1, which contradicts that ei ·Pr[Ti ≤ Bi] is non-uniform. Thus,
it has to hold that k > N − |Imax|.

From k > N−|Imax|, we have that Alice’s best response always shares the secret with
every employee i for which ei · Pr[Ti ≤ Bi] is not maximal (as stated in Lemma 4.1).
Consequently, the only employees i for which ai < 1 holds are the employees in Imax.
But this contradicts that ei · Pr[Ti ≤ Bi] is non-uniform since all employees in Imax

have the same maximal ei · Pr[Ti ≤ Bi].

4.3. Existence and Multiplicity of Equilibrium Strategies and Payoffs
In the previous subsections, we have formulated constraints on the equilibria of the
game. Here, we provide existence and uniqueness results on the equilibrium strategies
and payoffs.

We begin with showing the existence of an equilibrium strategy profile.

THEOREM 4.7. The game always has at least one Nash equilibrium.

PROOF. Our proof is constructive, that is, we show the existence of an equilibrium
strategy profile by providing an algorithm for computing one. Based on Theorems 4.4
and 4.6, we devise the following algorithm.

(1) Find an equilibrium strategy a∗ for Alice:
We begin with finding a mixed-strategy a∗ that satisfies Theorem 4.4. Since we
have from Lemma 4.2 that every MaxUE(Ti, ai) is increasing and uniformly con-
tinuous in ai, there always exists a solution a∗ satisfying the constraints of Theo-
rem 4.4.5

5Note that, since MaxUE(Ti, ai) is not strictly increasing, the solution might not be unique. We deal
with uniqueness in the subsequent theorem.
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(2) Find an equilibrium strategy (e∗,B∗) for Eve:
We continue with finding a mixed-strategy (e∗,B∗) that satisfies both Lemma 4.3
and Theorem 4.6. Let MaxUE∗ = maxi MaxUE(Ti, a∗i ) and let I∗ be the set of em-
ployees for whom the maximum is attained. If MaxUE∗ = 0, then there is no strat-
egy with a positive expected payoff for Eve, so we let B∗i ≡ 0 for every i (and e∗
can be an arbitrary distribution). Otherwise, we find a strategy which gives Eve an
expected payoff of MaxUE∗ and which ensures that Alice will not deviate from her
strategy as follows.
(a) For every i 6∈ I∗, we let e∗i = 0.
(b) For every i ∈ I∗, we choose an arbitrary bribe value from ArgMaxBE(Ti, a∗i ) and

let B∗i always take this value. Finally, we let

e∗i =

1
Pr[Ti≤B∗

i ]∑
j

1
Pr[Tj≤B∗

j ]

. (13)

We now prove that the mixed-strategy profile a∗, (e∗,B∗) forms an equilibrium, i.e.,
that both strategies are best responses to each other. If MaxUE∗ = 0, then we have
the claim readily. Thus, we assume that MaxUE∗ > 0. First, it is easy to see that
Eve’s strategy is indeed a best-response, as she targets the employees which give her
maximal expected payoff and bribes them with optimal bribe values.

Second, we show that Alice’s strategy is a best-response. Observe that, in Step (2b),
we have chosen a distribution for Eve so that the probability of targeting and success-
fully bribing is uniform over employees in I∗ and 0 for employees not in I∗. Since a∗
satisfies Theorem 4.4, we also have that Alice shares the secret with a probability less
than one with employees in I∗ and with a probability of one with employees not in I∗.
As Alice’s best response is to share the secret with those employees whose probabilities
of being targeted and successfully bribed are the lowest, we have that a∗ is indeed a
best response.

The algorithm presented above proves that the game always has at least one equi-
librium; however, it can also be used to compute an equilibrium strategy profile in
practice. In this case, the challenge lies in finding a strategy a∗ that satisfies the con-
straints given by Theorem 4.4 in the first step. This challenge is easily reducible to a
constrained multidimensional optimization problem, for which there are many well-
known numerical approximation methods. Note that we are only concerned with ap-
proximate solutions because, in practice, all of our model’s initial parameters, such as
the trustworthiness level distributions, would need to be approximated.

Our last set of general results provide criteria for uniqueness of Alice’s equilibrium
strategy and Eve’s payoff.

THEOREM 4.8. If Alice has no perfectly secure strategy, then her equilibrium strat-
egy is unique.

PROOF. For the sake of contradiction, suppose that the claim of the theorem does
not hold, that is, there exist two distinct equilibrium strategies a′ and a′′. From Theo-
rem 4.4, we have that Eve’s maximum payoff MaxUE for targeting an employee is uni-
form over the employees with whom Alice does not certainly share the secret. We let
these uniform maximum payoffs for the strategies a′ and a′′ be u′ and u′′, respectively.
Note that, since Alice has no perfectly secure strategy, we have u′ > 0 and u′′ > 0.

First, suppose that u′ = u′′. Since MaxUE(Ti, ai) is strictly increasing, there exists
only one ai for each i such that MaxUE(Ti, ai) = u′. Thus, we have a′i = a′′i for the
employees who have a sharing probability lower than 1. On the other hand, the set of
employees who have a sharing probability of 1 has to be equal for the two strategies,
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since an employee i for whom MaxUE(Ti, ai) < u′ = u′′ is always in this set. Thus, we
have a′i = a′′i for every employee. However, this leads to a contradiction with the initial
supposition that a′ 6= a′′.

Second, suppose that u′ > u′′. For every employee i with a′′i = 1, we have a′i = 1,
as MaxUE(Ti, a′i) < u′ < u′′. Thus, we have a′i = a′′i for these employees. On the other
hand, for every employee i with a′′i < 1 (i.e., MaxUE(Ti, a′′i ) = u′′), we either have
a′i = 1 or MaxUE(Ti, a′i) = u′. In the second case, we have a′i > a′′i since MaxUE(Ti, ai) is
strictly increasing. Thus, we have ai > a′′i for these employees. However, this leads to
the contradiction 1 =

∑
i a
′ >

∑
i a
′′ = 1.

Finally, the case u′ < u′′ leads to a contradiction for the same reasons as the previous
case. Therefore, the claim of the theorem has to hold.

COROLLARY 4.9. Eve’s equilibrium payoff is always unique.

PROOF. If Alice has only perfectly secure strategies, then Eve’s equilibrium payoff
is 0. On the other hand, if Alice has no perfectly secure strategy, then we have from
Theorem 4.8 that her strategy and, hence, Eve’s payoff has to be unique. Thus, it re-
mains to show that non-secure and secure equilibrium strategies for Alice cannot exist
at the same time.

For the sake of contradiction, suppose that this is not true, that is, there exist a
non-secure and a secure strategy, denoted by a′ and a′′. First, for every employee with
a′i = 1, we obviously have a′i ≥ a′′i . Second, for every employee with a′i < 1, we have
that MaxUE(Ti, a′i) > 0 (otherwise, a′ would a perfectly secure strategy as Eve’s uni-
form maximum payoff would be 0). Since MaxUE(Ti, ai) is strictly increasing at a′i,
this implies that a′i > a′′i for these employees. However, this leads to the contradiction
1 =

∑
i a
′ >

∑
i a
′′ = 1.

5. SPECIAL CASE: UNIFORM DISTRIBUTIONS ON TRUSTWORTHINESS
In this section, we assume that the trustworthiness level of each employee i is gener-
ated by a uniform random variable Ti ∼ U(li, hi), 0 < li < hi < S. In other words, we
assume that employee i never reveals the secret for a bribe less than li, always reveals
it for a bribe more than or equal to hi, and the probability of revealing it increases
linearly between li and hi. Note that we allow a different distribution, i.e., different li
and hi, for each employee. Recall from Section 3 that we assume both players know
the employees’ trustworthiness level distributions, which in this case entails knowing
the values of li and hi for every i.

5.1. Analysis
We begin our analysis by computing Eve’s optimal bribe values for a given mixed strat-
egy a of Alice.

LEMMA 5.1. Eve’s optimal bribe values are

ArgMaxBE(Ti, ai) =


{0} if ai < hi

S

{0, hi} if ai = hi

S

{hi} otherwise.
(14)

The proof of the lemma can be found in Appendix A.
For uniform trustworthiness level distributions, the equilibria of the game can be

characterized as follows:

THEOREM 5.2. If the trustworthiness level of each employee is generated according
to a uniform distribution U(li, hi), 0 < li < hi < S, the equilibria of the game can be
characterized as follows:
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— If k <
∑

i hi

S , then Alice is perfectly secure: in any equilibrium, ai ≤ hi

S for every i,
Eve never bribes any of the employees, and both players’ payoffs are zero.

— If k =
∑

i hi

S , then in any equilibrium of the game, ai = hi

S for every i, and Eve’s payoff
is zero.

— If k >
∑

i hi

S , then in any equilibrium of the game, ai > hi

S and Bi ≡ hi for every i, and
Eve’s payoff is strictly positive while Alice’s payoff is strictly negative.

The proof of the theorem can be found in Appendix B.

5.2. Numerical Illustrations

20 40 60 80 100
−10

−5

0

5

∑
i hi

S

Alice

Alice

Eve

k

Expected payoff

Fig. 3. The players’ equilibrium payoffs as functions of the number of employees k that have to know the
secret. The total number of employees is N = 100, the value of the secret is assumed to be S = 10, and
the trustworthiness level of each employee i is assumed to be a random variable of the uniform distribution
U(li, hi). For this example, each parameter hi was drawn from the set (0, 7) uniformly at random. Once a
parameter hi has been drawn, its value is known to both players (recall from Section 3 that we assume both
players to know the trustworthiness level distributions).

We next provide numerical illustrations for the special case in which the trustwor-
thiness levels of the employees are modeled by independent uniform random variables
Ti with parameters li and hi.

Figure 3 shows both players’ equilibrium payoffs as functions of the number of em-
ployees k that have to know the secret. First, when k is less than

∑
i hi

S , Alice can choose
a secure strategy such that bribing is infeasible for Eve. Thus, both players’ payoffs are
zero. Second, when k is larger than

∑
i hi

S , but it is low enough such that ai < 1 for each
employee i, Alice distributes k−

∑
i hi

S evenly among the employees’ probabilities. Thus,
the probability of compromise and, hence, Alice’s loss and Eve’s payoff increase linearly
with k. It is interesting to note that, while Eve’s payoff is a continuous function of k,
there is a big drop in Alice’s payoff at the point where she can no longer play a secure
strategy. This phenomena is caused by the non-zero sum property of our game. Fi-
nally, when k is large enough such that Alice assigns probability 1 to some employees,
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Eve’s payoff increases super-linearly, while Alice’s loss increases non-monotonically.
Although Alice’s non-monotonically increasing loss might seem surprising at first, it
can be explained easily: as the secret is shared with more and more employees who are
more easily bribed (i.e., have lower hi), Eve can decrease her bribing costs by targeting
these employees. This might decrease her success probability, but only by a value that
is less than the decrease in her bribing costs. Consequently, sometimes Alice is better
off if she shares the secret with more employees than she has to.
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S
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payoff
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Fig. 4. Alice’s equilibrium payoff for all combinations of 1 ≤ k ≤ 50 and 1 ≤ S ≤ 10. The parameters for
this figure were generated in the same way as for Figure 3, but with N = 50.

Figure 4 shows Alice’s payoff (darker values indicate a higher loss) for a wide spec-
trum of parameter combinations of k and S. The figure clearly shows that, for lower
values of S, the area where Alice can play a secure strategy (white plain) is greater
than the area for higher values of S. Note that, for most values of S, we can identify
the same three regions for k as in the previous figure: for k <

∑
i hi

S , Alice’s loss is
zero; for k >

∑
i hi

S , Alice’s loss first increases linearly with k, but for larger values of k,
Alice’s loss increases non-monotonically. As expected, the worst case for Alice is when
the number of employees k that have to know the secret is large and the value S of the
secret is high.

Figure 5 shows Alice’s equilibrium strategies for two different values of k. Figure 5(a)
shows a case where k is small enough such that Alice does not assign probability 1
to any of her employees, while Figure 5(b) depicts a case where several employees
get to know the secret with certainty. Figure 6 shows her equilibrium strategies for
N = 50 and

∑
i hi

S ≤ k ≤ 50. The figure clearly shows that, for all values of k, ai is
a monotonically increasing function of hi, which can be explained by Theorem 4.4.
Furthermore, the figure also confirms our analytical result that no ai can be 0.
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Fig. 5. Alice’s equilibrium strategies for (a) k = 50 and (b) 80. The total number of employees is 100, the
value of the secret is assumed to be S = 10, the trustworthiness level of each employee i is assumed to be
a random variable of the distribution U(li, hi), and the employees are sorted in decreasing order based on
their hi values. Again, the parameters for this figure were generated in the same way as for Figure 3.
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Fig. 6. Alice’s equilibrium strategies for
∑

i hi

S
< k ≤ 50. The parameters for this figure were generated in

the same way as for Figure 3, but with N = 50. Again, the employees are sorted in decreasing order based
on their hi values.

6. DISCUSSION & CONCLUDING REMARKS
In this article, we present and analyze a game-theoretic model for studying the de-
cision making of a project manager who wants to maximize the protection of organi-
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zational secrets.6 Motivated in part by known behavioral methods of assessing trust-
worthiness [Munshi et al. 2012], we assume that both the project manager and her
adversary know the distribution of a random variable representing the trustworthi-
ness of each employee. Finally, we assume that both players are able to estimate the
(expected) value of the organizational secret [Bontis 2001].

As a result of our analysis, we find that a project manager should select every em-
ployee with a non-zero probability, unless there is a secure strategy, where an adver-
sary has no incentives to attack at all. This contradicts the naı̈ve assumption that,
to achieve maximal security, only the most trustworthy employees should be selected.
The explanation for this is the following: selecting the team members deterministically
always gives the adversary the knowledge of which employees to target for advances.
So, by randomizing her strategy, the project manager minimizes the information avail-
able to the adversary for planning her attack. It is an even more surprising result that,
in an equilibrium, the adversary is at most as likely to target employees that certainly
know the secret as those employees that know the secret with a probability less than
one. Again, this contradicts the naı̈ve assumption that an adversary will always attack
the employees that are the most likely to know the secret.

For the special case of uniform distributions on trustworthiness levels, we find that
the game has two distinct outcomes: either the number of team members is small
enough, such that the project manager has a perfectly secure strategy, or the secu-
rity of the secret depends solely on the randomness of selecting the employee with
whom it is shared.7 In the former case, the adversary has no incentives to attack and,
consequently, never learns the secret. In the latter case, the adversary always attacks,
and she bribes each employee with the minimal cost that is never below the employee’s
trustworthiness level. Thus, if the adversary targeted an employee that actually knows
the secret, then it is certainly revealed. The project manager’s only possible defense in
this case is to randomize the selection of employees.

There are multiple possible directions for future work. First, a limitation of the
model is the restriction on the adversary, which constrains her to target only a single
employee at a time. This simplification can be motivated by the adversary’s incentive
to keep her operation covert and, thus, to minimize the number of interactions with
employees. However, it would be worthwhile to study the trade-off between the adver-
sary’s increased risk of being discovered and the increased probability of learning the
secret when she targets multiple employees. As another direction, we want to study
our model with specific distributions over trustworthiness levels. In this article, we
provide results for the uniform distribution, which can be well-motivated in practice;
however, there are other distributions that can be justified from practical observations:
e. g., the beta distribution.
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A. PROOF OF LEMMA 5.1
PROOF. First, it is clear that no bribe value in (0, li] can be optimal as the proba-

bility of successfully bribing is zero in this interval; thus, these bribe values are all
dominated by 0. Second, it is clear that no bribe value greater than hi can be optimal
as the probability of successful bribing reaches its maximum at hi; thus, all values
greater than hi are dominated by hi. For bribe values in [li, hi], Eve’s expected payoff
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ArgMaxBE(Ti, ai)

0 li hi
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Fig. 7. Illustration of the proof of Lemma 5.1.

when targeting employee i is

S · ai ·
b− li
hi − li

− b . (15)

See Figure 7 for an illustration. When hi > S · ai (Figure 7(a)), we have that S · ai ·
b−li
hi−li − b < S · ai · b

hi
− b < 0; thus, the only optimal bribe value is 0. On the other

hand, when hi < S · ai (Figure 7(b)), we have that, for a bribe value b = hi, the payoff
is S · ai · hi−li

hi−li − hi > 0. It is also easy to see that the derivative of the expected payoff
as a function of b is strictly greater than zero in this case; thus, the only optimal bribe
value is hi. Finally, when hi = S · ai, we have that, for a bribe value b = hi, the payoff
is S · ai · hi−li

hi−li − hi = 0; thus, both 0 and hi are optimal.

B. PROOF OF THEOREM 5.2
PROOF. Let a, (e,B) be Alice’s and Eve’s mixed strategies and assume that this

strategy profile is a Nash equilibrium. We prove each case separately:

— k <
∑

i hi

S : For the sake of contradiction, suppose that ai > hi

S for some i. Then,
there has to be a j such that aj < hi

S , otherwise
∑

i ai = k <
∑

i hi

S would not hold.
Consequently, MaxUE(Ti, ai) > MaxUE(Tj , aj) and, from Lemma 4.3, we have that
ej = 0. Furthermore, from Theorems 4.4 and 4.6, we also have that ei > 0. Therefore,
Alice can increase her payoff by decreasing ai and increasing aj , which contradicts
the equilibrium condition. Thus, ai ≤ hi

S has to hold for every i.
Now, for the sake of contradiction, suppose that Eve targets and bribes employee i
non-zero probability, that is, ei > 0 and Bi 6≡ 0. Since Eve’s strategy has to be a best
response, we have that ai ≥ hi

S . Consequently, there has to exist some j satisfying
aj <

hi

S . From Lemma 4.3, we have that ej = 0. Therefore, Alice can increase her
payoff by decreasing ai and increasing aj , which contradicts the equilibrium condi-
tion. Thus, Eve never bribes any of the employees, and it follows immediately that
both players’ payoffs are zero.

— k =
∑

i hi

S : For the sake of contradiction, suppose that ai > hi

S for some i, which
implies that there has to be a j such that aj < hi

S . Then, we can show that this leads
to a contradiction using the same argument as in the first paragraph of the previous
case. Thus, ai = hi

S for every i. The rest follows readily from Lemma 5.1.
— k >

∑
i hi

S : First, it is easy to see that, for any strategy a, there has to be at least
one i such that ai > hi

S , which implies MaxUE(Ti, ai) > 0. By using the strategy
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ei = 1 and some constant bribe value from ArgMaxBE(Ti, ai), Eve can achieve a
positive payoff. Consequently, for every strategy a, Eve’s best response payoff has to
be strictly positive. It follows immediately that, in any equilibrium, Eve’s payoff is
strictly positive while Alice’s payoff is strictly negative.
Now, for the sake of contradiction, assume that ai ≤ hi

S for some i, which implies
MaxUE(Ti, ai) = 0. Then, we have that ei = 0 from Lemma 4.3. Therefore, Alice can
increase her payoff (i.e., decrease her loss) by increasing ai and decreasing every
non-zero component of her strategy, which contradicts the equilibrium condition.
Thus, ai > hi

S has to hold for every i.
Second, assume indirectly that, for some a and e that form an equilibrium and some
i, ai < hi

S . If ei = 0, then Alice would be able to increase her payoff (i.e., decrease
her loss) by simultaneously increasing ai and decreasing some aj > hi

S , which would
contradict the assumption that a and e form an equilibrium. On the other hand, if
ei > 0, then Eve would be able to increase her payoff by simultaneously decreasing
ei and increasing ej where j is such that aj >

hj

S , which would also lead to a con-
tradiction. Therefore, we have that ai ≥ hi

S for every i in any equilibrium. Finally,
Bi ≡ hi follows readily from Lemma 5.1.

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2014.


