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Abstract. Recently, network blocking game (NBG) models have been
introduced and utilized to quantify the vulnerability of network topolo-
gies in adversarial environments. In NBG models, the payoff matrix of
the game is only “implicitly” given. As a consequence, computing a Nash
equilibrium in these games is expected to be harder than in more con-
ventional models, where the payoff matrix is “explicitly” given.
In this paper, we first show that computing a Nash equilibrium of a
NBG is in general NP-hard. Surprisingly, however, there are particular
interesting cases for which the game can be solved in polynomial time.
We revisit these cases in a framework where the network is to be operated
under budget constraints, which previous models did not consider. We
generalize previous blocking games by introducing a budget limit on the
operator and consider two constraint formulations: the maximum and
the expected cost constraints.
For practical applications, the greatest challenge posed by blocking games
is their computational complexity. Therefore, we show that the maxi-
mum cost constraint leads to NP-hard problems, even for games that
were shown to be efficiently solvable in the unconstrained case. On the
other hand, we show that the expected cost constraint formulation leads
to games that can be solved efficiently.

Keywords: network topology robustness; robustness metrics; game the-
ory; blocking games; computational complexity.

1 Introduction

Designing network topologies that are robust and resilient to attacks has been
and continues to be an important and challenging topic in the area of communi-
cation networks. One of the main difficulties resides in quantifying the robustness
of a network in the presence of an intelligent attacker, who might exploit the
structure of the network topology to design harmful attacks. Quantifying the
robustness or, equivalently, the vulnerability of topologies has been extensively



studied [1–5]; however, the simultaneous and strategic decision making of the
defender and the adversary, which is key to the security of information systems,
has received only little attention.

To capture the strategic nature of the interactions between a defender and
an adversary, game-theoretic models have been gaining a lot of interest in the
study of the security of communication networks. In a recent line of research
[6–10], network blocking games (NBGs) have been introduced and applied to
the analysis of the robustness of network topologies. An NBG takes as input
the communication model and the topology of a network, and casts the strategic
interactions between an adversary and the defender, called the network operator,
as a two-player game. The Nash equilibrium strategies are then used to predict
the attacker’s most likely actions; and the attacker’s equilibrium payoff3 serves
as a quantification of the vulnerability (i.e., inverse robustness) of the network.

A particularity of NBG models is that the payoff matrix of the game is not
given as an input. In other words, the strategy set of (at least) one player (and
hence the payoff matrix) is only implicitly defined, and the actual strategy sets
need to be computed from the input of the game (here, the communication
model and the network topology). Furthermore, in most NBG models, checking
whether a given action is a feasible strategy can be done efficiently; however,
computing the complete strategy set is inherently difficult. For instance, in the
game described in [6], the operator’s strategy space is the set of feasible net-
work flows. In general, checking whether a given flow is feasible can be done
efficiently. However, computing the set of all feasible network flows (which is re-
quired for computing the payoff matrix) is difficult: the number of feasible flows
is exponential in the number of nodes and links in the graph, so they cannot be
enumerated in polynomial time.

Hence, with respect to the complexity of computing a Nash equilibrium,
NBG models present two challenges: first, the game is only implicitly defined;
second, the payoff matrix is potentially exponential in size. Thus, solving network
blocking games can be expected to be harder than solving games for which the
payoff matrix is “explicitly given”. Recall that computing a NE for “explicit”
two-player games has been shown to be PPAD-complete (Polynomial Parity
Arguments on Directed graphs), a class of problems that are believed to be hard,
but not necessarily NP-hard [11]. In this paper, we show that computing a Nash
equilibrium of a network blocking game is NP-hard in general.

Interestingly though, in the series of NBG papers cited above, new algorithms
have been developed to efficiently compute a Nash equilibrium in a number of
communication models: All-to-All (e.g., Ethernet) networks with constant [7] and
linear loss [9], All-to-One (e.g., access and sensor) networks [10], and Supply-
Demand networks [6]. These algorithms are mostly based on the theory of net-
work flows and, for some models, on the minimization of submodular functions.
More precisely, the problem of finding a Nash equilibrium is cast as a network

3 It has been shown that the attacker’s payoff is the same in every equilibrium of
a network blocking game; thus, it suffices to find a single equilibrium in order to
characterize the robustness of a network.



flow problem (or a submodular function minimization problem), which enables
bypassing the computation of the payoff matrix. In this paper, we revisit some
of these models and discuss the complexity of computing their NE in scenarios
where the network operator has access to only a limited budget to operate the
network.

Such budget constraints were not considered in previous NBG models, which
implicitly assume that the operator can use the network elements at zero cost.
However, this assumption is not realistic: indeed, links in a network have positive
usage costs (e.g., operation/maintenance costs, protection costs) and these costs
might be non-uniform. Since network operators do not have an unlimited budget,
they cannot use any combination of network element. In [6], a usage cost model
as well as a budget constraint have been introduced for the particular case of
Supply-Demand (S-D) networks. This budget constraint means that the network
operator can use a set of network elements (links) only if its associated cost does
not exceed a given budget.

In the present paper, we extend the budget constraint idea to network block-
ing games in general, and provide a number of complexity results with regard to
the computation of the equilibrium payoff. Recall that the aim of solving these
models is to derive a quantification of the network’s robustness in the presence
of a strategic adversary, and that the equilibrium payoff is used as the vulnera-
bility metric. Thus, computational complexity is of central importance in these
models, and analyzing it is the primary goal of this paper.

This paper builds upon the studies in [6] and [12], but considers a more
general setting and presents many additional results compared to those papers.
[6] is the first study to introduce the idea of a budget limit and usage costs in the
context of a NBG. However, it considers only the special case of Supply-Demand
networks and (what we call here) the maximum cost constraint. Furthermore,
it does not provide a complexity analysis. [12] presents a complexity analysis
and introduces a new constraint formulation (the expected cost constraint), but
limits the discussion to the special case of the All-to-One communication model
with zero attack costs. In the present paper, we consider a unifying framework
and provide a thorough complexity analysis for NBGs in general. The main
contributions of this paper are the following:
– In Section 3, we show that solving a blocking game is generally NP-hard

(Theorem 1).
– In Section 4, we generalize the network blocking game model by introducing

a budget limit for the operator. We consider two constraint formulations: the
maximum cost constraint (MCC) and the expected cost constraint (ECC).

– In Section 5, we show that the problem of determining the equilibrium payoff
is NP-hard under the MCC in the previously proposed models, which can
be solved efficiently in the unconstrained game (Theorem 2).

– In Section 6, we show how to solve the game under the ECC in polynomial
time given a linear characterization of the operator’s mixed strategy space
(Theorem 3).



Notational conventions We use lower case bold letters (e.g., α) and upper
case bold letters (e.g., S) to denote column vectors and matrices, respectively.
We use the prime sign (′) to denote transpose, and subindices (e.g., αT ) to refer
to elements of vectors.

2 Unconstrained Network Blocking Games

In this section, we summarize the previous work on network blocking games.
Since these models do not consider a budget constraint, we will refer to them as
unconstrained network blocking games when the distinction is important.

As it was stated earlier, network blocking games are defined by the commu-
nication model and the topology of the network. The topology of the network is
represented by a connected simple graph G = (V,E), where V is the set of nodes
and E is the set of links. The edges can be undirected or directed depending on
the communication models (as we will see later). The network operator wants
to guarantee “some” connectivity between the nodes of the network. For this,
she selects a collection T ⊆ E of the links as the communication infrastructure.
The type of connectivity and the set of feasible collections (denoted by T ) are
determined by the communication model (see the next subsection for examples
of communication models).

Assume that the operator chooses collection T for her communication and
that a given link e in the network fails. In this paper, we only consider failures
that are due to the actions of a malicious and strategic adversary. If e /∈ T , then
the communication is not affected at all. If, on the other hand, e ∈ T , then e
can longer be used: the operator incurs some usage loss, which is how much she
would transmit on the link if it were intact. For a given T and e, we let λ(T, e)
denote this usage loss (or zero if e 6∈ T ). Notice that all results presented in this
paper also hold if the attacker is allowed to attack nodes as well4, but we restrict
our analysis to link attacks only due to the lack of space.

2.1 Communication Models

The communication model defines the type of “connectivity” that the network
operator is trying to achieve, the set of feasible collections which she can use for
that, and the usage losses λ(T, e) for the network elements. Next, we introduce
the three communication models that are of interest in this paper.

All-to-One Model In an All-to-One network [10], the primary goal of the
network operator is to enable all nodes to communicate with a designated node
r. This models sensor and access networks, where all nodes are trying to reach a
gateway or data collection node (or, alternatively, a set of nodes, which can be
modeled by a designated super-node).

4 The results for both node and edge attacks can be derived using vertex splitting.



To get all nodes connected to r, the network operator chooses a collection of
links T that forms a spanning tree. Hence, the set of feasible collections T is the
set of all spanning trees. In practice, a spanning tree can be implemented, for
example, as the next-hop forwarding table entries for r, which are stored at the
individual nodes of the network.

Let the network be connected using a spanning tree T . Then, if a given link
e ∈ E fails, some nodes might no longer be able to communicate with r and
can be considered lost for the network operator. Thus, we define the usage (loss)
λ(T, e) as the number of those nodes that are disconnected from r.

All-to-All Model In an All-to-All network [7, 9], the goal of the network op-
erator is to enable each node to communicate with every other node, using the
minimum number of links. For example, this is the case for bridged Ethernet
LANs, where every node should be able to “logically” communicate with ev-
ery other node, but the topology has to be loop-free. Assuming that links are
undirected, spanning trees are the subgraph structures that (looplessly) connect
all nodes with the minimum number of links. Hence, the network operator se-
lects a spanning tree as communication infrastructure. Thus, the set of feasible
collections T corresponds to the set of all spanning trees.

Let the network be connected using a spanning tree T and assume that link
e fails. If link e does not belong to T , then the network remains connected and
the operator does not lose any connectivity. If, on the other hand, e ∈ T , the
network is cut into two separate components that are unable to communicate.
Now, if e is a link connecting a leaf to the rest of the spanning tree, only that leaf
gets disconnected and all the other nodes can still reach each other. In this case,
the operator loses some connectivity, but the loss can be considered minor. If, on
the other hand, the removal of link e cuts the network into two components of
comparable size, then connections between many pairs of nodes are now missing,
and the loss to the operator is considerably larger. In general, the more fractured
the network is, the more severe the loss is. To capture this phenomenon, the
usage (loss) λ(T, e) is defined as the size of the smaller connected component of
G(V, T \ e), where G(V, T \ e) is the subgraph containing only the links in T \ e.

Supply-Demand Model In a Supply-Demand (S-D) network [6], the operator
wants to carry a fixed amount of goods from a nonempty set S ⊆ V of “source”
nodes to a nonempty set D ⊆ V of “destination” nodes using the network links.
We assume that S ∩D = ∅ and that network links are directed. With each node
u ∈ S, we associate a nonnegative number s(u), the “supply” at u, and with each
node u ∈ D, we associate a nonnegative number d(u), the “demand” at u. We
consider uncapacitated networks, where each link can carry an unlimited amount
of goods5. We also assume that links carry only integer amounts of goods and
that the total amount of goods to be carried from S to D is also a given positive
integer.

5 The analysis of capacitated network follows from the study in this paper, but it is
not considered in this paper due to space limitation.



To transport the goods, the network operator chooses a collection of links
that forms a feasible (integer) flow. A feasible flow T ∈ T is a function that
assigns to each link e the amount of goods T (e) (≥ 0) it carries, such that
the conservation of flow property is satisfied at each node. Hence, the set of
collections T is equal to the set of all feasible flows.

The usage (loss) λ(T, e) is defined to be the amount of goods T (e) that flow
T assigns to link e. This is how much the operator will lose if she uses a feasible
flow T ∈ T and link e fails.

2.2 Game-Theoretic Measure of Robustness

Given the communication model and the topology of the network, a two-player
game is defined between the network operator and a strategic attacker. The net-
work operator wants to guarantee “some” connectivity by choosing a feasible
collection of links in the network (i.e., her strategy space is the set T of feasible
collections). The type of connectivity and the set of feasible collections are de-
fined by the communication model, as previously discussed. At the same time,
a strategic and malicious adversary is trying to disrupt the communication by
attacking a link (i.e., her strategy space is the set E of links in the network).
We assume that to successfully attack a link e, the adversary has to spend some
effort which is quantified by µe. The players’ payoffs are defined as follows: when
the operator picks collection T and the attacker targets link e, the operator loses
λ(T, e) (as defined above), and the attacker gets a net reward of λ(T, e) − µe.
The attacker also has the option not to launch an attack, which results in zero
loss for the operator and zero gain for the attacker.

We consider mixed strategy Nash equilibria, where the network operator
chooses a distribution (denoted by α) over the set T , and the attacker chooses
a distribution (denoted by β) over the set E or the option of not attacking. We
assume that the operator tries to minimize her expected loss, while the attacker
tries to maximize her expected net reward. Formally, the operator chooses α to
minimize L(α,β) defined as

L(α,β) =
∑
T∈T

∑
e∈E

αTβeλ(T, e) , (1)

while the attacker chooses β to maximize R(α,β) defined as

R(α,β) = L(α,β)−
∑
e∈E

βeµe (2)

or not attacking if the maximum is negative.
Since the attacker has the option not to attack and get a payoff of zero, it is

not hard to show that there does not exist an equilibrium in which the attacker
receives a negative expected payoff. We let θ∗ be the attacker’s equilibrium pay-
off, which has been shown [13] to be the same in all equilibria. As a consequence,
θ∗ is uniquely defined. The next subsection gives a characterization of θ∗ using
the theory of blocking pairs of polyhedra.



2.3 Equilibrium Characterization Based on Blocking Pairs of
Polyhedra

Here, we recall the notions of polyhedra and blockers, and discuss how they can
be used to characterize the Nash equilibria of the game (see [13, Chap. 4] for
more details).

Let Λ be the operator’s payoff matrix, whose rows are (λT , T ∈ T ), where

the entries of the vector λT ∈ R|E|≥0 are given by λ(T, e), e ∈ E. We define its
associated polyhedron PΛ as the vector sum of the convex hull of the row vectors
(λT , T ∈ T ) and the nonnegative orthant. This polyhedron can be represented
as

PΛ =
{
x ∈ R|E|≥0

∣∣∣ ∃α ∈ R|T |≥0
(
Λ′α ≤ x ∧ α′1 ≥ 1

)}
. (3)

The blocker of PΛ is the polyhedron defined as

bl(PΛ) :=
{
y ∈ R|E|≥0

∣∣∣ y′x ≥ 1 ∀x ∈ PΛ
}
. (4)

For each vertex ω = (ωe, e ∈ E) of the blocker, define the quantity

θ(ω) :=
1∑

e∈E ωe

(
1−

∑
e∈E

ωeµe

)
. (5)

A vertex of the blocker is called critical if it maximizes the quantity θ(ω), i.e.,
θ(ω) = maxω̃ θ(ω̃). Finally, let θ̃ denote the maximum quantity.

In [13], it has been shown that every Nash equilibrium strategy for the at-
tacker is a critical vertex or a convex combination of critical vertices, and that the
attacker’s equilibrium payoff is θ∗ = max(0, θ̃). As a consequence, if this blocker
can be “efficiently” characterized, then an efficient algorithm can be derived to
solve the maximization problem and, hence, the game.

2.4 Vulnerability/Robustness Metric

In the analysis of the general NBG [13, Chap. 4], it has been shown that θ∗ is
a property of (i.e., solely determined by) the topology of the network, the com-
munication model, and the attack costs µ. Furthermore, this unique equilibrium
payoff reflects both the network operator’s expected loss due to attack as well
as the attacker’s willingness to attack. For a given µ, a low θ∗ indicates that
operating the network has low expected loss due to attack, that is, the network
is robust against attacks. If, on the other hand, θ∗ is high, then the expected
loss is also high, and the network can be considered vulnerable. As such, θ∗ has
been proposed [7] as a measure of network topology vulnerability (i.e., inverse
robustness) in an adversarial environment. Another property of θ∗ is that, when
µ = 0 (the case of the most powerful attacker), it can be related to well-known
graph-theory notions. For instance, in the All-to-One model, θ∗ was shown to
be the inverse of the persistence of the graph of the network [10], a metric that
has previously been proposed in [14] to quantify graph robustness (although in a



non-game theoretic framework). In the All-to-All model with constant loss [7], θ∗

can be related the spanning tree packing number of the graph [15]. In the All-to-
All model with linear loss [9], θ∗ is closely bounded by the Cheeger constant [16]
(also called the edge-expansion) of the graph. In the Supply-Demand model [6],
the metric is equal to the maximum average flow traversing an edge-cut, where
the average is obtained by dividing the total flow by the size of the edge-cut.

As a metric for robustness, understanding the computational complexity of
calculating θ∗ is of primal importance. In the next section, we discuss the com-
plexity of computing a Nash equilibrium in the unconstrained NBG model.

3 Computational Complexity of the Unconstrained Game

In this section, we show that solving a NBG is NP-hard in general. Recall that
computing a Nash equilibrium in general two-player games has been shown to
be PPAD-complete. Zero-sum, two-player games, on the other hand, can be cast
as linear programs and, hence, can be solved in polynomial time using linear
programming tools. In all these cases, the input of the computational problem
is assumed to be the payoff matrix. For NBG models however, only an implicit
description of the payoff matrix is available. In addition, the payoff matrix is
potentially exponential in size, which makes NBG models even more challenging
to deal with. The following theorem shows that, indeed, computing a NE for a
general blocking game is NP-hard. We prove this by reducing a well-known NP-
hard problem, the Knapsack Problem (KP), to the problem of computing the
attacker’s equilibrium payoff, which we formalize as the Equilibrium Problem
(EP). The KP and the EP are formally defined as follows.

Definition 1 (Knapsack Problem [KP]). Given N items, where item i has
weight ci and value vi, a capacity C, and a value V , is there a subset S whose
sum weight is at most C, i.e.,

∑
i∈S ci ≤ C, and whose sum value is at least V ,

i.e.,
∑

i∈S vi ≥ V ?

Definition 2 (Equilibrium Problem [EP]). Given a set of elements E, a
polynomial-time function IT∈T for testing T ∈ T , a polynomial-time function

λ(T, e), a vector of attack costs µ ∈ R|E|≥0 , and a payoff value p, is the adversary’s
equilibrium payoff less than or equal to p?

The above formulation of EP allows us to easily show the computational
complexity of all the problems relevant to NBGs. First, if the adversary’s equi-
librium payoff can be efficiently computed, then EP can also be solved efficiently.
Conversely, if EP is NP-hard, then computing the adversary’s equilibrium pay-
off is also necessarily NP-hard. Second, for similar reasons, we also have that
computing the equilibrium strategies of the game is also at least as hard as EP.

The following theorem shows that EP is NP-hard.

Theorem 1. The Knapsack Problem is polynomial-time reducible to the Equi-
librium Problem.



The proof of the theorem can be found in Appendix A.
Thus, solving a NBG is NP-hard in general. Interestingly, however, efficient

algorithms have been derived to compute a NE for the models discussed in
Subsection 2.1. In the following sections, we introduce a budget constraint and
revisit the complexity of computing a NE of the constrained game in those
models.

4 Budget Contraints

In the unconstrained NBG model, the operator is only interested in minimizing
her expected loss due to attacks, without taking her operating costs into account.
In practice, however, network operators also have to take economic goals and
constraints into consideration when choosing their strategies. These economic
decisions are affected by the topology of the network as links and, hence, feasible
collections of links can have varying usage costs.

4.1 Unit Usage / Protection Cost

In [6], a (per unit) usage cost model was introduced and discussed for the partic-
ular case of the S-D communication model. Here, we extend this cost model to
the general NBG. Recall that λ(T, e) quantifies the usage (loss) associated with
collection T and link e. We assume that each link e has some unit usage cost
we, so that using the link costs weλ(T, e) to the operator. With this definition,
the total cost of using a collection T is

w(T ) :=
∑
e∈E

λ(T, e)we ; (6)

and the network operator’s expected usage cost of a mixed strategy α is

w(α) :=
∑
T∈T

αTw(T ) =
∑
e∈E

we

∑
T∈T

αTλ(T, e) . (7)

We assume that, to run the network, the operator has a fixed budget b ∈ R≥0
to spend. Therefore, her objective is to minimize the expected loss (see Equation
(1)) by choosing an optimal strategy that satisfies her budget constraint. This
budget constraint can be formulated in multiple ways. In the following sections,
we introduce and study two straightforward formulations, the maximum and the
expected (or average) cost budget constraints.

4.2 Maximum Cost Budget Constraint

In the first budget constraint formulation, which we refer to as the maximum
cost constraint (MCC), we require that for a given budget b, the operator only
uses collections whose total costs (see Equation (6)) are less than or equal to b.
Formally, the pure strategy set of the operator is restricted to

T (b) = {T ∈ T | w(T ) ≤ b} . (8)



The maximum cost constraint is best-suited for budget limits that are deter-
mined by the amount of preallocated resources available. In this case, the cost
of a link can be the amount of resources needed (e.g., energy consumption) to
operate the link and the budget limit can be the amount of resources available
(e.g., amount of power available).

4.3 Expected Cost Budget Constraint

The maximum cost constraint misses to capture certain situations. For instance,
when the amount of allocated resources can be modified during operation, e.g.,
resources can be leased, the budget limit should apply to the average or, equiv-
alently, the expected cost of a strategy during continuous periods of operation.
Thus, in our second budget constraint formulation, which we will refer to as the
expected cost constraint (ECC), we only require the expected (or average) cost
of the operator to not exceed the budget limit.

Under the expected cost constraint with a budget limit b, the operator can
employ a mixed strategy only if its expected cost (see Equation (7)) is less than
or equal to b. Formally, the set of mixed strategies available to the operator is

A(b) =
{
α ∈ R|T |

∣∣∣w(α) ≤ b
}
. (9)

Note that the above formulation generalizes the classic notion of mixed strate-
gies in game-theory, where the set of mixed strategies is always the set of all
distributions over the set of pure strategies. Here, a mixed strategy is chosen
from a predefined subset of distributions.

4.4 Constrained Game

Having defined the set of available strategies (pure for MCC and mixed for ECC),
we can now setup the constrained game in a similar way to the unconstrained
game presented in Subsection 2.2. We are interested in mixed strategy Nash
equilibria, where the operator picks a distribution α over T (b) (for MCC) or
from the set A(b) (for ECC), while the attacker chooses a distribution β over the
set of links. The attacker’s Nash equilibrium payoff is denoted θ∗(b) for a game
with budget limit b.

Using the same interpretation as in Subsection 2.2, the attacker’s NE payoff
θ∗(b) can be used to quantify the vulnerability (i.e., inverse robustness) of the
network when the operator’s budget is b. By varying b, one can draw the Pareto
frontier between the region of achievable vulnerability/budget points and the
region of unachievable ones, as was done in [6] for the particular case of S-D
networks with the maximum cost constraint.

Remark In the next two sections, we discuss the complexity of solving the
constrained blocking game. However, since the unconstrained NBG is in general
NP-hard (see Theorem 1), we readily have that solving a NBG under a budget
constraint6 is also NP-hard in general. Therefore, we focus our discussion on

6 The unconstrained game is the special case of b → ∞.



the communication models introduced in Subsection 2.1, for which there exist
efficient algorithms to compute the NE payoff in the unconstrained game.

5 NP-Hardness of the Maximum Cost Constraint

In this section, we show that computing the equilibrium payoff of the network
blocking game with a maximum cost budget constraint is NP-hard for the mod-
els that were previously shown to be efficiently computable without a budget
constraint.

Theorem 2. Computing the NE payoff with a maximum cost budget constraint
is NP-hard for the (a) S-D communication model, the (b) All-to-All communi-
cation model, and the (c) All-to-One communication model.

Proof. We show NP-hardness by reducing a well-known NP-hard problem, the
Partition Problem (PP) [17], to the problem of deciding whether the equilibrium
payoff in a given network model with a maximum cost constraint is at most a
certain value. We refer to the latter problem as the Equilibrium Problem with
Maximum Cost Constraint (EPMAX).

Definition 3 (Partition Problem [PP]). Given a multiset of positive integers
{x1, . . . , xn}, is there a partitioning of the multiset into two disjoint subsets A
and B such that

∑
x∈A x =

∑
x∈B x ?

Definition 4 (Equilibrium Problem with Maximum Cost Constraint
[EPMAX]). Given a communication model, a network G, a budget limit b, and
a payoff value p, is the adversary’s equilibrium payoff less than or equal to p?

For each communication model, we show how an instance of EPMAX (i.e.,
a network, a budget limit and a payoff value) can be constructed in polynomial
time from an instance of PP. Since the proof techniques follow the same lines for
all models, we only give a full proof for the S-D model. For the All-to-All model,
we describe the main points of the proof in Appendix B without providing the
details. For the All-to-One model, the proof can be found in [12].

To simplify the notations in our proofs, we also define the expected loss of an
edge e ∈ E in a given operator strategy α as

L(e) =
∑
T∈T

αTλ(T, e) . (10)

Proof of Theorem 2 for the S-D Communication Model

Given an instance of PP, we build an instance of EPMAX as follows.
– Let the topology of the network be the following (see Figure 1): There is one

source node, denoted by s, one sink node, denoted by d, and 3n − 1 other
nodes, which are denoted by 1a, 1b, 1, 2a, 2b, 2, . . ., na, and nb.
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Fig. 1: Illustration for the proof of Theorem 2 for the S-D model. Numbers along
the edges indicate unit costs.

Node s is connected to nodes 1a and 1b with edges having unit costs of x1
and 0, respectively. Nodes ia and ib, i < n, are connected to node i with
edges having zero unit cost. Node i is connected to nodes (i+1)a and (i+1)b
with edges having unit costs of xi+1 and 0, respectively. Finally, nodes na
and nb are connected to node d with edges having zero unit cost.

– Let the capacity of the links and the amount of goods to be moved from s
to d be 1.

– Let the operator’s budget be b = 1
2

∑n
i=1 xi.

– Let the equilibrium payoff value be p = 1
2 .

We claim that the equilibrium payoff in the above network is greater than p
iff PP does not have a solution.

First, we assume that the set can be partitioned into two subsets A and B
of equal sum, that is, PP has a solution. In this case, we have to show that
the equilibrium payoff is at most 1

2 . First, notice that since the total amount of
goods to be moved from s to d is 1, the set of feasible integer flows is equal to
the set of s-d paths as the amount of flow on each edge is either 0 or 1. Now,
we show that there exist two disjoint paths (or flows) that satisfy the budget
constraint. The first path (i.e., set of links with positive flow values) consists
of the edges (i − 1, ia) and (ia, i) for each xi ∈ A and (i − 1, ib) and (ib, i) for
each xi 6∈ A. The second path consists of the remaining edges. In other words,
the first flow takes the “path above” whenever xi ∈ A and the “path below”
whenever xi 6∈ A, while the second flow does the contrary. It is easy to see that
the cost of both flows is

∑
xi∈A xi =

∑
xi∈B xi = 1

2

∑
i xi; thus, they satisfy the

maximum budget constraint. By assigning 1
2 probability to each flow, we obtain

an operator strategy in which the expected loss of every edge is at most 1
2 . If

the operator employs this strategy, the payoff of every pure and, consequently,
every mixed adversarial strategy is at most 1

2 . Therefore, the equilibrium payoff
has to be at most 1

2 .
Second, we assume that the set cannot be partitioned into two subsets of

equal sum, that is, PP does not have a solution. If the equilibrium payoff of the
game were at most 1

2 , then there would exist an operator strategy α in which
the expected loss of every edge is at most 1

2 . We show that no such strategy can
exist.

Because of the maximum cost budget constraint, the cost of every pure strat-
egy is less than or equal to b = 1

2

∑
i xi. Moreover, this inequality is strict as every

pure strategy is an s-d path and, if its cost is equal to b, there must exist a subset
of links I ( {1, 2, . . . , n} such that

∑
i∈I xi = b. By letting A = {xi | i ∈ I} and

B = {xi | i /∈ I} we get a solution for PP, which would contradict the assump-
tion that the set cannot be partitioned. Thus, the cost of every pure strategy



is strictly less than b and, as a consequence, the expected cost of every mixed
strategy is also strictly less than b; formally,

∑
e∈E

L(e)we < b =
1

2

n∑
i=1

xi =
∑
e∈E

1

2
we . (11)

Now, recall that the expected loss L(e) of an edge e in the S-D model is equal to
the expected amount of flow on that edge. Since the total amount of goods to be
moved is equal to 1 and since each pair of “above” and “below” edges (e.g., ea and
eb) is an s-d cut, the sum of the flows on any pair of “above” and “below” edges
is at least 1. Thus, for every pair of edges ea and eb, L(ea) +L(eb) ≥ 1 = 1

2 + 1
2 .

Combined with our initial assumption that the expected loss of each edge is at
most 1

2 , we have that

∀e ∈ E : L(e) =
1

2
(12)

and ∑
e∈E

L(e)we =
∑
e∈E

1

2
we . (13)

But this leads to a contradiction with Equation 11, showing that if PP does not
have a solution, then the equilibrium payoff is greater than 1

2 , which concludes
our proof. ut

6 Efficient Algorithms for the Expected Cost Constraint

In this section, we show how the expected cost constrained game can be solved
efficiently for the models introduced in Subsection 2.1. In Subsection 2.3, we gave
a derivation of the attacker’s Nash equilibrium payoff in the unconstrained game
model using the theory of blocking pairs of polyhedra. In this section, we use
a similar derivation to show how polynomial-time algorithms can be derived to
solve the game with the expected cost constraint. The same detailed analytical
steps presented in [13, Chap. 4] (for the unconstrained game) can be followed to
show the same results for the constrained game. In this case, the definition of the
polyhedron PΛ in Equation (3) includes an additional linear inequality (given by
Equation (9)) that corresponds the budget constraint. Since the expected cost
w(α) in Equation (9) can also be formulated as w(α) = w′Λ′α, the constrained
polyhedron can be written as

PΛ :=
{
x ∈ R|E|≥0

∣∣∣ ∃α ∈ R|T |≥0
(
Λ′α ≤ x ∧ α′1 ≥ 1 ∧ w′Λ′α ≤ b

)}
. (14)

Notice that the definition of PΛ above involves the matrix Λ, which is generally
exponential in size. As a consequence, this definition of PΛ cannot be directly
used to efficiently solve the game.

To derive a polynomial-time solution for the ECC model, we first character-
ize the blocker bl(PΛ) of PΛ using a set of linear equations whose cardinality is



polynomial in the size of the network. We do so by showing that if a polynomial-
size characterization exists for the unconstrained polyhedron, then there also
exists one for the blocker of the constrained game. We then show how one can
use linear programming tools to efficiently compute the equilibrium payoff based
on a polynomial-size characterization of the blocker. Finally, we provide a char-
acterization for each of the models discussed in Section 2.1.

Let the polynomial-size linear characterization of the polyhedron PΛ be

PΛ = {x | ∃f (Sf ≤ x ∧Cf ≥ d)} (15)

for the unconstrained game, where f ∈ Rk
≥0 is a vector of polynomial length

(i.e., k is a polynomial function of the network size), S is a mapping to the
mixed strategy space, and C, d are linear constraints. Then, the expected cost
constrained polyhedron is characterized by

PΛ = {x | ∃f (Sf ≤ x ∧Cf ≥ d ∧w′Sf ≤ b)} . (16)

The following theorem gives a polynomial-size characterization of the blocker
in the expected cost constrained game.

Theorem 3. The blocker of the polyhedron defined as

PΛ = {x | ∃f (Sf ≤ x ∧Cf ≥ d ∧w′Sf ≤ b)} (17)

is

bl(PΛ) =
{
y | ∃K, g,h

(
g ≤ y ∧C ′h ≤ S′wK + S′g ∧ d′h− bK ≥ 1

)}
, (18)

where K ∈ R≥0, g ∈ R|E|≥0 , and h ∈ Rl
≥0 (l is the length of d).

Proof. We prove Equation (18) in two steps:

– RHS of Equation (18) ⊆ bl(PΛ): We have to show that, for any ỹ that
satisfies the constraints of the RHS with some g̃, h̃ and K̃, it holds that
ỹ′x ≥ 1 for every x ∈ PΛ. We can formulate this as a linear programming
problem as follows:

Minimize ỹ′x (19)

subject to

w′Sf ≤ b (20)

Sf ≤ x (21)

Cf ≥ d , (22)

where f ∈ Rk
≥0.

Observe that the constraints of the above LP correspond to the characteriza-
tion of PΛ; consequently, the above linear program’s set of feasible solutions
projected to x is PΛ. Thus, we have to show that the value of the above
linear program is at least 1. To see this, consider the dual linear program:

Maximize d′h− bK (23)



subject to

g ≤ ỹ (24)

C ′h ≤ S′wK + S′g , (25)

where K ∈ R≥0, g ∈ R|E|≥0 , and h ∈ Rl
≥0.

Since ỹ satisfies the constraints of the RHS of Equation (18) with K̃, g̃, h̃,
we have that (K̃, g̃, h̃) is a feasible solution. Furthermore, we also have that
the objective function for this solution is at least 1. Thus, the value of the
linear program has to be at least 1.

– bl(PΛ) ⊆ RHS of Equation (18): We have to show that every ỹ ∈ bl(PΛ)
satisfies the constraints of the RHS. To see this, first consider the linear
program from the first part of the proof. Since ỹ blocks every x ∈ PΛ, we
have that the value of the linear program is at least 1. Now, consider an
optimal solution K̃, g̃, h̃ of the dual linear program. Since the value of the
linear program is at least 1, we have that 1 ≤ d′h̃ − bK̃. We also have
g̃ ≤ ỹ and C ′h̃ ≤ S′wK̃ + S′g̃ from the constraints. Thus, ỹ satisfies the
constraints of the RHS of Equation (18) with K̃, g̃, h̃. ut

Recall that our goal is to compute θ∗ = max{θ̃, 0} in polynomial time. The
most straightforward solution is to formulate this as an optimization problem
subject to the set of linear constraints given by the above characterization. Un-
fortunately, the objective function θ cannot be expressed as a linear function
because of the division with 1′y. Thus, to formulate the problem as a linear
program, we introduce a variable φ which measures 1

1′y and scale the original
variables. The resulting linear program is

Maximize φ− µ′β (26)

subject to

1′β = 1 (27)

g ≤ β (28)

C ′h ≤ S′wK + S′g (29)

d′h− bK ≥ φ , (30)

where K,φ ∈ R≥0, β, g ∈ R|E|≥0 , and h ∈ Rl
≥0.

All-to-All Communication Model In [9], it was shown that the mixed strat-
egy space of the operator in the All-to-All model be characterized using multi-
commodity flows. In this characterization, there exists a commodity for each
node. For each commodity, the corresponding node is a sink, while all the other
nodes are a sources with a uniform supply. It was shown that, if the total amount
of flow transported is at least 1, the vector representing the sum flows on each
edge is an element of the polyhedron, and vice versa.



This can formulated as a set of linear constraints with |V |+ |V | · |E| variables
(the uniform supply value for each commodity and the flow along each edge for
each commodity) and |V | · |V |+1 constraints (flow conservation at each node for
each commodity and the constraint on the total amount of flow transported).
Then, by applying Theorem 3, we have a polynomial-size characterization of the
constrained blocker:

bl(PΛ) =

{
y ∈R|E|≥0

∣∣∣∣ ∃π : V × V 7→ R≥0,K ∈ R≥0
(

∀r ∈ V :
∑
v∈V

πr(v)− bK ≥ 1 ∧

∀r ∈ V, e = (u, v) ∈ E : |πr(u)− πr(v)| ≤ ye +weK

)}
, (31)

where πr(r) ≡ 0 by definition to simplify the notation.

S-D Communication Model Based on [6], we can characterize the polyhedron
for the S-D model using network flows. Then, from Theorem 3, we have that the
constrained blocker has the following polynomial-size characterization:

bl(PΛ) =

{
y ∈ R|E|≥0

∣∣∣∣ ∃π : V 7→ R,K ∈ R≥0
(

∑
v∈V

π(v)(s(v)− d(v))− bK ≥ 1 ∧

∀e = (u, v) ∈ E : π(u)− π(v) ≤ ye +weK

)}
. (32)

All-to-One Communication Model In [10], it was shown that the mixed
strategy space of the operator in the All-to-One model can be characterized using
special multi-source flows. By combining this result with Theorem 3, we can show
that the constrained blocker has the following polynomial-size characterization:

bl(PΛ) =

{
y ∈ R|E|≥0

∣∣∣∣ ∃π : V \ {r} 7→ R≥0,K ∈ R≥0
(

∑
v∈V

π(v)− bK ≥ 1 ∧

∀e = (u, v) ∈ E : π(u)− π(v) ≤ ye +weK

)}
, (33)

where π(r) ≡ 0 by definition to simplify the notation.



Fig. 2: All-to-All network
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Fig. 3: Vulnerability/budget tradeoff

7 Application Example: Vulnerability/Budget Tradeoff

As it was mentioned earlier, by varying the budget limit b, one can draw the
Pareto frontier between the region of achievable vulnerability/budget points and
the region of unachievable ones. Here, we illustrate this using the All-to-All
communication model on the topology depicted in Figure 2. The link costswe are
randomly chosen between 0 and 0.6, which makes the average cost of a spanning
tree equal to 2.1. For each value of b, a game is played with the defender’s
strategy set given by Equation (8) for the maximum cost constraint (MCC)
and by Equation (9) for the expected (or average) cost constraint (ECC). In all
games, the attacker’s strategy set is the set of all links and the cost of attack is
µ = 0. Figure 3 shows the vulnerability θ∗(b) as a function of the budget b for
both the MCC and the ECC. Observe that the two curves are very close to each
other, but vulnerability for the MCC is always at least as high as for the ECC.

8 Conclusions & Future Work

In this paper, we have generalized network blocking games by introducing budget
constraints on the operator. This generalization allows the application of network
blocking games in scenarios where the budget of the network operator is limited.
We have studied two budget constraint formulations: the maximum cost and the
expected (or average) cost constraints.

Network blocking games are used to quantify the robustness of topologies in
the presence of a strategic adversary, and the equilibrium payoffs of the games
are used as such quantifications. As the greatest challenge to computing the equi-
librium in practice is the exponential size of the implicitly given payoff matrix,
we have focused our work on computational complexity: we have shown that the
maximum cost formulation leads to NP-hard problems, and proposed efficient
solutions for the expected cost formulation.

Proving that the maximum cost formulation leads to NP-hard problems was a
very important first step. Since we now know that no polynomial-time algorithm
can solve the game under the MCC (for the discussed models), an interesting



future work is finding polynomial-time approximation algorithms or efficient
heuristics. Another interesting future direction is the study of the cost-security
tradeoff problem, where the operator has to maximize security and minimize
budget at the same time.
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A Proof of Theorem 1

Proof. Given an instance (c,v, C, V ) of the Knapsack Problem, we construct an
instance (E, IT∈T ,λ(T, e), p) of the Equilibrium Problem as follows:
– Let E = {1, . . . , N},

– IT∈T =

{
true if

∑
i∈T ci ≤ C

false otherwise,

– λ(T, e) = 1∑
i∈T vi

,

– µ = 0,
– p = 1

V .
Observe that we define λ(T, e) such that its value does not depend on e. Conse-
quently, the payoff of the game does not depend on the adversary’s strategy, it
only depends on the operator’s strategy. To simplify our proof, we will let λ(T )
denote λ(T, e) for any e.

It is easy to see that both IT∈T and λ(T ) can be computed in polynomial
time as they only require summing over a given set (and comparing the sum
with a constant or computing a reciprocal). Furthermore, every step of the re-
duction can be carried out in time and space that is polynomial in the size of
the Knapsack Problem instance.

We claim that there exists a subset S ⊆ {1, . . . , N} whose sum weight is
at most W and whose sum value is at least V if and only if the adversary’s
equilibrium payoff is less than or equal to p (since µ = 0).

First, assume that there exists a subset S satisfying the constraints of the
Knapsack Problem. Then, consider the operator strategy α∗S = 1 (i.e., the strat-
egy that uses only subset S). If the operator uses this strategy, her loss is

λ(S) =
1∑

i∈S vi
=

1

V
= p . (34)

Therefore, the operator’s equilibrium loss and, hence, the adversary’s equilibrium
payoff is at most p.

Second, assume that there does not exist a subset satisfying the constraints
of the Knapsack Problem. This implies that, for every T ∈ T ,

λ(T ) =
1∑

i∈T vi
>

1

V
= p . (35)

7 http://www.hsnlab.hu



Consequently, the expected loss for any operator strategy α∗ is∑
T∈T

α∗T λ(T )︸ ︷︷ ︸
>p

> p . (36)

Thus, the adversary’s equilibrium payoff has to be greater than p. ut

B Proof of Theorem 2 for the All-to-All model
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Fig. 4: Illustration for the proof of Theorem 2 for the All-to-All model.

For the All-to-All communication model, we construct an instance of EPMAX
from an instance of PP as follows:
– Let the network topology be the following (see Figure 4): There is a large

clique that consists of 2n nodes, and there are n “outer” nodes, to which we
refer as node 1, node 2, . . ., node n. Each node i, i = 1, . . . , n, is connected
to two distinct nodes of the clique with edges having unit costs of xi and 0,
such that every node in the clique is connected to exactly one outer node.
Finally, edges between two nodes in the clique have zero unit cost.

– Let the operator’s budget be b = 1
2

∑n
i=1 xi.

– Let the equilibrium payoff value be p = 1
2 .

We claim that the equilibrium payoff in the above network is greater than 1
2 iff

PP does not have a solution.
As in the previous proof, we first assume that PP has a solution (A,B) and

use it to derive an operator strategy in which the expected loss of every edge is
at most 1

2 . According to this strategy, the operator chooses a spanning tree as
follows. First, she chooses either A or B with equal probability ( 1

2 ,
1
2 ). Second,

she connects each outer node i to the clique with exactly one edge: if xi belongs
to the chosen set, she uses the edge that has cost xi; otherwise, she uses the
other edge. Third, she completes the spanning tree by choosing a star subgraph
of the clique uniformly at random. We show that the expected loss of every link
is at most 1

2 : First, each outer edge e is used with probability 1
2 and its removal

cuts off at most 1 node; thus, L(e) ≤ 1
2 . Second, each link e inside the clique is

used with probability 1
n and its removal cuts off at most 2 nodes; thus, L(e) ≤ 2

n .
Next, we assume that PP does not have a solution and use the same argument

as before to show that the cost of every pure strategy and, hence, the expected
cost of every mixed strategy is strictly less than b, i.e.,∑

e∈Eouter

weL(e) < b =
1

2

∑
i

xi =
∑

e∈Eouter

1

2
we , (37)



where Eouter is the set of outer links. Now, consider an arbitrary pair of edges ea
and eb that connect an outer node to the clique. It can be shown that L(ea) +
L(eb) ≥ 1. If there were an operator strategy in which the expected loss of every
edge is at most 1

2 , then it would follow that ∀e ∈ Eouter : L(e) = 1
2 . This would

lead to a contradiction with Equation 37; thus, no such strategy can exist. ut
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