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Abstract. We introduce a two-player stochastic game for modeling se-
cure team selection to add resilience against insider threats. A project
manager, Alice, has a secret she wants to protect but must share with
a team of individuals selected from within her organization; while an
adversary, Eve, wants to learn this secret by bribing one potential team
member. Eve does not know which individuals will be chosen by Alice,
but both players have information about the bribeability of each po-
tential team member. Specifically, the amount required to successfully
bribe each such individual is given by a random variable with a known
distribution but an unknown realization.
We characterize best-response strategies for both players, and give nec-
essary conditions for determining the game’s equilibria. We find that
Alice’s best strategy involves minimizing the information available to
Eve about the team composition. In particular, she should select each
potential team member with a non-zero probability, unless she has a per-
fectly secure strategy. In the special case where the bribeability of each
employee is given by a uniformly-distributed random variable, the equi-
libria can be divided into two outcomes – either Alice is perfectly secure,
or her protection is based only on the randomness of her selection.

Keywords: Insider Threats, Cyberespionage, Game Theory, Computer
Security, Access Control

1 Introduction

Providing effective access control in organizations has been refered to as the
“traditional center of gravity of computer security” since it is a melting pot
for human factors, systems engineering and formal computer science approaches
[1]. Over the last decades, a large number of important contributions have been
made to address various technical challenges to the problem of access control for
important systems and sensitive data [18, 19].

This body of research is motivated in equal parts by the threat of malicious
attackers from the outside and potential abuse by legitimate system users. An-
derson further distinguishes between those situations in which insiders exploit
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technical vulnerabilities of a system in opportunistic ways, and other situations
in which employees abuse the trust placed in them [1]. In our work, we address
the latter dimension of the problem space.

Data theft by trusted employees covers a significant share of insider attacks.
For example, a CERT investigation of 23 attacks showed that “in 78% of the
incidents, the insiders were authorized users with active computer accounts at
the time of the incident. In 43% of the cases, the insider used his or her own
username and password to carry out the incident” [16].

These attacks are occasionally attributed to disgruntled employees and are
said to be primarily destructive in nature. However, the steady rise of cyber-
espionage activities strongly motivates the threat scenario of employees stealing
information for monetary rewards. A recent article summarized publicly-known
United States legal data from the past four years and stated that “nearly 100
individual or corporate defendants have been charged by the Justice Department
with stealing trade secrets or classified information” [10]. The article just con-
sidered theft benefiting one particular foreign nation. Therefore, it is reasonable
to assume that the data merely represents the tip of the proverbial iceberg.

Turning a trusted employee into a spy provides a number of benefits for an
outside attacker. First, a security compromise by an insider might not be discov-
erable in comparison to external network-based attacks that might leave traces
identifiable for expert forensics teams. The result is that a corporation cannot
adequately plan and respond to evidence of a stolen trade secret. Second, an
insider can point the attacker towards particularly valuable secrets by identify-
ing the so-to-speak needle in the haystack. Given the accelerating data growth
within corporations it makes sense to assume that attackers are also suffering
from information overload as a result of their successful but unguided network
penetrations. Third, an insider can help the attacker interpret the stolen data
through complementary communications that do not have to take place at the
work location. Lastly, having an insider conduct the attack might be the only fea-
sibly way for an attacker to circumvent the defenses of particularly well-defended
targets such as military and intelligence services, i.e., the attacker makes use of
the human as the weakest link.

In this paper, we develop a formal model in which an attacker sidesteps tech-
nical security mechanisms by offering a bribe to one member of a project team
who works with sensitive data or business secrets. By applying game-theoretic
tools, we derive optimal strategies for the defender and attacker, respectively,
and provide numerical results to illustrate and explain our findings.

With our work, we intend to start a discussion about considering the com-
position of project teams as a formal and critical dimension of a comprehensive
corporate security policy.

The remainder of the paper is structured as follows: Section 2 provides the
background for our research and considers related work. In Section 3, we define
the basic properties of our model. The conditions for Nash equilibria are given
in Section 4. Section 5 instantiates our model with explicit distributions, and
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numerical illustrations of the derived solutions are given in Section 6. We discuss
our results and provide concluding remarks in Section 7.

2 Background and Related Work

2.1 Studies on Insider Threats and Cyber-espionage

Over the last several years, much research has been published in the area of
insider threats, using different models and loss figures. For example, Carnegie
Mellon University’s CERT has published several reports concerning the field
of insider threats, and industrial and economic espionage. Their 2011 report
identifies two different models of espionage [13]. Motivating for our scenario is
the so-called Ambitious Leader Model, where a leader (either from the inside or
the outside of the organization), tries to convince (other) employees to follow
her and to divulge secrets. In an earlier work, the institute identified several
indicators that preceded either industrial espionage or sabotage, and thus could
give hints if an employee might be vulnerable to being bribed [3]. In our research,
we do not explicitly model behavioral and motivational factors that influence
the trustworthiness of an employee. Instead, we assume that the defender has
an indicator available to measure the level of trustworthiness.

The awareness of this threat is represented, for example, by a brochure pub-
lished by the Federal Bureau of Investigation (FBI) [8], that lists:

“A domestic or foreign business competitor or foreign government intent
on illegally acquiring a company’s proprietary information and trade
secrets may wish to place a spy into a company in order to gain access to
non-public information. Alternatively, they may try to recruit an existing
employee to do the same thing.”

Additionally, the FBI “estimates that every year billions of U.S. dollars are lost to
foreign and domestic competitors who deliberately target economic intelligence
in flourishing U.S. industries and technologies [9].” The FBI further lists the
following recommended activities for organizations: “Implement a proactive plan
for safeguarding trade secrets, and confine intellectual knowledge on a need-to-
know basis [9].”

Another example from Germany includes a 2012 report which identifies the
loss for the German industry caused by industrial espionage to be around 4.2
billion e [6]. In this study, over 70% of these losses were caused by members
of their own organization, through a combination of giving away intellectual
property (47.8%) and failing to disclose their knowledge due to social factors
(22.7%). Note that these numbers might be unreliable and interest-driven, as
highlighted in [2].

2.2 Related Work

This paper touches several different research areas. The struggle between hiders
of information and seekers of information is ubiquitous in the study of steganog-
raphy, the field from which our idea originated [11]. This inspiration arose from
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exploring the plight of a steganographer who wishes to hide k bits in a binary
cover sequence of length n, and a steganalyst who wishes to detect whether the
sequence has been modified. That model differs significantly from our model
here, as the authors assume an equal a priori probability of modified and un-
modified sequences, and the function that measures the predictability of sequence
positions is part of the model as a parameter.

Another area that is directly connected to the situation we model is the or-
ganization of firms under weak intellectual property rights. For example, in [17],
the author considers a situation in which a monopolist may distribute intellec-
tual property across two employees. There is also a competitor who might hire
one of these two to gain access to the intellectual property. The author models
this situation as a leader–follower game, and derives equilibria.

There are many additional research directions covering the subject of insider
threats, including deterrence theory [7], game theory [12] and trust models [5],
which are all tangent to our model. But, to the best of our knowledge, none of
the published models gives directions for a project manager on how to staff a
team, that has to know a specific intellectual property, while being aware that
an attacker might try to bribe one of his personnel.

3 Model Definition

In this section, we describe a two-player, non-zero-sum, non-deterministic game
which models the team composition scenario. First, we describe the general
context and environment of the game. Next, we introduce the game’s players.
Then we define these players’ pure strategies, and the payoffs resulting from these
simple choices. Finally, we introduce notation to represent mixed strategies and
express the players’ expected payoffs in terms of this notation.

3.1 Environment

In our model, an organization with a secret of high value has N employees
who are qualified to operate on projects that require knowing the secret. The
organization must share the secret with at least k employees in order to operate.
The employees have varying levels of trustworthiness. For a given employee i,
this trustworthiness level is given by a random variable Ti whose distribution Ti
is known. We explicitly disregard other constraints on team building and assume
that all aspects of the trustworthiness of an employee can be captured by the
random variable Ti. If Ti = ti, then employee i will reveal her known secrets
whenever she is bribed by an amount at least ti, but she will not reveal the
secret if she is bribed by an amount less than ti. We use the standard notation

FTi
(b) = Pr[Ti ≤ b] (1)

to denote the probability that the trustworthiness level of employee i is at most
b.
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3.2 Players

The players in our game are Alice and Eve. Alice is an organization’s project
manager who is responsible for selecting a team of qualified employees to work on
a confidential project. The project requires each team member to know a secret
of the organization, and this secret has a value S. Alice needs to share this secret
with k of her N qualified employees. Eve is a spy from either inside or outside
of the organization. Eve wants to know the secret and has the resources to bribe
or eavesdrop on one of Alice’s employees. If Eve eavesdrops, the trustworthiness
level of an employee can be interpreted as a measure of difficulty for Eve to
eavesdrop on that employee. Note that Eve does not know which employees are
on the team.

3.3 Strategy Sets

Alice’s pure strategy choice is to select a subset of her N employees with whom
to share the secret. Formally, she chooses a size-k subset I of {1, . . . , N}.

Eve’s pure strategy choice is to select one employee and an amount to bribe.
Formally, she chooses a pair (i, b) consisting of an index i ∈ {1, . . . , N} and a
bribe value b ∈ R≥0.

3.4 Payoffs

Suppose that Alice plays a pure strategy I, and Eve plays a pure strategy (i, b).
If i ∈ I and Ti ≤ b, then Eve wins the value of the secret minus the amount of
the bribe, and Alice loses the value of the secret. In all other cases, Eve loses the
amount of the bribe, and Alice loses nothing.

Table 1. Payoffs for Alice and Eve for the strategy profile I, (i, b)

Strategy profile Payoff for
and outcome Alice Eve

i ∈ I and Ti ≤ b −S S − b
i /∈ I or Ti > b 0 −b

3.5 Representation of Mixed Strategies

A mixed strategy is a distribution over pure strategies. For Alice, the canonical
representation of her mixed strategy space is a finite probability distribution on
the set of size-k subsets of {1, . . . , N}. For Eve, the canonical representation of
her mixed strategy space is a continuous probability distribution over the set
{1, . . . , N} × R≥0. Because of the structure of the game, the payoff for both
players is determined by simpler representations of the strategy spaces than the
canonical ones, and we proceed to describe these representations next.
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Mixed Strategy for Alice In the canonical representation of Alice’s mixed
strategy, we would let aI denote the probability that she recruits the members
of the size-k set I into the project team. However, since Eve can bribe only one
employee, the payoff for any mixed strategy depends only on the probabilities of
sharing the secret with each employee. Since several different mixed strategies
might induce the same projection onto employee probabilities, we gain simplicity
by restricting our attention to these projections.

By overloading notation, for each i = 1, . . . , N , we let ai denote the proba-
bility that Alice shares the secret with employee i. Formally,

ai =
∑
I:i∈I

aI . (2)

The requirement that Alice has to share the secret with k employees induces
the notational constraint

N∑
i=1

ai = k. (3)

Furthermore, it can be shown easily that, for any sequence 〈ai〉 of N probabilities
whose sum is k, there exists a mixed strategy for Alice whose projection is 〈ai〉.
Consequently, we will represent Alice’s mixed strategies by such sequences for
the remainder of this paper.

Mixed Strategy for Eve To represent Eve’s mixed strategies, which are dis-
tributions over the set {1, . . . , N}×R≥0, we introduce two random variables, Y
and B. Random variable Y takes values in {1, . . . , N}, and it represents which
employee Eve has chosen to bribe. Random variable B takes values in R≥0, and
represents the amount of the bribe.

Overloading notation in a way that is similar to what we did for Alice, for
each i = 1, . . . , N , we define ei to be the probability that Eve bribes employee
i, so that we have

ei = Pr[Y = i]. (4)

Since Eve always chooses exactly one employee, we have

N∑
i=1

ei = 1. (5)

To describe a distribution over bribes, we sometimes use the notation

FB(b) = Pr[B ≤ b], (6)

which gives the probability that the value of the bribe chosen by Eve is at most
b. It is also useful to describe the conditional distributions over bribes focused
on a particular employee i. For each i = 1, . . . , N , let Bi be the random variable
whose range is the set of all possible bribes to player i, and whose distribution
Bi is defined by

FBi
(b) = Pr[Bi ≤ b] = Pr[B ≤ b|Y = i]. (7)
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In what follows, we will represent Eve’s mixed strategies as pairs (〈ei〉 , 〈Bi〉),
where each ei is the probability that Eve bribes the employee i, and each Bi is a
distribution over bribe values, conditioned on the assumption that Eve chooses
to bribe employee i.

3.6 Payoffs for Mixed Strategies

In order to use the simplified mixed-strategy representation defined above, we
have to express the players’ expected payoffs in terms of these representations. If
Alice plays a mixed strategy represented by 〈ai〉 and Eve plays a mixed strategy
represented by (〈ei〉 , 〈Bi〉), then the expected payoff for Alice is

−S ·
N∑
i=1

ai · ei · Pr[Ti ≤ Bi] (8)

and the expected payoff for Eve is

S ·
N∑
i=1

(ai · ei · Pr[Ti ≤ Bi])−
N∑
i=1

ei · E[Bi], (9)

where E[Bi] denotes the expected value of Bi under the distribution Bi.

4 Analytical Results

Our goal in this section is to derive analytical results on the structure of the
Nash equilibria of the game. We begin by characterizing Alice’s and Eve’s best-
response strategies. Then, we use these characterizations to constrain Alice’s
and Eve’s strategies in an equilibrium. Finally, based on these constraints, we
formulate an algorithm for computing an equilibrium.

4.1 Best-Response Strategies

Alice’s Best Response For a fixed strategy of Eve, Alice’s best response
minimizes the probability of the secret being compromised. Since the probability
of employee i being targeted and successfully bribed is ei ·Pr[Ti < Bi], Alice has
to choose a set I of k employees to minimize

∑
i∈I ei · Pr[Ti ≤ Bi]. However, as

the set of k employees minimizing the probability of the secret being disclosed
can be non-unique, Alice’s best response can be a mixed strategy 〈ai〉 whose
support consists of more than k employees. This notion is formalized by the
following lemma:

Lemma 1. Given Eve’s mixed strategy (〈ei〉 , 〈Bi〉), Alice’s best response can be
characterized as follows:

– For any employee i, if there are at least N − k employees whose probabilities
of being targeted and successfully bribed are strictly greater than that of i,
then ai = 1.
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– For any employee i, if there are at least k employees whose probabilities of
being targeted and successfully bribed are strictly less than that of i, then
ai = 0.

Proof. First, for any employee i, if there are at least N − k employees whose
probabilities of sharing the secret are strictly greater than that of i, then i is
a member of every size-k subset of employees that minimizes the probability of
the secret being disclosed. Thus, in any best response, Alice always shares the
secret with this employee i.

Second, for any employee i, if there are at least k employees whose prob-
abilities of sharing he secret are strictly less than that of i, then i cannot be
a member of any k-subset that minimizes the probability of the secret being
disclosed. Thus, i cannot be in the support of any mixed strategy that is a best
response for Alice. ut

Eve’s Best Response Suppose that Alice is playing a mixed strategy where
ai is the probability that she shares the secret with employee i. We define
MaxUE(Ti, ai) to be the maximum payoff that Eve can attain from targeting
employee i. Formally,

MaxUE(Ti, ai) = max
b∈R≥0

(ai · S · Pr[Ti ≤ b]− b) . (10)

Lemma 2. For any employee i and trustworthiness distribution Ti, Eve’s max-
imum payoff MaxUE(Ti, ai) as a function of Alice’s secret-sharing probability ai
has the following properties:

1. MaxUE(Ti, 0) = 0,

2. MaxUE(Ti, x) is increasing in x,

3. MaxUE(Ti, x) is uniformly continuous in x.

Proof.

1. First, it is clear that the maximum of maxb∈R≥0
(−b) is attained at b = 0.

2. To show that the function is increasing in x, let x, y ∈ [0, 1] with x < y.
Let bx be a bribe value at which the maximum payoff is attained for secret-
sharing probability x, that is, MaxUE(Ti, x) = x ·S ·Pr[Ti ≤ bx]− bx. Then,
we have

MaxUE(Ti, y) ≥ y · S · Pr[Ti ≤ bx]− bx

≥ x · S · Pr[Ti ≤ bx]− bx

= MaxUE(Ti, x).

3. Finally, to show uniform continuity, let x, y ∈ [0, 1] with x < y, and let by
be a bribe value at which the maximum payoff is attained for secret-sharing
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probability y, that is, MaxUE(Ti, y) = y · S · Pr[Ti ≤ by] − by. Using the
previous result that MaxUE(Ti, y) is increasing, we have

0 < MaxUE(Ti, y)−MaxUE(Ti, x)

≤ (y · S · Pr[Ti ≤ by]− by)− (x · S · Pr[Ti ≤ by]− by)

= (y − x) · S · Pr[Ti ≤ by]

≤ (y − x) · S.

So MaxUE(Ti, x) satisfies a Lipschitz condition in the variable x with Lips-
chitz constant S; and hence, it is uniformly continuous. ut

For a given employee, it is possible for more than one bribe value to give Eve
the maximal payoff. We define ArgMaxBE(Ti, x) to be the set of bribes that give
Eve her maximum payoff for employee i, which is a function of the employee’s
trustworthiness level distribution and the probability of receiving the secret from
Alice. Formally,

ArgMaxBE(Ti, ai) = argmax
b∈R≥0

(ai · S · Pr[Ti ≤ b]− b) . (11)

Using this notation, we may define constraints on Eve’s best response strategy
as follows.

Lemma 3. Given any strategy 〈ai〉 for Alice, Eve’s best response selects an
employee i with the largest MaxUE(Ti, ai) over all i ∈ {1, . . . , N}, and then
chooses a bribe value b from ArgMaxBE(Ti, ai). If there are multiple pairs (i, b)
satisfying these constraints, then Eve may choose any distribution whose support
is a subset of these payoff-maximizing pure strategies.

Proof. Follows readily from Equations (9), (10), and (11). ut

4.2 Nash Equilibria

Above, we introduced constraints on best-response strategies. In the following
subsection, we introduce additional constraints on equilibrium strategies.

Alice’s Strategy in an Equilibrium It is generally in Alice’s interest to
minimize the maximum attainable payoff for Eve, as this generally (but, since
the game is non-zero sum, not necessarily) minimizes her loss. We know that
Eve’s best response is always to choose an employee (or a set of employees)
which will maximize MaxUE(Ti, ai) over i. Therefore, in an equilibrium, Alice’s
strategy should try to equalize these quantities, subject to the constraints that
her sharing probabilities cannot exceed 1 and that they sum to k.

This notion is made formal in the following theorem:

Theorem 1. In any Nash equilibrium,

1. if ai, aj < 1, then MaxUE(Ti, ai) = MaxUE(Tj , aj), and
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2. if aj < ai = 1, then MaxUE(Ti, ai) ≤ MaxUE(Tj , aj).

Proof. Let 〈ai〉 , (〈ei〉 , 〈Bi〉) be Alice’s and Eve’s mixed strategies and assume
that this strategy profile is a Nash equilibrium.

1. For the sake of contradiction, suppose that ai, aj < 1 and it holds that
MaxUE(Ti, ai) 6= MaxUE(Tj , aj). We can assume without loss of generality
that MaxUE(Ti, ai) < MaxUE(Tj , aj). Then, MaxUE(Tj , aj) > 0, which
(from Lemma 2.1) implies that aj > 0. From Lemma 3, we have that the
support of Eve’s best-response mixed strategy does not include i. Thus, Alice
may strictly increase ai towards 1, and strictly decrease every other non-zero
component of her strategy for employees other than i, while still satisfying
the constraint

∑
m am = k. By decreasing her secret-sharing probability

on every employee that Eve might bribe, Alice necessarily decreases the
total probability of Eve learning the secret. Therefore, Alice can improve her
expected payoff by changing her strategy, which contradicts the equilibrium
condition.

2. For the sake of contradiction, suppose that aj < ai = 1 and that
MaxUE(Ti, ai) > MaxUE(Tj , aj). Then, MaxUE(Ti, ai) > 0, which (based on
Lemma 2) implies that ai > 0. Consequently, we have (from Lemma 3) that
the support of Eve’s mixed strategy does not include employee j. So Alice
may simultaneously increase aj towards 1 and decrease her non-zero secret-
sharing probabilities for employees other than j, all while satisfying the
constraint

∑
m am = k. Again, by decreasing her secret-sharing probability

on every employee that Eve might bribe, Alice necessarily decreases the
total probability of Eve learning the secret. Hence, this strategy change will
increase her expected payoff, contradicting the equilibrium condition. ut

It follows from Theorem 1 that Alice’s equilibrium strategy 〈ai〉 may have
some employees with whom she shares the secret with certainty, but for all other
employees, her secret-sharing distribution is only constrained by a smoothness
constraint on the quantities MaxUE(Ti, ai). Furthermore, these quantities do
not depend on Eve’s strategy, a fact on which we will rely when computing an
equilibrium.

From Theorem 1, we also have that:

Corollary 1. In any Nash equilibrium,

– Alice is either secure, that is, Eve has no strategy against her with a positive
payoff, or she shares the secret with every employee with a non-zero proba-
bility. Formally, either MaxUE(Ti, ai) = 0 for every employee i, or ai > 0
for every employee i.

– The employees with whom Alice shares the secret with certainty are at most
as likely to be targeted by Eve as the other employees, with whom Alice is
less likely to share the secret.

It is interesting to compare the first point of the above corollary with Lemma
3. The former says that Alice shares the secret with every employee with a
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non-zero probability (when she cannot be secure), while Lemma 3 says that
Alice never shares the secret with an employee if there are at least k employees
that have lower probabilities of being targeted and successfully bribed. Since
an equilibrium strategy is necessarily a best response, it has to satisfy both
constraints. This implies that, in an equilibrium, Eve equalizes the probability
of targeting and successfully bribing over the set of employees that maximize
her payoff.

Eve’s Strategy in an Equilibrium In this section, we build on the character-
ization of Alice’s equilibrium strategies presented in Theorem 1 to characterize
Eve’s equilibrium strategies. In the previous paragraph, we discussed how Eve
equalizes the probability of targeting and successfully bribing over the set of
employees that maximize her payoff.

This notion is made formal in the following theorem:

Theorem 2. In any Nash equilibrium, if ai, aj < 1, then ei · Pr[Ti ≤ Bi] =
ej · Pr[Tj ≤ Bj ].

Proof. Let 〈ai〉 , (〈ei〉 , 〈Bi〉) be Alice’s and Eve’s mixed strategies and assume
that this strategy profile is a Nash equilibrium. For the sake of contradiction,
suppose that 〈ei · Pr[Ti ≤ Bi]〉 is non-uniform over the set of employees with
whom Alice does not always share the secret. Let Imax be the set of employees
i for which ei · Pr[Ti ≤ Bi] is maximal.

First, assume that k ≤ N − |Imax|. Then, Alice’s best response never shares
the secret with the employees in Imax, that is, ai = 0 for all i ∈ Imax, as there are
k strictly better employees (as stated in Lemma 1). Consequently, we have ei = 0
for every i ∈ Imax, as Eve’s strategy also has to be a best response. But this
implies that ei · Pr[Ti ≤ Bi] = 0 for every i such that ai < 1, which contradicts
that 〈ei · Pr[Ti ≤ Bi]〉 is non-uniform. Thus, it has to hold that k > N − |Imax|.

From k > N − |Imax|, we have that Alice’s best response always shares the
secret with every employee i for which ei ·Pr[Ti ≤ Bi] is not maximal (as stated
in Lemma 1). Consequently, the only employees i for which ai < 1 holds are the
employees in Imax. But this contradicts that 〈ei · Pr[Ti ≤ Bi]〉 is non-uniform
since all employees in Imax have the same maximal ei · Pr[Ti ≤ Bi]. ut

Finding an Equilibrium Based on Theorems 1 and 2, we can formulate the
following algorithm for finding an equilibrium of the game:

1. Find an equilibrium strategy 〈a∗i 〉 for Alice:
We have to find an 〈a∗i 〉 that satisfies the constraints of Theorem 1. This
can be done, for example, using any multidimensional numerical optimiza-
tion method (e.g., the Nelder-Mead algorithm[15]) by using the sum of the
amounts by which each constraining equality is violated as the objective func-
tion. Since we have from Lemma 2 that every MaxUE(Ti, ai) is increasing
and uniformly continuous in ai, there always exists a solution 〈a∗i 〉 satisfying
the constraints of Theorem 1. Note that, since MaxUE(Ti, ai) is not strictly
increasing, the solution might not be unique.
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2. Find an equilibrium strategy (〈e∗i 〉 , 〈B〉) for Eve:
We have to find (〈e∗i 〉 , 〈B〉) that satisfies both Lemma 3 and Theorem 2.
Let MaxUE∗ = maxi MaxUE(Ti, a∗i ) and let I∗ be the set of employees for
whom the maximum is attained. If MaxUE∗ = 0, then there is no strategy
with positive payoff for Eve, so let B∗i ≡ 0 for every i (and 〈e∗〉 can be
arbitrary). Otherwise:
(a) For every i 6∈ I∗, let e∗i = 0.
(b) For every i ∈ I∗, let B∗i always take some arbitrary but fixed bribe value

from ArgMaxBE(Ti, a∗i ), and let

e∗i =

1
Pr[Ti≤B∗

i ]∑
j

1
Pr[Tj≤B∗

j ]

. (12)

It can be verified easily that 〈a∗i 〉 also satisfies Lemma 1. Thus, 〈a∗i 〉 and
(〈e∗i 〉 , 〈Bi〉) form an equilibrium.

5 Special Case: Uniform Distributions on Trustworthiness

In this section, we assume that the trustworthiness level of each employee i is
generated by a uniform random variable Ti ∼ U(li, hi), 0 < li < hi < S. In other
words, we assume that employee i never reveals the secret for a bribe less than
li, always reveals it for a bribe more than or equal to hi, and the probability of
revealing it increases linearly between li and hi. Note that we allow a different
distribution, i.e., different li and hi, for each employee.

We begin our analysis by computing Eve’s optimal bribe values for a given
mixed strategy 〈ai〉 of Alice.

Lemma 4. Eve’s optimal bribe values are

ArgMaxBE(Ti, ai) =


{0} if ai <

hi

S

{0, hi} if ai = hi

S

{hi} otherwise.

(13)

Proof. First, it is clear that no bribe value in (0, li] can be optimal as the prob-
ability of successfully bribing is zero in this interval; thus, these bribe values are
all dominated by 0. Second, it is clear that no bribe value greater than hi can
be optimal as the probability of successful bribing reaches its maximum at hi;
thus, all values greater than hi are dominated by hi. For bribe values in [li, hi],
Eve’s expected payoff when targeting employee i is

S · ai ·
b− li
hi − li

− b . (14)

See Figure 1 for an illustration. When hi > S · ai (Figure 1(a)), we have that
S · ai · b−li

hi−li − b < S · ai · b
hi
− b < 0; thus, the only optimal bribe value is 0.



Managing the Weakest Link 13

ArgMaxBE(Ti, ai)

0 li hi

aiS

0

b

aiSFTi

(a) aiS < hi

0 li hi

ArgMaxBE(Ti, ai)

aiS

0

b

aiSFTi

(b) aiS > hi

Fig. 1. Illustration of the proof of Lemma 4.

On the other hand, when hi < S · ai (Figure 1(b)), we have that, for a bribe
value b = hi, the payoff is S · ai · hi−li

hi−li − hi > 0. It is also easy to see that the
derivative of the expected payoff as a function of b is strictly greater than zero
in this case; thus, the only optimal bribe value is hi. Finally, when hi = S · ai,
we have that, for a bribe value b = hi, the payoff is S · ai · hi−li

hi−li − hi = 0; thus,
both 0 and hi are optimal. ut

For uniform trustworthiness level distributions, the equilibria of the game
can be characterized as follows:

Theorem 3. If the trustworthiness level of each employee is generated according
to a uniform distribution U(li, hi), 0 < li < hi < S, the equilibria of the game
can be characterized as follows:

– If k <
∑

i hi

S , then Alice is perfectly secure: in any equilibrium, ai ≤ hi

S for
every i, Eve never bribes any of the employees, and both players’ payoffs are
zero.

– If k =
∑

i hi

S , then in any equilibrium of the game, ai = hi

S for every i, and
Eve’s payoff is zero.

– If k >
∑

i hi

S , then in any equilibrium of the game, ai >
hi

S and Bi ≡ hi for
every i, and Eve’s payoff is strictly positive while Alice’s payoff is strictly
negative.

Proof. Let 〈ai〉 , (〈ei〉 , 〈Bi〉) be Alice’s and Eve’s mixed strategies and assume
that this strategy profile is a Nash equilibrium. We prove each case separately:

– k <
∑

i hi

S : For the sake of contradiction, suppose that ai >
hi

S for some i.

Then, there has to be a j such that aj < hi

S , otherwise
∑

i ai = k <
∑

i hi

S
would not hold. Consequently, MaxUE(Ti, ai) > MaxUE(Tj , aj) and, from
Lemma 3, we have that ej = 0. Furthermore, from Theorems 1 and 2, we also
have that ei > 0. Therefore, Alice can increase her payoff by decreasing ai
and increasing aj , which contradicts the equilibrium condition. Thus, ai ≤ hi

S
has to hold for every i.
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Now, for the sake of contradiction, suppose that Eve targets and bribes
employee i non-zero probability, that is, ei > 0 and Bi 6≡ 0. Since Eve’s
strategy has to be a best response, we have that ai ≥ hi

S . Consequently, there

has to exist some j satisfying aj <
hi

S . From Lemma 3, we have that ej = 0.
Therefore, Alice can increase her payoff by decreasing ai and increasing aj ,
which contradicts the equilibrium condition. Thus, Eve never bribes any of
the employees, and it follows immediately that both players’ payoffs are zero.

– k =
∑

i hi

S : For the sake of contradiction, suppose that ai >
hi

S for some i,

which implies that there has to be a j such that aj <
hi

S . Then, we can show
that this leads to a contradiction using the same argument as in the first
paragraph of the previous case. Thus, ai = hi

S for every i. The rest follows
readily from Lemma 4.

– k >
∑

i hi

S : First, it is easy to see that, for any strategy 〈ai〉, there has to be

at least one i such that ai >
hi

S , which implies MaxUE(Ti, ai) > 0. By using
the strategy ei = 1 and some constant bribe value from ArgMaxBE(Ti, ai),
Eve can achieve a positive payoff. Consequently, for every strategy 〈ai〉, Eve’s
best response payoff has to be strictly positive. It follows immediately that,
in any equilibrium, Eve’s payoff is strictly positive while Alice’s payoff is
strictly negative.
Now, for the sake of contradiction, assume that ai ≤ hi

S for some i, which
implies MaxUE(Ti, ai) = 0. Then, we have that ei = 0 from Lemma 3. There-
fore, Alice can increase her payoff (i.e., decrease her loss) by increasing ai
and decreasing every non-zero component of her strategy, which contradicts
the equilibrium condition. Thus, ai >

hi

S has to hold for every i.
Second, assume indirectly that, for some 〈ai〉 and e that form an equilibrium
and some i, ai <

hi

S . If ei = 0, then Alice would be able to increase her payoff
(i.e., decrease her loss) by simultaneously increasing ai and decreasing some
aj > hi

S , which would contradict the assumption that 〈ai〉 and e form an
equilibrium. On the other hand, if ei > 0, then Eve would be able to increase
her payoff by simultaneously decreasing ei and increasing ej where j is such

that aj >
hj

S , which would also lead to a contradiction. Therefore, we have

that ai ≥ hi

S for every i in any equilibrium. Finally, Bi ≡ hi follows readily
from Lemma 4. ut

6 Numerical Illustrations

In this section, we provide numerical illustrations for the results derived in the
previous section. Thus, throughout this section, we model the trustworthiness
levels of the employees as independent uniform random variables Ti with param-
eters li and hi.

Figure 2 shows both players’ equilibrium payoffs as functions of the number

of employees k that have to know the secret. First, when k is less than
∑

i hi

S ,
Alice can choose a secure strategy such that bribing is infeasible for Eve. Thus,

both players’ payoffs are zero. Second, when k is larger than
∑

i hi

S , but it is low
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Fig. 2. The players’ equilibrium payoffs as functions of the number of employees k that
have to know the secret. The total number of employees is N = 100, the value of the
secret is assumed to be S = 10, and the trustworthiness level of each employee i is
assumed to be a random variable of the distribution U(li, hi). For this example, each
hi is drawn from the set (0, 7) uniformly at random.

enough such that ai < 1 for each employee i, Alice distributes k −
∑

i hi

S evenly
among the employees’ probabilities. Thus, the probability of compromise and,
hence, Alice’s loss and Eve’s payoff increase linearly with k. It is interesting to
note that, while Eve’s payoff is a continuous function of k, there is a big drop in
Alice’s payoff at the point where she can no longer play a secure strategy. This
phenomena is caused by the non-zero sum property of our game. Finally, when
k is large enough such that Alice assigns probability 1 to some employees, Eve’s
payoff increases super-linearly, while Alice’s loss increases non-monotonically.
Although Alice’s non-monotonically increasing loss might seem surprising at
first, it can be explained easily: as the secret is shared with more and more
employees who are more easily bribed (i.e., have lower hi), Eve can decrease
her bribing costs by targeting these employees. This might decrease her success
probability, but only by a value that is less than the decrease in her bribing
costs. Consequently, sometimes Alice is better off if she shares the secret with
more employees than she has to.

Figure 3 shows Alice’s payoff (darker values indicate a higher loss) for a wide
spectrum of parameter combinations of k and S. The figure clearly shows that,
for lower values of S, the area where Alice can play a secure strategy (white
plain) is greater than the area for higher values of S. Note that, for most values
of S, we can identify the same three regions for k as in the previous figure: for

k <
∑

i hi

S , Alice’s loss is zero; for k >
∑

i hi

S , Alice’s loss first increases linearly
with k, but for larger values of k, Alice’s loss increases non-monotonically. As
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Fig. 3. Alice’s equilibrium payoff for all combinations of 1 ≤ k ≤ 50 and 1 ≤ S ≤ 10.
The parameters for this figure were generated in the same way as for Figure 2, but
with N = 50.

expected, the worst case for Alice is when the number of employees k that have
to know the secret is large and the value S of the secret is high.

Figure 4 shows Alice’s equilibrium strategies for two different values of k.
Figure 4(a) shows a case where k is small enough such that Alice does not assign
probability 1 to any of her employees, while Figure 4(b) depicts a case where
several employees get to know the secret with certainty. Figure 5 shows her

equilibrium strategies for N = 50 and
∑

i hi

S ≤ k ≤ 50. The figure clearly shows
that, for all values of k, ai is a monotonically increasing function of hi, which can
be explained by Theorem 1. Furthermore, the figure also confirms our analytical
result that no ai can be 0.

7 Discussion & Concluding Remarks

In this paper, we introduce a game-theoretic model for studying the decision
making of a project manager who wants to maximize the security of an organi-
zation’s intellectual property. Motivated in part by known behavioral methods
of assessing trustworthiness [14], we assume that both the project manager and
her adversary know the distribution of a random variable representing the trust-
worthiness of each employee. Finally, we assume that both players are able to
estimate the value of the organization’s intellectual property [4].
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Fig. 4. Alice’s equilibrium strategies for (a) k = 50 and (b) 80. The total number of
employees is 100, the value of the secret is assumed to be S = 10, the trustworthiness
level of each employee i is assumed to be a random variable of the distribution U(li, hi),
and the employees are sorted in decreasing order based on their hi values. For this
example, each hi is drawn from the set (0, 7) uniformly at random.

As a result of our analysis, we find that a project manager should select
every employee with a non-zero probability, unless there is a secure strategy,
where an adversary has no incentives to attack at all. This contradicts the näıve
assumption that, to achieve maximal security, only the most trustworthy em-
ployees should be selected. The explanation for this is the following: selecting
the team members deterministically always gives the adversary the knowledge
of which employees to target for bribing. So, by randomizing her strategy, the
project manager minimizes the information available to the adversary for plan-
ning her attack. It is an even more surprising result that, in an equilibrium, the
adversary is at most as likely to target employees that certainly know the secret
as those employees that know the secret with a probability less than 1. Again,
this contradicts the näıve assumption that an adversary will try to bribe the
employees that are the most likely to know the secret.

For the special case of uniform distributions on trustworthiness levels, we find
that the game has two distinct outcomes: either the number of team members
is small enough, such that the project manager has a perfectly secure strategy,
or the security of the secret depends solely on the randomness of selecting the
employee with whom it is shared.1 In the former case, the adversary has no
incentives to attack and, consequently, never learns the secret. In the latter case,
the adversary always attacks and always bribes the targeted employee with the
minimal amount that is never below the employee’s trustworthiness level. Thus,
if the adversary targeted an employee that actually knows the secret, then it is
certainly revealed. The project manager’s only possible defense in this case is to
randomize the selection of employees.

1Note that the probability that an exact equality occurs is negligible in practice.
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Fig. 5. Alice’s equilibrium strategies for
∑

i hi

S
< k ≤ 50. The parameters for this figure

were generated in the same way as for Figure 4, but with N = 50. Again, the employees
are sorted in decreasing order based on their hi values.

There are multiple possible directions for future work. First, a limitation of
the model is the restriction on the adversary, which constrains her to target only a
single employee at a time. This simplification can be motivated by the adversary’s
incentive to keep her operation covert and, thus, to minimize the number of
bribing attempts. However, it would be worthwhile to study the trade-off between
the adversary’s increased risk of being discovered and the increased probability of
learning the secret when she targets multiple employees. As another direction, we
want to study our model with specific distributions over trustworthiness levels.
In this paper, we provide results for the uniform distribution, which can be well-
motivated in practice; however, there are other distributions that can be justified
from practical observations: e. g., the beta distribution.
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