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Abstract

Risks faced by information system operators and users are not only determined by their own security
posture, but are also heavily affected by the security-related decisions of others. This interdependence
between information system operators and users is a fundamental property that shapes the efficiency
of security defense solutions. Game theory is the most appropriate method to model the strategic
interactions between these participants. In this survey, we summarize game-theoretic interdependence
models, characterize the emerging security inefficiencies, and present mechanisms to improve the security
decisions of the participants. We focus our attention on games with interdependent defenders and do
not discuss two-player attacker-defender games. Our goal is to distill the main insights from the state-
of-the-art and to identify the areas that need more attention from the research community.

1 Introduction

Information security has traditionally been considered a strategic cat-and-mouse game between the defending
party and “the attacker”. The goal of the attacker has been to compromise the defender’s systems and to
profit from this unauthorized access, while the goal of the defender has been to prevent unauthorized access
to and usage of resources. In this game, both the attacker and the defender have traditionally been focusing
on developing new technology to achieve their goals. Especially on the defense side, a traditional approach
in information security is to enhance security technologies to reduce the number of vulnerabilities, hence
attacks, and their impact on business operation.

Even though the defenses are getting more efficient and protecting more users [Microsoft, 2011], the
total number of attacks is increasing globally. This trend can mostly be accounted to the increasing number
of devices connected to the Internet, and consequently to the increasing interdependence of information
systems. Attackers exploit this strong interdependence by launching and operating their attacks on a large-
scale from countries where operating costs are reduced and law enforcement is weak. Although the proportion
of protected users [Microsoft, 2011] is increasing, the equally increasing number of unprotected computer
systems leaves ample space to the attackers for exploitation. In addition to interdependence, available
security information is highly asymmetric and strongly favors the attackers. A fundamental bias is that
attackers only need to exploit one vulnerability of the targeted system, while the defender has to protect
as many threat vectors as possible. Attackers can – and often do – proactively test their attack methods
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offline, but due to the number of attack possibilities, the defenders have a difficult time to patch systems
proactively [Anderson, 2001]. Moreover, the possibility of using illegal methods gives attackers a broader
range of options than defenders. Finally, the “physics” of security changes over time - new classes of attacks
are being discovered and this dynamics keeps security researchers and practitioners alert.

The increasing number of attacks suggests that solely improving information security technologies does
not provide adequate protection against the persistent efforts of attackers. The adoption of security defense
solutions is rather slow [Ozment and Schechter, 2006] and their maintenance overhead often makes them
lag behind actual attack trends. There is a growing number of researchers and industry practitioners,
who advocate that providing adequate information security requires an economics approach beyond the
traditional technology solutions approach [Anderson, 2001,Anderson and Moore, 2006]. They argue that the
main obstacle of adopting information security solutions is the lack of proper incentives for participants to
introduce existing solutions, monitor their systems and share relevant information. For another report on
the efficiency of existing security solutions, we refer the reader to [Defence Signals Directorate, 2012]. The
report lists the top 35 mitigation strategies and shows that the top 4 defenses stop more than 85% of the
attacks.

The interaction of a strategic attacker and a defender can be modeled as a game using the mathematical
methods of game theory [Gans et al., 2011, Krugman et al., 2008, Mas-Colell et al., 1995]. For example,
the interaction between one attacker and one defender can be modeled as a classic two-player game.1 Yet,
simple two-player games neglect an important aspect of strategic interaction: there are typically several
interdependent players on the defender side (and often on the attacker side as well). Interdependent security2

games are a natural extension to simple two-player information security games for cases where the defense
relies on the efforts of multiple parties. Most of the real-life information security problems correspond to the
interdependent security model, and hence the model is a powerful tool to reveal inefficiencies of information
security investments. Interdependence is a core property of networked information systems; therefore, it
must be considered at the design of information security defense strategies.

In this paper, we survey interdependent security games.

Definition 1 (Interdependent Security Game). We define a security game model to belong to the family of
interdependent security games if there are multiple selfish but non-malicious players, who can choose whether
to invest into security or remain unprotected. Each player’s goal is to minimize her own risk, which depends
on the investments of some or every other player, and to minimize her security investment costs.

In other words, we do not survey games in which there is only one “defender” (attacker-defender games)
or in which the players’ risks are independent of the other players’ security investments. Note that we survey
only those games where the defender’s strategic decisions are related to security investments. The effects
of malicious behavior on multiple interdependent players have been studied with other strategy spaces as
well, for example, in congestion games [Babaioff et al., 2007]. However, due to space limitations, we will not
discuss games that do not satisfy Definition 1 any further.

In most of the models, the attackers are represented as an exogenous, persistent threat and not as players
of the game. Yet, there is evidence that the attacks are the result of the cooperation of various participants
from the underground economy [Levchenko et al., 2011]. Clearly, the attackers also play an interdependent
attacker game among themselves [Herley and Florêncio, 2009, Herley and Florêncio, 2010]. This area of
security modeling is less explored due to the lack of reliable data about the attackers’ interactions and
credible assumptions about their profit models. Recent large-scale data collection efforts aiming at the
understanding of the underground economy point towards this goal [Levchenko et al., 2011]. Our survey
focuses on the interdependence of strategic defenders, but we also mention the strategic behavior of malicious
attackers when appropriate. Nonetheless, we do not consider games with interdependent attackers. It is
worth mentioning that there is surprisingly little work on this topic.

1Several authors consider two-player security games. For a comprehensive survey of two-player security games, we refer the
reader to [Manshaei et al., 2013].

2In this paper, we will refer to interdependent information security simply as interdependent security, as this naming is
widely accepted in the literature and allows for models in a broader context (e.g., physical security on airlines in the seminal
paper [Kunreuther and Heal, 2003]).
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Researchers who surveyed game-theoretic models applied to security problems [Manshaei et al., 2013]
typically paid a very limited attention to the problem of interdependence. Interdependence lays at the core
of information security problems. The actions of the participants in information systems bear positive and
negative effects on others. Understanding these effects and leveraging the acquired expertise could lead to
improved security defense solutions. There is a significant body of work on interdependent security games
differing in modeling assumptions, solutions approach and arriving at various conclusions. To the best of
our knowledge, our survey is the first attempt to summarize the key points of related work. In this survey,
we make the following contributions:

• We systematically survey interdependent security game papers to summarize the modeling assumptions
and synthesize a common core model with modeling extensions.

• We categorize the equilibrium solutions in interdependent security games, discuss efficiency results,
and present how these results change varying key modeling assumptions.

• We summarize solution techniques from related work that aim to improve the security of information
systems.

• We present a discussion on research areas that are not well understood and need more attention of the
research community.

The paper is organized as follows. First, we introduce basic concepts of market economics in Section 2.
We synthesize a core model of interdependent security games in Section 3. In Section 4, we systematize
interdependence models in the research literature and connect them to the core model. Section 5 presents
extended models, which relax some assumptions of the core model. We discuss classic equilibrium solutions,
their efficiency, and related results in Section 6. Section 7 gives an overview of attempts to improve upon the
often inefficient equilibria in interdependent security games. Finally, we summarize the work in Section 8
and provide directions for future research.

2 Market Economics Background

In this section, we give a brief overview of the relevant concepts in economics we use in the paper. The main
artifact affecting information security is the existence of externalities as presented in Section 2.1, then we
also discuss the role of asymmetric information in Section 2.2 and the effect of monopolies on information
security decisions in Section 2.3.

Information security is a public good [Varian, 2004, Grossklags et al., 2008] and security defense is
organized via market mechanisms and regulation. Since market mechanisms are in place, information security
exhibits all the inefficiencies of a free market, but these inefficiencies are magnified by the sensitivity of
security information. In particular, information security markets are threatened by causes of classic market
failures in economics: externalities of security investment decisions, information asymmetries, and monopoly
providers.

In the following, we briefly summarize these classic economics concepts to allow a reader with a computer
engineering background to get familiar with the notions of this paper. For a thorough explanation of these
concepts, the reader is referred to a basic textbook on microeconomics such as [Gans et al., 2011,Krugman
et al., 2008,Mas-Colell et al., 1995].

2.1 Externalities of Security Investment Decisions

In an interdependent market, the actions of the players affect other players. Usually, these actions are
captured in the transaction costs of the players, but often the transaction costs do not fully account for the
effect of one player’s action on others. This “spillover” effect of a player’s actions on other players is called
an externality. Depending on the nature of the spillover, we can refer to a positive or a negative externality.
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In a positive externality, the action of the player has a beneficial effect on herself, but other players
also benefit from her investment. Information security defense typically exhibits this type of externality.
Information systems rely extensively on networking effects, for example the value of a social network is
defined by the number of participants connecting to it. This strong interdependence is often exploited by
miscreants to speed up the spread of malware programs and infect a large number of computers [Böhme
and Kataria, 2006, Anderson and Moore, 2006]. In fact, computer crime became really troublesome by the
fact that simple attacks can be amplified to a world-wide scale with limited resources. Inherently, security
investment of the users or companies prevent the spread of malware infections creating a positive externality
for others. Yet, positive externalities have adverse effects. A typical problem is free-riding, when players
avoid investing in security expecting other players to protect them. Free-riding significantly contributes to
the general under-investment in security as it is observed in real-life.

Conversely, the lack of security investment as an action can be regarded as one having negative exter-
nalities. Due to the strong interdependence of information systems, Internet security can be considered as
a public good [Varian, 2004]. Those who do not care about security are adversely affecting the security of
others. Negative externalities are also present when the player protects herself investing in more security
defense. A typical example for such an effect is the weakest target game discussed in Section 4.4, where
security investment of a player makes her information system more resistant to attacks and this subsequently
motivates attackers to choose other targets instead. We note that this substitution effect is difficult to observe
as we typically do not possess an in-depth knowledge of the strategic incentives of attackers.

We note that most interdependent security games in related work focus on the case of positive external-
ities, that is, on the positive effect of security investment decisions as the most important factor influencing
security decisions. Negative externalities contribute much less to the security investment decisions of both
attackers and defenders, and they are difficult to characterize [Herley and Florêncio, 2009,Herley, 2010]. We
will detail these models in Sections 4.1 – 4.3.

2.2 Asymmetric Information

The nature of the interaction defines the efficiency of a specific market. The available information on the
market participants and the quality of the products and services they offer are key aspects defining market
efficiency. It is a well-known result in economics that asymmetric information can cause serious market
inefficiencies [Akerlof, 1970]. In [Akerlof, 1970], Akerlof sketches the classic example of lemon markets in
car sales in where low-quality cars (lemons) will drive good-quality cars out of the market if buyers cannot
distinguish between the two types. Obviously, sellers have a precise information of the car type, hence the
information asymmetry.

In the security ecosystem, economics and privacy reasons lead to under-reporting of security incidents.
This in turn results in a non-transparent market where the efforts of the participants cannot be fairly
judged. As a matter of fact, transparency is discouraged because there are other consequences to reporting
a security incident. Asymmetric information problems arise in various examples in the information security
ecosystem. For example, security products constitute a lemon market themselves because independent
evaluation on their provided security is sparse. The certification procedure of security products has inherent
weaknesses [Anderson, 2001]. As currently the certifiers are contracted by the product developers, adverse
incentive effect takes place and as a result products of questionable quality get certified.

Asymmetric information also diminishes the benefits of risk management solutions such as insurance.
Cyber-insurance, as it is called for information systems, suffers from the classic insurance artifacts that
reduce insurance’s efficiency. First, adverse selection exists, because insurance is more beneficial for users
with high risk and hence they are more likely to take it. This biased selection of users together with the
limited ability of insurance companies to identify the real risk profile of users causes an inefficient allocation
of the insurers’ resources. Another issue is moral hazard, when the risk perception of users changes when
taking insurance. Since the insurance contract shields users from catastrophic events, they are more likely to
take higher risks. In information systems, users with anti-virus products are more likely to click on suspicious
links expecting the AV product to protect them.
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2.3 Monopoly

It is well known that monopoly providers can cause inefficiencies in the market as well. The adverse effect
of the misaligned incentives in case of a monopoly provider is especially apparent in the security context.
A monopoly provider has strong incentives to provide a less than optimal security solution as we discuss in
Section 6.6.

Yet, there is an even more serious effect caused by a monopoly provider, that is, the dramatic increase
in the correlation of security incidents because a single flaw in the product of a monopoly provider can be
exploited at a large number of users [Böhme and Kataria, 2006, Anderson and Moore, 2006]. In the realm
of information security, miscreants are strategic decision-makers themselves and optimize their investments
when attacking. To have the most benefit for a unit cost, they tailor their attacks to the software solutions
of major providers. A typical example are the attacks against Microsoft products on personal computers due
to their dominating presence as an operating system or more recently the rise of Android malware on mobile
platforms. We can say that using software from monopoly providers magnifies the exposure of computer
systems to attacks and enables large-scale, correlated incidents.

3 Core Model of Interdependent Security Games

The literature on interdependent security games is very diverse in terms of modeling approaches, assumptions,
notations, and solution concepts. In order to be able to discuss the various models in a unified manner, in
this section, we synthesize a core model of interdependent security games and introduce a common notation.
A very important element of this core model, the model of the interdependence between players, will be
discussed separately in Section 4 due to its complexity. Then, in Section 5, we present various extensions to
the core model, which relax certain assumptions.

3.1 Notations and Notational Conventions

We summarize the notations used in this paper in Table 1. Vectors are assumed to be column vectors and
denoted by bold symbols (e.g., x = [x1, . . . , xN ]T is the vector of security investments). When a value is
uniform over the set of players, we omit the subscript i.3

3.2 Core Model

There are N interconnected players, who are assumed to be selfish but non-malicious, while attackers are
modeled as exogenous threats. The players are also generally assumed to possess complete information and
to be rational and risk-neutral4.

The security investment of player i is denoted by xi, and it can be modeled both as discrete (e.g., xi = 0 if
player i does not invest and xi = 1 if player i invests5) and continuous (i.e., xi ∈ R≥0). Discrete investments
can model, for example, the purchase of a security product, such as an antivirus software. An example for
continuous investment decisions is setting the sensitivity of security monitoring systems (IDS). In this latter
case, higher sensitivity of the security monitoring system generates more alarms and warnings, which need to
be processed by security experts incurring significant costs. Discrete investments are assumed, for example,
in [Kunreuther and Heal, 2003,Lelarge and Bolot, 2008,Grossklags et al., 2008] and in all of the games that
are based on the inoculation interdependence model6. Continuous investments are assumed, for example,
in [Varian, 2004, Jiang et al., 2011, Böhme, 2012]. The discrete investment assumption does not necessarily
have to be a restriction. For example, in [Grossklags et al., 2010a], discrete investments are assumed, but

3Please note the difference in notation between vectors and uniform constants. For example, C denotes the unit cost of
investment for every player, while C denotes the vector consisting of each player’s unit cost of investment.

4Much of the economic conflict literature related to production, appropriation, defense, and rent seeking also assumes risk
neutrality [Hausken, 2006].

5We note here that in the vast majority of research papers, discrete investment modeling means a binary decision.
6The inoculation model is introduced in Section 4, along with the other interdependence models.
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Table 1: Notations Used in the Paper

Symbol Description

Core Model

N number of players

xi security investment

of / for player i
fi risk function

Ci (unit) cost of security investment

Li loss when compromised

Interdependence Models & Extensions

B number of byzantine players

α risk non-additivity

F friendship factor

Wi initial wealth (or endowment)

of / for player i
di number of neighbors

ωij influence of player j on player i

τij rate of traffic from player i to player j

Note: When a value is uniform over the set of players, we
omit the subscript (e.g., if the unit cost of investment is the
same for all players, we let C denote it).

sensitivity analysis with respect to the discrete choice assumption shows that differences between the discrete
and continuous cases arises only in some boundary cases of limited practical relevance.

The risk of an incident, such as a security breach, for player i depends on the investment of player i as
well as the investments of the other players. The value of player i’s risk is computed using a risk function
fi as

fi(x) = fi(xi,x−i) , (1)

where x−i is the investment vector of all players but player i. The risk function fi is often assumed to be the
probability of a security incident, in which case fi ∈ [0, 1]. The exact form of the risk function is determined
by the model of interdependence between the players. In the literature, various models of interdependence
have been proposed, which we will discuss in Section 4. For now, we only assume that fi is non-decreasing
in xi for every player i.

The goal of player i is to maximize her expected payoff, which is defined as

−Lifi(x)− Cixi , (2)

where Li is the potential loss if an incident indeed occurs and Ci is the (unit) cost of investment for player
i.7 Equivalently, each player i can minimize her expected cost, which is

Lifi(x) + Cixi . (3)

The risk of a player is often decomposed into two parts: direct risk and indirect risk (e.g., [Kunreuther
and Heal, 2003,Kearns and Ortiz, 2004,Lelarge and Bolot, 2008]). Almost without exception in the literature,

7Many papers assume that the potential loss is 1 for every player or, alternatively, that the (unit) cost is 1, and incorporate
the ratio between loss and cost into Ci, Li or fi.
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risks are assumed to be non-additive, that is, a player can sustain either direct or indirect loss, but not both.
In [Heal and Kunreuther, 2004], a risk non-additivity parameter α is introduced, which measures the extent
to which losses are non-additive. If α = 0, then the total risk of a player is the sum of her direct and indirect
risks; if α = 1, then indirect losses are conditioned on the direct losses not occurring.

In discrete security investment models, perfect protection (also called complete or strong protection) is
frequently assumed, which means that a player’s overall risk is always zero when she invests in security.8

Examples of models assuming perfect protection include the model of [Lelarge and Bolot, 2008], the second
class of problems in [Heal and Kunreuther, 2004], the model of [Theodorakopoulos et al., 2013], and every
inoculation game. It is also often assumed that the probability of direct loss is zero when a player invests in
security, e.g., in [Kunreuther and Heal, 2003,Kearns and Ortiz, 2004,Heal and Kunreuther, 2004].

In classic epidemic models9, it can also be assumed that there is no direct risk at all, only indirect; for
example, in [Omic et al., 2009,Theodorakopoulos et al., 2013]. Perfect or strong protection can be assumed
in this case as well; for example, in [Theodorakopoulos et al., 2013].

4 Models of Interdependence

In this section, we systematize the models proposed in the literature for interdependence between players.
Recall that, based on the players’ security investments x, a model of interdependence determines each player
i’s risk, which we represented as a general function fi(x) in the previous section. In this section, we provide
a classification of interdependence models (see Table 2), and describe each one in more detail.

The primary interdependence between players is that security investments create positive externalities
(as discussed in Section 2.1). Positive externality means that the investments of other players have a
positive effect on the security and, consequently, the payoff of a player, while negative externality means the
contrary. This positive externality can be explained in many ways: a successfully compromised player can
be used to mount attacks against players that depend on it, investments of a single players can result in
security patches that can be used by every other player, etc. However, a player’s investment can also have
a negative externality on other players. Security investment of a user causes her to become a less attractive
target for the adversaries and, consequently, the adversaries spend more of their resources on attacking other
players [Hausken, 2006].

The organization of this section is the following. First, in Section 4.1, we discuss general models, which
do not assume some specific attack mechanism to explain the interdependence between the players and,
hence, have only some mild constraints on fi(x). Then, in Section 4.2, we discuss models which assume that
interdependence is caused by the propagation of security incidents and compromises.10 Next, in Section 4.3,
we discuss models which focus on positive externalities and assume some specific (but not propagation-based)
mechanism to explain interdependence. Finally, in Section 4.4, we discuss models which focus on negative
externalities.

4.1 General Models

It is possible to derive results from general models of interdependence, in which the risk function f can be
an arbitrary function that satisfies a set of assumptions.

The most common assumption is that security investments exhibit positive but declining returns for every
player [Gordon et al., 2003,Ogut et al., 2005,Jiang et al., 2011]. The positive returns (i.e., strictly decreasing
risks) model the positive externalities between the players: if one player increases her investment in security,

every player benefits. Formally, ∂fi(x)
∂xj

< 0, ∀i, j. The declining returns (i.e., convexity of the risk function)

model the diminishing marginal utility of security investments, a generally accepted assumption. Formally,
∂2fi(x)
∂x2

j
> 0, ∀i, j.

8Recall that, in discrete security investment models, binary investment is assumed predominantly.
9Classic epidemic models are introduced in Section 4, along with the other interdependence models.

10In other words, these propagation-based models assume that once an attacker or malware compromises a player, it will be
able to compromise the neighbors more easily.
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Table 2: Summary of Models of Interdependence between Players

Model Externalities Related work

general
positive

[Gordon et al., 2003] [Ogut et al., 2005] [Jiang
et al., 2011]

both [Heal and Kunreuther, 2004]

propagation

epidemic

positive

[Lelarge and Bolot, 2008] [Lelarge, 2009]
SIS [Omic et al., 2009]
SIP [Theodorakopoulos et al., 2013]

inoculation

[Aspnes et al., 2004] [Moscibroda et al., 2006]
[Meier et al., 2008] [Dı́az et al., 2009]
[Kumar et al., 2010]

other

weakest link

[Varian, 2004] [Grossklags et al., 2008]
[Grossklags et al., 2010a] [Grossklags et al.,
2010b]

best shot, total effort

[Varian, 2004] [Grossklags et al., 2008]
[Grossklags et al., 2010a] [Grossklags et al.,
2010b] [Pal and Hui, 2011]

linear both

linear influence [Miura-Ko et al., 2008b]
[Miura-Ko et al., 2008a] [Saad et al., 2010]
[Radosavac et al., 2008]
effective investment [Jiang et al., 2011]

stochastic one-hop
propagation

positive

discrete [Kunreuther and Heal, 2003]
[Kearns and Ortiz, 2004] [Heal and Kunreuther,
2005]
continuous [Böhme, 2012]

other

bad traffic [Jiang et al., 2011] networked control
systems [Amin et al., 2012] [Amin et al., 2011]

strategic adversary

both

[Hausken, 2006]

stochastic one-hop
with adversary

[Ceyko et al., 2011,Chan et al., 2012]

weakest target negative [Grossklags et al., 2008]

The target set of the risk function is also often restricted. In [Ogut et al., 2005], the risk function fi is
assumed to measure the probability of an incident at player i; consequently, it has to satisfy fi(x) ∈ [0, 1],
∀i. In the general model of [Jiang et al., 2011], the risk function has no such meaning and it is only required
to be finite and to satisfy fi(0) > 0, ∀i.

In [Gordon et al., 2003], such a general two-player model is introduced to study security-based information
sharing organizations (SB/ISOs), but which can also be used to model positive externalities arising from a
wide-range of other types of interactions between the players.11

In [Heal and Kunreuther, 2004], a slightly less general model is presented, which decomposes risk into
direct and indirect parts. The expected indirect loss of player i, when she follows strategy xi ∈ {S,N} and
the players in the set K invest in security, is denoted by qi(K,xi). Then, the expected cost of investing
is ci + qi(K,S), where ci is the cost of the security investment, while the expected cost of not investing is

11Note that, in [Gordon et al., 2003], the risk of a player depends on the θjxj fraction of the other player’s investment xj .
The sharing portion θj is discussed in detail in Section 7.2.8, until then we can assume that it is incorporated into the general
function f .
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piLi + (1− αpi)qi(K,N), where α ∈ [0, 1] measures the extent to which damages are non-additive and pi is
the probability of a direct loss for player i. The model is used to study three classes of problems:

• Partial protection: qi(K,N) = qi(K,S) and α = 1, so that ci(K) = pi(Li − qi(K,N)), where ci(K) is
the cost of investment at which player i is indifferent between investing and not investing. Observe that
ci(K) is increasing in K, that is, the more players invest in security, the more likely it is that others
will follow. In this class, a player’s investment reduces both her own risk and the risk experienced by
other players. This class can be used to model, for example, airline baggage security.

• Complete protection: qi(K,S) = 0 and α = 1, so that ci(K) = qi(K,N)(1 − pi) + piLi. Contrary to
the previous class, the threshold cost ci(K) is now decreasing in K, which means that the more player
invest in security, the less likely it is that others will invest as well. In this class, if a player invests in
security, then she cannot be harmed at all by the actions or inactions of others. This class can be used
to model, for example, a completely effective vaccine against a contagious disease.

• Positive externalities: qi(K,N) = qi(K,S), so that ci(K) = pi(qi(K,S)− Li). Note that, similarly to
the previous class, the threshold cost ci(K) is decreasing in K. In this class, an investment by one
player creates positive externalities, making it less attractive for others to follow. This class can be
used to model, for example, firms’ decisions on research and development (R&D) expenditures.

4.2 Attack Propagation Models

Propagation-based models are motivated by the idea that a player’s risk usually does not depend directly on
her peers’ investment levels. For example, the direct cause of receiving a computer worm via e-mail is the
sender’s computer being infected with the worm; hence, a player’s risk of receiving a worm depends directly
on her peers’ risks, not their investment levels. The peers’ investment levels affect a player’s risk indirectly,
since they affect the peers’ risks directly (e.g., they affect the peers’ risk of being infected with the worm).
Note that this idea fits in the core model perfectly, as player i’s risk fi(x) depends on the investment levels
x ultimately.

As a motivating example, consider popular software products that are run at a significant number of
devices. Due to market dynamics, these products create a quasi-monopolistic situation (introduced in Sec-
tion 2.3), which is the case with Microsoft Windows in the realm of desktop operating systems, and which
is becoming the case with Android for mobile devices. This monopolistic market situation allows malicious
software to spread to a large number of devices, which is often modeled using propagation-based attack
models.

4.2.1 Epidemic Models

Epidemic models describe how a transmittable disease spreads or extinguishes in a network of individuals.
These models can readily be applied in the study of information security, for example, to model viruses
spreading in computer networks. If the virus protection (or recovery) decisions of the individuals are modeled
using game theory, the resulting model is a propagation-based interdependent security game. In this case,
the security investment decisions correspond to the virus protection decisions, and the risk of a player is the
risk of being infected.

In an epidemic model, each player at any given moment in time can be in one of the states that represent
different stages of the epidemic. The most commonly used states are susceptible, which denotes players
who are not infected, but are susceptible to the virus, and infected, which denotes players who are infected
and capable of spreading the virus to susceptible players. The transitions between these states are usually
modeled as stochastic processes, which are controlled by the investment decisions of the players. For example,
the probability of a susceptible player becoming infected within a certain time period can depend on her
security investment and the number of infected players that she is connected to.

In the SIS (Susceptible Infected Susceptible) model, there are only two states, susceptible and infected.
In this model, infected players are eventually cured of the disease, and then become susceptible immediately.
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In [Omic et al., 2009], an N -interwined SIS model based game is proposed. The N -interwined model is
an analytically tractable SIS model, which makes only one approximation of a mean-field kind, and whose
accuracy improves as the size of the network increases [Mieghem et al., 2009]. In the proposed game-theoretic
model, each player’s security investment decision determines her curing rate. More specifically, the transition
of a player from the infected state to the susceptible state is determined by a Poisson process whose rate is
equal to the player’s investment.

The SIP (Susceptible Infected Protected) model presented in [Theodorakopoulos et al., 2013] introduces
a protected state, which represents players who invest in security and, therefore, are immune to the virus.
Players in the susceptible or protected state occasionally learn the state of the network and have an opportu-
nity to revise their current investment decisions, that is, they can choose between being susceptible or being
protected. Players in the infected state are eventually disinfected and, then, become protected. All of these
opportunities and transitions are modeled as Poisson processes.

As the number of players increases, propagation based models can become very complex. One way to
cope with this complexity is to use mean-field approximation [Theodorakopoulos et al., 2013]. In this case,
instead of following each player’s state, only the number of players in each state is kept track of, which allows
the transition functions to be expressed as deterministic functions of the system state.

In [Lelarge and Bolot, 2008, Lelarge, 2009], local mean-field (LMF) analysis is proposed, which extends
mean-field approximation by allowing to model the correlation structure on local neighborhoods in the
network. It is shown that LMF gives exact asymptotic results as the number of players tends to infinity for
sparse random network graphs with a given degree distribution. In [Lelarge and Bolot, 2008,Lelarge, 2009],
LMF is used to study a propagation-based model, in which players can be either infected directly (i.e., direct
loss) or indirectly through their infected neighbors (i.e., indirect loss). The probabilities of direct loss and
contamination from an infected neighbor are determined by the investment decision of the player.

4.2.2 Inoculation Games

One of the most prevalent propagation based model for interdependence is the inoculation game, which was
introduced by Aspnes et al. in [Aspnes et al., 2004].

In the basic inoculation game [Aspnes et al., 2006], the players correspond to the nodes of an undirected
graph G = (V,E). Investment decisions are discrete: if xi = 0, player i remains unprotected; if xi = 1,
player i inoculates herself and she is considered secure. After the players made their choices, the adversary
picks some node uniformly at random as a starting point for an infection. The infection then propagates
through the graph, infecting a node if she is unprotected and any of her neighbors becomes infected. In the
basic model, the cost being secure and the cost of being infected are both uniform.

In the model of [Moscibroda et al., 2006], which we will discuss in Section 5.3, the inoculation game is
extended by allowing some players to be malicious or byzantine rather than selfish. In [Meier et al., 2008],
which we discuss in Section 5.2, the players also take the costs of their neighbors into account by a factor F ,
called the friendship factor. In [Dı́az et al., 2009], the basic inoculation game is used to study the question
whether a mediator can increase social welfare by implementing a correlated equilibrium, which is discussed
in Section 7.1.3. In [Kumar et al., 2010], the inoculation game is generalized by allowing arbitrary security
and infection costs, and arbitrary distributions for the starting point of the infection. More significantly,
the generalized inoculation game includes a network locality parameter l that represents a hop limit on the
spread of the infection.

4.3 Other Models Focusing on Positive Externalities

In this subsection, we discuss the remaining models of interdependence with positive externalities, which
assume some specific but not propagation-based mechanism between the players. Note that, even though
some of them model how an incident propagates from one player to another (e.g., [Kunreuther and Heal,
2003]), we do not consider them to be propagation-based, since they do not allow incidents to spread farther
than one hop. In other words, if a model assumes propagation, a player’s risk is still influenced only by those
players to which she is directly connected.
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In [Varian, 2004], three prototypical interdependence models are introduced: weakest link, best shot, and
total effort. These models are based on the idea that security is a public good; hence, each player’s risk is
determined by the overall level of security. More formally, in all three of these models, the probability of
successful operation is P (H(x)) for every player, where P is a differentiable, monotonically increasing and
concave function, and H depends on which model is used (see below). The function P is often assumed to
be a linear mapping, which simplifies to the identity function if xi ∈ [0, 1] for every i (e.g., in [Grossklags
et al., 2008,Grossklags et al., 2010a,Grossklags et al., 2010b]). The three models are defined as follows.

• In the weakest link (also called perimeter defense) model, the level of security is determined by the
smallest security investment. Formally,

H(x) = min
i
xi . (4)

Weakest link interdependence can be used to model, for example, the perimeter defenses of enterprises,
which are vulnerable if an attacker can identify a weakness that leads to their circumvention. This
tightly coupled dependency can be modeled by considering the minimum investment [Grossklags et al.,
2008,Grossklags et al., 2010a,Grossklags et al., 2010b].

• In the best shot model, the level of security is determined by the largest security investment. Formally,

H(x) = max
i
xi . (5)

Best shot interdependence can be used to model security scenarios with built-in redundancy, for ex-
ample, censorship-resistant networks, where a piece of information is available to the players as long
as at least one of them is secure [Pal and Hui, 2011,Grossklags et al., 2008,Grossklags et al., 2010a].

• In the total effort (also called cumulative defense and sum-of-efforts) model, the level of security is
determined by the sum of the security investment of all players. Formally,

H(x) =
1

N

∑
i

xi (6)

Total effort interdependence is used to model the security of end users, who are subject to cumulative
interdependencies. For example, an under-investing user who causes increased spam activity represent
a security risk to every other user [Grossklags et al., 2008, Grossklags et al., 2010a, Grossklags et al.,
2010b,Pal and Hui, 2011].

The total effort model is appealing as it is relatively simple, yet it can be used to study a wide range of
phenomena, such as free-riding. However, it is based on the assumption that each player’s risk is influenced
uniformly by every other player, which severely limits its application. In many practical security problems,
interdependence relations are nonuniform or infrequent: individual users receive e-mails from only a subset
of all the users in a system, firms only do business with a set of partners, etc.

The model can generalized by replacing the summation with an arbitrary linear combination. In the
linear influence model introduced in [Miura-Ko et al., 2008b], the linear combination is expressed using a
weight matrix Ω, where ωij is the degree of player j’s influence on player i. Then, the risk of player i is

Pi(ωi) , (7)

where the subscript i of Pi signifies that Pi also depends on the identity of the player. Note that the above
formula can also incorporate direct risks if the ωii elements of the matrix are filled in accordingly. In [Saad
et al., 2010], the linear influence model of security investments is complemented with an additional linear
network, which models how much the vulnerabilities of one player influence or threaten the other players.
In this model, the payoff of a player is the difference between the positive and negative influences that are
caused by the security investments and the vulnerabilities of the neighboring players. The linear influence
model is also used in [Radosavac et al., 2008] and [Miura-Ko et al., 2008a].

CrySyS TechReport No. 2012-11-15 11 Journal version accepted to ACM CSUR



A similar model, called effective investment, is presented in [Jiang et al., 2011]. Let ωij measure the
“importance” of player j to player i. Then, the total risk of player i is

LiPi

 N∑
j=1

ωijxj

 . (8)

Besides the above classic models of interdependence, several other models have been proposed, which are
usually tailored to more specific information security problems:

• In [Kunreuther and Heal, 2003] and [Kearns and Ortiz, 2004], stochastic one-hop propagation models
are introduced, which can be applied to a wide range of security problems, such as airline baggage
security, fire safety, or computer viruses. To model indirect risks, let qji denote the probability that
player i is harmed as a result of player j not investing in security. To compute the probability that
player i is harmed, assume that risks are non-additive and that security decisions are binary. Then,
the total risk of player i is

(1− xi)piLi + (1− (1− xi)pi)

1−
∏
j 6=i

(1− (1− xj)qji)

Li , (9)

where pi is the direct risk probability of player i [Kunreuther and Heal, 2003,Kearns and Ortiz, 2004].12

• In [Jiang et al., 2011], another model of interdependence is introduced besides the general and the
effective investment models, which we have discussed previously. The bad traffic model is based on
the amount of malicious traffic (e.g., traffic that causes virus infection) from one player to another.
Clearly, the security risk posed by a unit of traffic depends on the investments of both players, so the
probability that a unit of traffic from player k harms player i can be denoted by φk,i(xk, xi). Then,
the rate at which player i is harmed by traffic from player k is τkiφk,i(xk, xi), where τki is the rate of
traffic from k to i, and the total risk of player i is

Li

∑
k 6=i

τkiφk,i(xk, xi) . (10)

If the security investment is implemented as a traffic filter (e.g., a firewall) and this filter is symmetric
(i.e., treats incoming and outgoing traffic in the same way), then it can be assumed that φk,i(xk, xi) =
φi,k(xi, xk).

• In [Amin et al., 2011], a special interdependence model is proposed for networked control systems
(NCSs), which generalizes the model of [Amin et al., 2012]. The problem of the security choices of
individual NCS is formulated as a two-stage game, in which players make their security and control
decisions, respectively. Each player’s plant is modeled as a discrete-time stochastic system, which is
controlled by the input sequence chosen in the second stage. The model incorporates both reliability
and security risk; the latter reflects the interdependence among players due to their systems being
networked.

• In [Böhme, 2012], a two-player model is introduced to study the effectiveness of audits. The functional
relationship between security investment xi and the probability pi(xi) of a direct loss occurring is
adopted from the Gordon-Loeb model [Gordon and Loeb, 2002]. Formally, pi(xi) = β−xi , where β
is the player-specific security productivity. The probability that either direct or indirect loss occurs
is computed in the same way as in the stochastic one-hop models of [Kunreuther and Heal, 2003]
and [Kearns and Ortiz, 2004]:

f1(x1, x2) = 1− (1− β−x1)(1− δβ−x2) , (11)

where δ is the degree of interdependence.

12In [Kunreuther and Heal, 2003], the model is first introduced for airline baggage security, where an unprotected player can
“contaminate” only one other player, and it is later adapted to computer security, which results in the above model.
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4.4 Models Focusing on Negative Externalities

Negative externalities13, introduced in Section 2.1, created by the players’ investments do not rely on explicit
interdependence relationships between the players, thus they are fairly difficult to model. More precisely, it
is very hard to characterize the set of affected players and estimate the strategic moves of an attacker after
a player hardens her defense. This is probably the main reason why there is a limited literature studying
this issue.

Yet, there are a few attempts to incorporate negative externalities into interdependent security models.
In [Heal and Kunreuther, 2004], negative externalities are modeled by assuming that the probability of direct
loss for a non-investing player, which is constant in the basic model, increases as the number of investing
players grows.

In [Hausken, 2006], negative externalities are modeled by introducing an adversarial player, who considers
the players’ strategies and substitutes into the most optimal attack allocation. The adversary invests an
amount of X with a unit cost of C into attacking the players. The fraction of the attack directed at player i
is Xi, where

∑N
i=1Xi = X. The attack on player i is assumed to take a form that is common in the conflict

and rent seeking literature, where player i keeps a fraction hi of her initial wealth Wi, while the adversary
gets the remaining fraction 1−hi, where hi is the contest success function. In [Hausken, 2006], the common
ratio formula is used for hi:

hi =
xi

xi +Xi
. (12)

Consequently, the payoff of player i is
xi

xi +Xi
Wi − Cixi , (13)

and the payoff of the adversary is
N∑
i=1

Xi

xi +Xi
Wi − CX . (14)

For analytical tractability, the model is based on a two-stage game. Both orders of decisions making are
studied, that is, both when the adversary moves first and the other players move second and vice versa.

In [Grossklags et al., 2008], two models with negative investment externalities are introduced.

• In the weakest target model, the attacker is always able to compromise the player(s) who invests the
least, but leaves the other players unharmed. This models an attacker who has infinite strength and is
determined to compromise an arbitrary set of players with the lowest possible effort.

• The weakest target with mitigation model is a variation of the weakest target model. The difference
is that the probability of a successful attack on the player(s) who invest the least depends on their
investment level in this model. This models an attacker who has finite strength.

In [Ceyko et al., 2011] and [Chan et al., 2012], the stochastic one-hop propagation model of [Kunreuther
and Heal, 2003] is extended to account for strategic attacks, which take the players’ security investments
into account. In particular, the attacker is modeled as a strategic player, who can choose for each player
whether to launch an attack or not. The attacker’s goal is to maximize the sum of the players’ costs while
minimizing the number of attacks she has to launch.

Finally, note that linear interdependence models can also incorporate negative externalities through
negative degrees of influence or importance. Examples of such models are the linear influence model in [Miura-
Ko et al., 2008b] and the effective investment model in [Jiang et al., 2011], which are discussed in Section 4.3.

13Note that negative externalities are also called “substitution- or displacement effect” in the interdependent security litera-
ture. We use the above nomenclature to avoid confusion with the classic notion of the substitution effect in economics.
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5 Extensions to the Core Model of Interdependent Security Games

In the core model, we assumed all players to possess complete information and to be rational, selfish, non-
malicious, and risk-neutral. However, certain papers relax these assumptions to allow for more realistic
modeling. In this section, we present these as extensions to the core model, which relax some assumptions
to allow for incomplete information (Section 5.1), non-rational players (Sections 5.2), malicious players
(Section 5.3), and risk-averse players (Section 5.4). In Table 3, we present key papers from related work and
the most significant modeling assumptions they make. Results on how these extensions affect the game will
be presented in Section 6 after the general results.

Table 3: Summary of Modeling Assumptions in Related Work

Assumption Related work

Investment decision discrete [Kunreuther and Heal, 2003] [Kearns and Ortiz, 2004]
[Heal and Kunreuther, 2004] [Aspnes et al., 2004]
[Heal and Kunreuther, 2005] [Moscibroda et al., 2006]
[Meier et al., 2008] [Lelarge and Bolot, 2008]
[Grossklags et al., 2008] [Grossklags et al., 2010a] [Lelarge, 2009]
[Dı́az et al., 2009] [Kumar et al., 2010] [Amin et al., 2012]
[Theodorakopoulos et al., 2013] [Amin et al., 2011]

continuous [Varian, 2004] [Ogut et al., 2005] [Hausken, 2006]
[Grossklags et al., 2008] [Miura-Ko et al., 2008b]
[Miura-Ko et al., 2008a] [Radosavac et al., 2008]
[Omic et al., 2009] [Jiang et al., 2011] [Pal and Hui, 2011]
[Böhme, 2012]

Incomplete information only the distribution of the other players’ direct threats is known
[Grossklags et al., 2010a], only the distribution of the degrees of
one’s neighbors is known [Pal and Hui, 2011]

Non-rational & altruistic players non-strictly rational players [Theodorakopoulos et al., 2013],
altruistic players [Meier et al., 2008]

Malicious players strategic adversary [Hausken, 2006],
byzantine players [Moscibroda et al., 2006]

Risk-averse players utility function [Ogut et al., 2005] [Lelarge and Bolot, 2008]

5.1 Incomplete Information

In practice, individuals rarely possess complete information about the situation they are acting in. This
limitation is especially true in the context of security, where the adversarial threat is almost always unknown
and the effectiveness of security investments, such as firewalls, is very hard to measure.

In [Grossklags et al., 2010a], the maximum discrepancy in the expected payoff of an expert player in a
complete information environment versus in an incomplete information environment is studied. The expert
player is assumed to possess superior technical and structural understanding of computer security threats
and defense mechanisms. Therefore, she correctly understands how her utility is computed, based on the
interdependencies that exists in the network. In a complete information environment, the expert player
knows the actual direct attack probabilities of all players. In an incomplete information environment, on
the other hand, the expert player knows only the probability distribution of the other players’ direct attack
probabilities and the actual value of her own direct attack probability. In both environments, all the other
players are modeled as non-expert players, who underappreciate the interdependence of network security
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and try to optimize a perceived utility, which actually differs from realized utility.
In [Pal and Hui, 2011], the authors study the equilibrium behavior of players who possess only partial

information about their underlying neighborhood connectivity structures. Each player i is assumed to know
her own degree di (i.e., the number of other players to whom she is connected somehow), but has information
regarding only the probability distributions of her neighbors’ degrees dNi

, i.e., knows the values of P (dNi
|di).

The players are assumed to begin with ex-ante symmetrical beliefs and common priors regarding the degrees
of their neighbors, which are then updated based on their own degrees. Each player is also assumed to be
aware of the degree correlation between the neighboring nodes and to account for it when deciding on her
strategy. The strategic interactions are modeled as a Bayesian game of incomplete information, whose type
space is the player knowledge on the potential degrees of her neighbors.

5.2 Non-Rational and Altruistic Players

The assumptions of strict rationality and pure selfishness are very rough simplifications compared to reality.
In practice, individuals often make non-rational decision and respect the interests of their peers.

In [Theodorakopoulos et al., 2013], non-strictly-rational players are introduced into a game based on an
epidemic interdependence model. The stability and the domains of attraction of the game’s equilibria are
studied in three scenarios: homogeneous strictly rational players, homogeneous non-strictly rational players,
and strictly rational players who are divided into two response classes (i.e., players are grouped together
based on their behavior). In the first scenario, players always make investment decisions that minimize
their expected costs. In the second, non-strictly rational scenario, the players’ investment decisions are
suboptimal, but as the level of threat increases, the probability that a player invests in security increases
monotonically. In the third scenario, the players are strictly rational, but inhomogeneous: they are divided
into two classes, which correspond to different loss values and costs of investment.

In [Meier et al., 2008], altruistic players, who care about the welfare of their direct neighbors in the
social network, are introduced into the inoculation model, which we discussed in detail in Section 4.2.2.
The expected social cost in this non-selfish environment is compared to the expected social cost in a purely
selfish environment. In the non-selfish environment, the players try to minimize their perceived cost, which
is the sum of their actual cost and the actual costs of their neighbors multiplied by a friendship factor F .
Formally, the expected cost of an altruistic player i is

Lifi(x) + Cixi + F

∑
j∈Ni

Ljfj(x) + Cjxj

 , (15)

where Ni denotes the neighbors of player i. The friendship factor captures the extent to which players care
about their friends, i.e., the players adjacent to them in the social network.

5.3 Malicious Players

In most studies, the adversaries are not modeled as strategic players or, equivalently, their strategies are
assumed to be exogenously given. In practice, however, the investment decisions made by the players can
influence the actions of the adversaries. For example, a rational adversary might opt to focus her resources
on attacking players who have invested less and, therefore, are more vulnerable to attacks, which can mean
a higher payoff for the adversary. Similarly, using popular software products increases usability, but it also
increases the number of attacks due to the attacker optimization strategies mentioned in Section 2.3. The
given ecosystem greatly influences the strategic decisions of the attacker in whether she performs generic
attacks against a large set of targets or she executes a more targeted operation. Only recently did some
researchers [Herley, 2010, Laszka et al., 2013] and practitioners [Microsoft, 2011] brought this important
distinction to the attention of the security community. We believe that this distinction in threat modeling
can bring substantial benefit to the community.
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In [Hausken, 2006], all the adversaries are represented by a single player, called the agent. The model
is studied with both exogenous and endogenous adversarial strategies. Endogenous adversarial strategies
create negative externalities between players’ security investments, which we discussed in Section 4.4.

In [Moscibroda et al., 2006], in addition to the inefficiencies caused by the selfishness of players, some
players are allowed to be malicious. As a simplifying assumption, these so called byzantine players have
the same set of strategies as the selfish players and cannot be distinguished from them, but their goal is to
deteriorate the overall system performance without any regard to their own costs.14

5.4 Risk-Averse Players

In practice, individuals are generally believed to be risk-averse, which is most commonly modeled using a
utility function ui, which quantifies the desirability of different outcomes for a given player i. If the risk
function fi(x) measures the probability of a security breach at player i, which implies fi ∈ [0, 1], then the
expected payoff of player i can be computed as

fi(x)ui(Wi − Li − Cixi) + (1− fi(x))ui(Wi − Cixi) , (16)

where Wi is the initial wealth (or endowment) of player i [Ogut et al., 2005,Lelarge and Bolot, 2008]. Note
that we did not introduce Wi in the core model as it does not affect the decisions of risk-neutral players.15

The utility function ui is assumed to be monotonically increasing (u′i > 0), which implies that outcomes
with higher monetary value are more desirable, and concave (u′′i < 0), which implies risk-aversion due to the
diminishing marginal utility. In [Ogut et al., 2005], the model also assumes constant absolute risk aversion

(CARA) given by a constant ratio −u′′

u′ .

6 Equilibria and Efficiency of Interdependent Security Games

Game theory allows us to model the strategic interaction of decision-makers in information security. These
games enable us to derive results about the equilibrium information security investment of the population of
players. Furthermore, the authors in the literature use existing and novel metrics to characterize the efficiency
of the equilibria compared to the achievable total social welfare. In this section, we present equilibrium and
efficiency results and discuss the guidelines they present towards improving information security.

We follow the classic methodology of game theory to describe the equilibrium solutions. First, we present
existence and computability results on Nash equilibria in interdependent security games in Section 6.1.
Then, we discuss the efficiency of these equilibria compared to the social optimum in Section 6.2. Next,
in Section 6.3, we present results comparing the efficiency of different equilibria to each other. Section 6.4
considers the effects of incomplete information. Then, we discuss how the game changes in the presence of
byzantine players in Section 6.5. Finally, in Section 6.6, we present results on how improvement in security
technology affects the players’ investment decisions.

6.1 Existence, Multiplicity, and Computability of Nash Equilibria

One of the principal questions regarding any game is whether it has an equilibrium solution or not. In the
overwhelming majority of the surveyed papers, the equilibrium concept is the Nash equilibrium which is
defined as follows.

Definition 2 (Nash equilibrium). A set of strategies is a Nash equilibrium if no player can increase her
utility by unilaterally deviating from her equilibrium strategy.

14Arguably, there are other attacker threat models. The profit-optimizing attacker model seems to be more realistic in general.
15In [Ogut et al., 2005, Lelarge and Bolot, 2008], a player also has the option of investing in insurance, which we discuss in

Section 7.2.1.
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In general, such equilibrium exists for interdependent security games. For discrete investment strategies,
in [Heal and Kunreuther, 2004], it is shown that there always exists a pure-strategy Nash equilibrium in the
positive externalities class of problems, which also holds if there are negative externalities. For continuous
investment strategies, in [Jiang et al., 2011], it is shown that there always exists some pure-strategy Nash
equilibrium in their general model of interdependence. Since these general models, which we introduced in
Section 4.1, incorporate most of the other interdependence models as special cases, the results also hold for
the majority of the other models.

However, there are some exceptional models to which the above general rule does not apply. For example,
if negative externalities dominate, there might not be a pure-strategy equilibrium. In the weakest-target
model of [Grossklags et al., 2008], the game does not have any pure-strategy equilibrium for non-trivial
parameter values; however, a mixed-strategy Nash equilibrium exists. On the other hand, in the weakest-
target model with mitigation of [Grossklags et al., 2008], a pure-strategy equilibrium may exist (besides a
mixed-strategy one). As another example, the extended stochastic one-hop model of [Chan et al., 2012] does
not have a pure-strategy equilibrium either, due to the negative externalities.

The number of Nash equilibria can also depend on both the model and its parameters. For example,
in [Lelarge and Bolot, 2008], there is always a unique equilibria in the case of strong protection, but there can
be one or two equilibria depending on the parameters in the case of weak protection. The game presented
in another work [Miura-Ko et al., 2008b] has a unique NE if the connection/weight matrix of the influence
network is strictly diagonally dominant. The number of equilibria can also be infinite. For example, in [Omic
et al., 2009] it is shown that a SIS epidemic model based game can have an infinite number of equilibria if
equilibrium is reached at the threshold of extinguishing the epidemic. As the multiplicity of equilibria can
be very important to the efficiency of the system, it is discussed in more detail in the following subsection.

Efficient algorithms for computing a Nash equilibrium have been proposed in several papers. In [Kearns
and Ortiz, 2004], an algorithm with O(N2) time complexity is given for computing a pure-strategy Nash
equilibrium in their stochastic one-hop propagation based interdependence model. In [Heal and Kunreuther,
2004], a polynomial-time algorithm is given for finding a pure-strategy Nash equilibrium in their general,
discrete investment strategy based, positive externalities model. The proposed algorithm also works if there
are negative externalities. In [Aspnes et al., 2006], it is shown that finding an arbitrary pure-strategy Nash
equilibrium in the basic inoculation game is easy: starting from any pure-strategy profile, if at each step some
player with a suboptimal strategy changes her strategy, then the profile converges to a Nash equilibrium
in at most 2N steps. Consequently, a Nash equilibrium can be computed in O(N3) time. In [Miura-Ko
et al., 2008b], an iterative algorithm, called Asynchronous Best Response Dynamics (ABRD), is proposed to
compute the unique pure-strategy Nash equilibrium in the linear influence model. Finally, in [Chan et al.,
2012], the authors propose a polynomial-time algorithm for enumerating all mixed-strategy equilibria in their
extended stochastic one-hop model, given that the adversary attacks only a single player. Unfortunately,
the problem of finding an equilibrium is NP-hard for some games. For example, in [Kumar et al., 2010], it is
shown that even determining whether an instance of the generalized inoculation game with hop limit l has
a pure-strategy equilibrium is NP-hard, where 1 < l <∞.

If an equilibrium state is desirable and some of the players are byzantine, then these players may try
to prevent the system from reaching an equilibrium or, if the system is already in one, to dislodge it.
Preventing the system from reaching an equilibrium forces the honest players to keep changing their strategies
continuously, incurring costs and potentially hindering security. In [Moscibroda et al., 2006], the minimum
number of byzantine players that can prevent an inoculation game from reaching an equilibrium is studied.
A game is called B-instable if B byzantine players are sufficient under the assumption that selfish players
are not aware of the presence of byzantine players. It is shown that the virus inoculation game is generally
1-instable, but for a certain restricted class of network graphs, it is not 1-instable. Unfortunately, the
inoculation game is always 2-instable, which implies that a very low number of attackers masquerading as
honest participants can prevent a system from reaching an equilibrium.
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6.2 Efficiency of Nash Equilibria and Free-Riding

The efficiency of a game’s Nash equilibrium solution can be measured against the socially optimal strategy
profile. This social optimum is usually defined as the minimum of the sum of the players’ individual costs.
The metric is relevant because a regulator, also called a social planner, would try to optimize this total
social welfare.16 The efficiency is typically expressed as the ratio of one of the game’s equilibria – usually the
pessimistic worst-case equilibrium [Koutsoupias and Papadimitriou, 1999] – and the social optimum. In this
subsection, we discuss some of the most important inefficiency results and the prevalent efficiency metrics.

In many interdependent security game models, efficient equilibria simply cannot exist. For example,
in [Kunreuther and Heal, 2003], it is shown that for certain parameter values, a stochastic one-hop prop-
agation model can lead to a game that has the same characteristics as the prisoner’s dilemma, leading to
a single equilibrium in which no player invests in security. In [Varian, 2004], it is shown that in the total
effort interdependence model, investments levels are always too low in the equilibrium compared with the
socially optimal levels. In [Lelarge, 2009], it is shown that the equilibria in their epidemic model are always
socially inefficient as long as investment externalities are positive. In [Böhme, 2012], it is shown that in their
stochastic one-hop propagation model, the equilibria are always located below the social optimum if there
is any positive degree of interdependence.

In some models, efficient equilibria can exist, but are very volatile. For example, in [Grossklags et al.,
2008], it is shown that in the weakest link interdependence model with an insurance option, the equilibria
in which players invest a positive amount in security are very volatile when there are many players. That
is, the slightest rumor that one player may decrease her investment level is able to make the equilibrium
collapse.

Based on these inefficiency results, one might conclude that positive externalities are inherently destruc-
tive and the players are always better off if they are independent. However, if the positive externalities are
caused by security information sharing, they are usually beneficial. In this case, the social cost in the equilib-
ria of the games is high only when compared to the social optima, but it is low compared to the social cost in
the case of independent players. In [Gordon et al., 2003], it is shown that in a general two-player model, the
social cost in the equilibrium in the case when there are positive externalities is always less than in the case
of independent players. However, if the comparison is based solely on the level of achieved security, positive
investment externalities can have a negative effect. In [Gordon et al., 2003], it is shown that even though
social welfare is always increased, the overall level of security might be reduced. This can be explained by
the positive externalities’ mainly negative effect on investment decisions. In [Gordon et al., 2003] and [Ogut
et al., 2005], it is shown that in general continuous investment models, the optimal investment level of each
player with positive externalities is lower than or equal to the optimal level without externalities.

One of the most widely used metrics for quantifying the inefficiency of a game is the Price of Anarchy
(PoA), which was introduced in [Koutsoupias and Papadimitriou, 1999]. The Price of Anarchy is the worst-
case ratio between the social cost of a Nash equilibrium and the social optimum. This shows how much
information security could be improved if appropriate regulations are introduced.

In [Jiang et al., 2011], the Price of Anarchy is analyzed in a general interdependence model with continuous
investments. It is shown that, for any given equilibrium x, the ratio between the social cost at x and the
social optimum, denoted by ρ(x), is bounded by

ρ(x) ≤ max

{
1,max

k

{
−
∑

i
∂fi(x)
∂xk

Ck

}}
. (17)

This results is used to analyze two concrete interdependence models, effective investment and bad traffic. In

16One criticism of social optimum as an optimization goal is that social optima are not necessarily fair, and hence alternative,
fairness-respecting metrics should be considered. Let us also mention that in [Omic et al., 2009], the social cost is not computed
as the sum of individual costs, but using a “social” unit cost of investment.
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the effective investment model, the PoA is

PoA ≤ max
k

1 +
∑

i: i 6=k

ω̂ik

 , (18)

where ω̂ij = Ci

ωii

ωij

Cj
is the “relative importance” of player j to player i. In the bad traffic model, the PoA is

PoA ≤ 1 + max
i,k: i6=k

Liτki
Lkτik

. (19)

Note that the bounds are tight in both cases.
In [Aspnes et al., 2006], it is shown that the Price of Anarchy in the basic inoculation game is Θ(n).

In [Kumar et al., 2010], it is shown that when the disease hop limit is l = 1 and players are uniform in the
generalized inoculation game, the Price of Anarchy is at most maxi di + 1, where maxi di is the maximum
degree in the player interdependence graph.

One of the main causes for these inefficiencies is the presence of free-riding: interdependent players tend
to underinvest and “free-ride” on the positive externalities created by the investments of the other players.

In the general two-player model of [Gordon et al., 2003], it is shown that, at the equilibrium, a small
increase in security investments by either player would decrease social cost, which indicates the presence of
free-riding. The extent of free-riding can be very extreme in some cases. For example, in the total effort
model of [Varian, 2004], the level of security is determined by the player with the highest ratio of unit loss
to unit cost. Consequently, all other players free-ride on this single player. However, it is also possible that
a player invests more in security in an equilibrium than the socially optimal level [Gordon et al., 2003]. In
this case, even though the level of security is higher, the player’s strategy is economically suboptimal due to
the costs of overinvestment in security.

In [Miura-Ko et al., 2008b], a metric, called the Free-riding Ratio, is proposed to quantify the extent of
free-riding. Formally, the Free-riding Ratio γi of player i is the ratio of the externalities produced by the
neighbors of i over the amount she would invest in isolation. If γi < 0, i is forced to over-invest, since the
contribution of her neighbors is negative. If γi = 0, there is no free-riding in either positive or negative
sense. If 0 < γi < 1, there is limited free-riding, but i still invests a positive amount. Finally, if γi ≥ 1, there
is complete free-riding, which means that i invests nothing and depends completely on her neighbors. The
equilibrium values of the free-riding ratios are computed for three example scenarios in [Miura-Ko et al.,
2008b], and are used to analyze the scenarios.

When studying the efficiency of a system, it is important to determine how well it “scales”, i.e., as the
size of the system increases, how much its efficiency decreases. In the case of interdependent security games,
we can consider a game to be scalable if it retains its efficiency as the number of players increases.

Unfortunately, related work below shows that most interdependent security games do not scale well. For
example, in [Varian, 2004], it is shown that in the total effort interdependence model with identical players,
the equilibrium investment level remains constant as the number of players increases, but the socially optimal
amount of investment increases; thus, the game becomes more inefficient. In [Grossklags et al., 2008], it is
shown that in the total effort interdependence model, an equilibrium in which every player invests becomes
more and more unlikely as the number of players increases. In the stochastic one-hop propagation based
model for computer security of [Kunreuther and Heal, 2003], it is shown that increasing the number of players
increases the negative externality to an investing player if the other players are not investing. Consequently,
the incentive for a player to invest diminishes and investing in security can never be a dominant strategy as
the number of players grows large. Generally, games based on interdependence models, where the positive
effects yielded by the players’ investments are shared among every player (e.g., in most linear models), are
prone to free-riding if the number of players is high. Similar results exist for propagation based models as
well. For example, in [Aspnes et al., 2006], it is shown that the inefficiency (i.e., the PoA) in the basic
inoculation game is proportional to the number of players.

There also exist some scalable interdependence games. For example, in [Varian, 2004], it is shown that
in the weakest link interdependence model with identical players, the socially optimal and the equilibrium
risks are identical, regardless of the number of players.
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In the case of classic epidemic models, efficiency can be also measured by the equilibrium level of the
infection (or by whether the disease extinguishes or not). In [Omic et al., 2009], it is shown that there
can be no Nash equilibrium in the SIS model such that the infection rate is below the epidemic threshold,
at which the disease extinguishes. In other words, the epidemic is never extinguished by selfish players.
In [Theodorakopoulos et al., 2013], a counter-intuitive phenomenon is observed in the SIP model. It is
shown that a higher learning rate, which is the rate at which players learn what the infection level is, leads
to a higher infection level.

6.3 Equilibrium Selection

Besides measuring against an ideal strategy profile, such as a social optimum, the equilibria can also be
measured against each other. In the previous subsection, we already discussed the existence of multiple
sustainable equilibria in an interdependent security game. If these equilibria have different social costs, a
coordination problem arises: the network can be “trapped” in a less desirable equilibrium with a higher
social cost, as no individual player has any incentives to change her strategy to the one in the more desirable
equilibrium. In this case, there is a possibility of tipping or cascading: inducing a sufficiently large fraction
of the players to invest will lead others to follow. Such mechanisms are discussed in Section 7.1.4. Note that
in non-deterministic models, such as the stochastic one-hop propagation model, even a single (equilibrium)
strategy profile can lead to substantially different outcomes [Laszka et al., 2014, Johnson et al., 2014]. The
possibility of multiple outcomes, which can have substantially different social costs, indicates that interde-
pendence can cause systemic risk, a phenomenon which has received only little attention from the research
community so far.

In [Grossklags et al., 2010b], the existence of multiple equilibria is listed as one of the key obstacles that
may prevent the players from reaching a high security outcome. It is shown that, in both the weakest-link and
the total effort interdependence models, there exists a multiplicity of equilibria when security investments and
insurance are both available. The existence of less secure and more secure equilibria may cause coordination
failures if a single player deviates from investing in security to buying insurance, as a single player deviating
might cause other players to follow, which in turn causes the game to end up in a less secure equilibrium.

In [Lelarge and Bolot, 2008], the multiplicity of equilibria is studied in the local-mean-field epidemic
model with weak protection. It is shown that if the cost of protection is in a given range, then everyone
and no one investing in security are both Nash equilibria. In this case, the socially optimal strategy profile
is always everyone investing. In [Lelarge, 2009], it is shown that if the players’ potential losses Li are non-
uniform, there is a possibility for the existence of multiple Nash equilibria in the case of strong protection
as well.

In [Kunreuther and Heal, 2003], it is shown that for certain parameter values, everyone and no one
investing in security can both be equilibria in a stochastic one-hop propagation model. Regulations are
proposed to solve the coordination problem arising when none of the players invests because she believes
others would not do so.

The problem of multiple equilibria is also studied in [Heal and Kunreuther, 2004]. They characterize
games in which every player investing in security and none of the players investing are both equilibria by
the threshold cost for investing ci(K). It is also shown that if every player investing and no player investing
are both equilibria, then the former strategy profile always Pareto dominates the latter.

6.4 Incomplete Information

In [Grossklags et al., 2010a], the notion of Price of Uncertainty is introduced to measure the disadvantage
of an expert player when it has incomplete information.

Definition 3 (Price of Uncertainty). The Price of Uncertainty (PoU) quantifies the maximum discrepancy
in the total expected payoff between complete and incomplete information conditions. The metric is defined
in three forms:

• Difference: PoU1(L,N) = maxC,I∈[0,L] {EPcomplete(C, I)− EPincomplete(C, I)},
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• Payoff-ratio: PoU2(L,N) = maxC,I∈[0,L]
EPcomplete(C,I)
EPincomplete(C,I) ,

• Cost-ratio: PoU2(L,N) = minC,I∈[0,L]
EPcomplete(C,I)
EPincomplete(C,I) ,

where EPcomplete and EPincomplete denote the expected payoffs under the complete and incomplete infor-
mation conditions, and I is the unit cost of insurance17. Recall that C and L denote the cost of security
investment and the magnitude of potential losses when they are uniform over the players. For the differ-
ence and payoff-ratio forms, the initial wealth (or endowment) W is set to L, while it is set to zero for the
cost-ratio form.

The three forms of the metric are analyzed in three games, which are based on the best-shot, weakest-link
and total-effort interdependence models.

The observations for the first two forms of the metric are mostly consistent with each other for all
three models. Generally, the PoU is high when the number of players is low, but as the number of players
increases, the PoU diminishes. In other words, as the number of players increases, the importance of
information decreases. This is fortunate, as gathering complete security information gets more difficult
(and/or expensive) as the number of players increases. The combination of the difference metric and the
weakest-link game is an interesting exception, as the PoU is not affected by the number of players in this
case. The main difference between the two forms is that the PoU increases directly with the potential loss
for the difference form, while it is independent of the magnitude of the potential losses for the payoff-ratio
form. This difference is readily explained by the difference between the two definitions.

The cost-ratio form is the least useful, since the observations based on it are counter-intuitive and often
contradict those that are based on the other forms. The explanation is that the cost-ratio metric focuses on
comparing costs which are insignificantly small, but whose limiting ratio indicates significant discrepancy.

In [Pal and Hui, 2011], a comparison based on the players’ behavior regarding security investments is
made between a less-informed case, where each player knows her own degree (i.e., the number of neighbors
she has) and the distributions of her neighbors’ degrees, and a more-informed case, where each player also
knows her neighbors’ actual degrees. In the less-informed case, if we assume that the degrees of neighboring
nodes are independent, each player’s investment monotonically decreases with increase in her degree in every
symmetric equilibria. In the well-informed case, however, if we assume that the degrees of the neighbors of
a node are stochastically independent, we only have that there exists at least one symmetric equilibrium in
which each player’s investment monotonically decreases with increase in her degree. Thus, with increasing
information, the increments in overall network security might follow the same trends as in the case when
players have less information.

6.5 Byzantine Players

The presence of byzantine players can result in an increased social cost due to their malice. In [Moscibroda
et al., 2006], the concept of “price of malice” is introduced to measure the excess cost caused by a given
number of byzantine players.

Definition 4 (Price of Malice). The Price of Malice (PoM) is the ratio between the worst Nash equilibrium
with B byzantine players present and the PoA in a purely selfish system. Formally,

PoM(B) =
PoB(B)

PoA
, (20)

where PoB(B) is the ratio between the worst-case social cost of a NE with B byzantine players divided by
the minimal social cost.

17Insurance is discussed in Section 7.2.1. Here, it suffices to know that insurance is another investment option that the player
has besides security investments to manage risks.
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The Price of Malice is studied in two models of awareness: oblivious and non-oblivious.
In the oblivious model, the selfish players are not aware of the existence of byzantine players, that is, they

assume that all the other players are selfish as well. In this case, players underestimate their probabilities
of being compromised and, consequently, the social cost deteriorates as the number of byzantine players
increases. Formally,

PoM(B) ∈

{
Θ
(

1 + B2

L + B3

(N−B)L

)
, when B < L

2 − 1 ,

Θ(L), otherwise.
(21)

In the non-oblivious model, the selfish players know about the existence and number of byzantine players,
but they do not know which players are byzantine. It is also assumed that selfish players are highly “risk-
averse”: each selfish player presumes that the byzantine players are connected such that her expected cost is
maximal. In this case, the players overestimate their probabilities of being compromised and, consequently,
are more willing to invest in security. Interestingly, the Price of Malice can be less than 1 in this case, which
means that the selfish players’ awareness of the existence of byzantine players may lead to an increased
investment in security and an improvement in social welfare.

6.6 Quality of Security Technology

One might hope that the improvement of security technology, such as the development of better firewalls
and intrusion detection systems, will solve the efficiency problems over time. Unfortunately, technology
improvement rather has a negative effect on investment decisions.

In [Jiang et al., 2011], it is shown that technology improvement may not offset the negative effect of the
lack of incentives, i.e., the PoA does not change with the improvement of security technology, in case of the
effective investment and bad traffic interdependence models. Furthermore, if the effectiveness of investments
has improved by a times, then the optimal social cost cannot decrease more than a times. In other words,
in an interdependent security game, the effect of technology improvement is never amplified, but can rather
be diminished.

In [Lelarge and Bolot, 2008] and [Lelarge, 2009], a similar result is presented for a propagation based
local mean field model. It is shown that, for a fixed price, increasing the quality of security technology can
lead to a decrease of its adoption.

If the quality and price of security technology is not determined by a competitive market, but by a
monopolist provider, the above phenomena has very unpleasant consequences. In [Lelarge, 2009], it is shown
that a monopolist security provider has no incentives to invest in a high-quality product. If the quality of
security is low, the demand is higher because of the positive externalities, of which the monopolist can take
advantage. If, however, the quality of security is high, the demand is lower because of the free-rider effect.

7 Improving Security Decisions

This section draws on the conclusions derived from equilibrium results and surveys related work in which
authors proposed game-theoretic solutions and practical mechanisms to improve information security. This
improvement does not necessarily mean the increase of the users’ security investments, but rather the overall
improvement of utilities obtained as a result of better security decisions.

First, in Section 7.1, we consider theoretical results and abstract mechanisms that change the constitution
of the strategic situation to set a better equilibrium. Then, in Section 7.2, we discuss practical regulatory
and market-based mechanisms for improving the players’ security and social welfare.

7.1 Game-Theoretic Equilibrium Improvements

In this subsection, we discuss extensions and abstract mechanisms that improve the investments decisions
in interdependent security games. These extensions and abstract mechanisms can serve as theoretical bases
for designing practical mechanisms for influencing players.
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7.1.1 Repeated Game

In repeated games, cooperation is more likely to exist between players. Jiang et al. [Jiang et al., 2011] use the
Folk Theorem in repeated games [Fudenberg and Tirole, 1991] that proves the support of any feasible and
enforceable payoff vector as a subgame-perfect equilibrium (SPE). In their paper, the authors characterize
the ratio between the best possible SPE and the social optimum. They found that if individual rationality
constraints are effective, then the efficiency of best SPE will be lower than the efficiency of the SO. If these
constraints do not hold, then the best SPE can achieve SO.

Repeated games can typically improve the equilibrium solution in a game. Nonetheless, one has to take
into account the additional coordination and communication overhead that might prevent the players from
achieving the otherwise improved solutions. Taking the cost of communication into account, the beneficial
effects of repeated interactions sometime dissipate [Jiang et al., 2011].

7.1.2 Sequential Moves

In some cases, having the players make decisions sequentially instead of simultaneously can also improve
the equilibrium. In [Varian, 2004], it is shown that for two players in the weakest-link interdependence
model, the unique equilibrium in the sequential-move game is the same as the most secure equilibrium of the
simultaneous-move game. However, for two players in the total effort and best shot interdependence models,
the equilibrium in the sequential-move game is always less or equally secure compared to the simultaneous-
move game. In this case, the player who moves first is at advantage since there are only two possible outcomes
and the first mover can choose the one that she prefers. The highest level of security in the sequential-move
game can be achieved by making the player with the lower benefit to cost ratio move first.

7.1.3 Correlated Equilibrium

Correlated equilibrium (CE) is a solution concept which generalizes the notion of NE. Let µ be a probability
distribution over the strategy profiles x. First, a mediator selects a strategy profile x with probability µ(x).
Then, she confidentially recommends each player i to invest xi. A distribution µ is a CE iff, for every player
i, the recommended strategy xi is indeed a best response to the randomized strategies of the other players
with distribution µ(x−i|xi). In other words, it is a NE for all players to follow the recommendation of the
mediator.

In practice, the role of the mediator can be played by a trusted third party, such as a government agency.
Alternatively, the players can agree on a distribution µ at a pre-play meeting and later use a device that
generates and distributes the appropriate strategies. Furthermore, it was shown in [Stoltz and Lugosi, 2007]
that CE can arise in an infinite repeated game without a third party or a pre-play meeting. If each player
observes the history of the actions of the other players and chooses her action in each period based on a
“regret-minimizing” criterion, then the empirical frequencies of the actions converge to a CE.

In [Jiang et al., 2011], the analysis is restricted to CE whose support is on a discrete set of strategy
profiles, called discrete CE. Both the best and the worst-case discrete CE are studied. First, it is shown
that in a general interdependence model based game, a discrete CE might not achieve the social optimum;
however, it can be better than all NE of the game. Second, it is shown that the PoA of discrete CE is equal
to the PoA of pure-strategy NE in the effective investment and bad traffic interdependence models.

In Section 6.5, we discussed the counter-intuitive phenomenon where the presence of malicious players
improves social welfare by inducing fear. In [Dı́az et al., 2009], the authors study the question whether this
“windfall of malice” can be achieved by a mediator without the actual presence of malicious players. It is
shown that the mediator can implement a correlated equilibrium by randomly choosing between two types of
strategy profiles, an optimal and a “fear inducing” one. In the second one, whose only purpose is to ensure
that the selfish players follow the recommendation, any player who does not invest in protection has about
1/2 probability of being infected. It is shown that with such a mediator, the social cost for a regular grid is
Θ(n2/3L1/3), which can be a significant improvement compared to the Θ(n) equilibrium social cost without
a mediator.
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7.1.4 Tipping and Cascading

If a game has multiple Nash equilibria, it is possible that the players get “stuck” in a less desirable equilibrium.
In this case there is a probability of tipping or cascading: inducing some of the players to invest in security
will lead others to follow suit.

To study tipping, the concept of critical coalitions is introduced in [Heal and Kunreuther, 2004]. If no
player investing is an equilibrium, a set of players {M} forms a critical coalition if ci(M) ≥ ci, ∀i 6∈ {M},
i.e., if every other player is better off investing in security given that the members of the critical coalition do
invest. It is shown that, if a minimal critical coalition exists, then it has to consist of the players with the
highest indirect losses. Furthermore, a minimal critical coalition exists only if the non-additivity α of direct
and indirect losses is greater than zero.

In practice, a regulatory authority or an association is more interested in a cheapest critical coalition
than a minimal one. If the cost of persuading a single player to invest in security when no other player does
so is assumed to be equal to the cost of the security investment, it can be shown that any cheapest critical
coalition is also a minimal critical coalition. Consequently, in general, the unique minimal critical coalition
of a game is also its unique cheapest critical coalition.

7.2 Mechanisms for Improved Security

In this subsection, we discuss practical mechanisms for improving the level of security and social welfare in
interdependent security games. A brief comparison of these mechanisms is given in Table 4.

Table 4: Mechanisms

Mechanism Regulatory
/ market-
based

Incentive
/ dictate

Related work

insurance both (e.g.,
mandatory
insurance)

incentive [Kunreuther and Heal, 2003] [Ogut et al., 2005]
[Grossklags et al., 2008] [Grossklags et al., 2010a]
[Pal and Hui, 2011]

bonuses & penalties regulatory incentive [Gordon et al., 2003] [Varian, 2004]
[Grossklags et al., 2010b]

liability regulatory incentive [Kunreuther and Heal, 2003]
[Varian, 2004]
[Ogut et al., 2005]

subsidies & fines regulatory incentive [Kunreuther and Heal, 2003] [Heal and Kunreuther,
2004] [Omic et al., 2009]
[Grossklags et al., 2010b] [Amin et al., 2011]

regulations regulatory dictate [Kunreuther and Heal, 2003] [Grossklags et al., 2008]
[Omic et al., 2009]

audits & third-party
inspections

market-
based

dictate [Böhme, 2012]

coordination both dictate [Kunreuther and Heal, 2003] [Saad et al., 2010]

security information
sharing

regulatory dictate [Gordon et al., 2003] [Ogut et al., 2005]

Please note that the terminology for bonuses/penalties, liability and subsidies/fines varies in the litera-
ture. In this survey, bonuses/penalties are rewards/punishments for the security outcome of a player (e.g.,
a player has to pay a penalty if her security is breached); subsidies/fines are rewards/punishments for the
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behavior of a player (e.g., a player has to pay a fine if she does not invest in security); and liabilities are
special penalties that are equal to the damages caused by the player and are paid to the player who sustained
the damage.

7.2.1 Insurance

To date, insurance is probably the most studied remedy to information security investment issues. Cyber-
insurance, as it is called in the information security context reduces the chances of a critical loss by distribut-
ing the risk among the players. Insurance requires the categorization of players, effectively introducing audit
mechanisms. Security audits required by insurance policies subsequently force the participants to maintain
a pre-defined level of system security hence improving overall information security. The major issues with
insurance are the adverse effects due to externalities (Section 2.1), the large-scale correlation of security
incidents due to monopoly markets (Section 2.3), insurance policy enforcement due to information asymme-
tries (Section 2.2), and the lack of available data. The related work on cyber-insurance is extensive, for a
comprehensive overview of the papers, we refer to [Böhme and Schwartz, 2010]. We will now summarize the
issues due to interdependence in these papers.

Information asymmetries between the insurers and the players can have adverse effects on investment
decisions, which lead to decreased levels of security and, possibly, decreased social welfare. Insurance discour-
ages investment in security if insurers are unable to detect the careless behavior of the insured players, who
know that they will receive compensation should they suffer loss [Kunreuther and Heal, 2003]. Consequently,
a high security equilibrium may be lost as the players invest in insurance instead of security.

On the other hand, if these information asymmetry problems are eliminated, insurance with actuarially
fair premiums encourages a risk-averse player to invest in security whenever the increase in security costs
is less than the reduction in expected losses [Kunreuther and Heal, 2003]. If insurance is mandatory for
the players, security is increased because the players invest more into security as a rational response to the
reduction in insurance premiums. Insurance leads to a market solution that is aligned with the economic
incentives of both the insurers, who earn profit from appropriately pricing premiums, and the players, who
can hedge potential losses [Pal and Hui, 2011].

In the case of voluntary insurance, the players’ insurance coverage decisions can also be studied. In [Ogut
et al., 2005], insurance decisions are assumed to be continuous. As expected, both a higher amount of risk
(i.e., expected loss) and a higher degree of risk aversion cause increased insurance coverage. If the level
of interdependence is higher, then insurance coverage is less or equal (equality holds when the insurance
market is mature). This phenomena might seem counter-intuitive at first because an increased risk (caused
by interdependence) should motivate players to take more insurance. However, since the total risk is higher
from the insurer’s perspective, so is the price of insurance, which counters the increased demand for insurance.

When studying the impact of insurance on interdependent security games, the supply side of insurance
also has to be taken into consideration. From the players’ perspective, the different characteristics of the
supply side can be summarized as the maturity of the insurance market. The maturity of the market is low
if

• there are few insurers, and hence little competition,

• adequate actuarial data is unavailable, or

• there exists a high correlation between players’ loss events that can cause significant system-wide
losses [Ogut et al., 2005].

The price of insurance is determined by the maturity of the insurance market and the level of risk. If the
insurance market is mature, the insurers do not make any profit, i.e., the insurance premium paid by a given
player is equal to her risk. Immature markets can be modeled through a loading factor, which measures the
excess of the premium relative to the risk [Ogut et al., 2005].

In [Ogut et al., 2005], it is shown that insurance market maturity can affect both the insurance and
the security investment decisions of the players. As the market becomes more mature, security investments
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decrease, which can be easily explained by the fact that security investment is more effective than insurance
when the insurance market is immature.

The immaturity of the market is obviously disadvantageous for the players due to the increased costs
of insurance. However, an immature market can also have some positive effects. For example, a single
monopolist insurer can be advantageous because she wants to internalize the externalities [Kunreuther and
Heal, 2003]. In a competitive market, an insurer would be reluctant to reduce the premium of a player for
investing in security since she cannot observe or control the investments of the other players, who could cause
indirect loss to the client. A single insurer, on the other hand, can require all players to invest in return
for premium reductions and, consequently, increasing the overall level of security. As an other example,
in [Grossklags et al., 2010a], it is shown that the Price of Uncertainty in the weakest-link interdependence
model is the highest when insurance is competitively-priced.

The amount of loss in case of a security breach can also be reduced by using self-insurance technologies
or practices, such as backup provisions [Grossklags et al., 2008, Grossklags et al., 2010a]. Self-insurance
can be modeled in the same way as voluntary insurance provided by an insurer with a fixed (unit) price of
insurance, which is determined by the employed technology or practice.

7.2.2 Bonuses and Penalties

In [Grossklags et al., 2010b], rebates and penalties are proposed as mechanisms that can be used to shape the
incentives of players. A player is subjected to a penalty when her security is broken, and receives a bonus
when she remains secure. In [Grossklags et al., 2010b], these mechanisms are proposed as economically-
motivated strategies that an ISP may use to influence its customer. In this example, penalties can be
implemented as reductions in network throughput or as a quarantine, while bonuses as monetary benefits
or reduced subscription costs. Numerical sensitivity analysis shows that in general, bonuses and penalties
can be more effective than fines and subsidies, which are discussed in Section 7.2.4, for the weakest-link
interdependence model [Grossklags et al., 2010b]. For the total effort interdependence model, it is observed
that moderately sized interventions have little impact, which can be explained by the rapid decrease in
the incentive for investing in security as the network grows in size. Consequently, penalties need to be in
proportion with the size of the network to have a noticeable impact. It is also noted that such a policy needs
to be well-balanced as most users disfavor penalty-based systems.

In [Varian, 2004], the optimal penalty, which induces socially optimal levels of investment, is studied. It is
shown that the penalty should be imposed on the player who has the lowest cost of reducing the probability
of security breach and that the penalty should be equal to the losses of the other players. It is noted that
the principle of the liability of the player with the least cost is a standard result in the economic analysis of
tort law, where it is sometimes called the doctrine of the “least-cost avoider”.

In [Gordon et al., 2003], a special penalty rule is proposed. Under this rule, if a player causes damage
to other players, then she is charged the value of the difference between the realized losses of the other
players and their expected losses at the social optimum. It is shown that this mechanism fully internalizes
externalities and makes each player’s objective of minimizing her own expected cost equivalent to minimizing
the social cost function up to a constant.

7.2.3 Liability

A very straightforward way of internalizing externalities is to hold players liable for the damages they cause
to other players because of their negligence. Liability can be thought of as a special penalty, whose value is
equal to the amount of damages caused and which is paid to the players who sustained the damage.

In [Ogut et al., 2005], the liability system is mathematically analyzed and it is shown that when players
maximize their individual utility, security investment levels are higher with liability than without.

Unfortunately, the liability system can not be considered a perfect solution for multiple reasons. In
[Kunreuther and Heal, 2003], it is observed that the liability system, despite having attractive theoretical
properties, faces practical problems due to high transaction costs, since determining the cause of a loss can
be very costly (think about the cost of a forensics investigation involving security experts). Furthermore,
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in [Ogut et al., 2005], it is shown that security investment levels with liability are higher than the social
optimum level without liability. That is, liability can make players over-invest in security compared to the
socially optimal level. Finally, in [Varian, 2004], it is shown that in the total effort model, if the liability
payment is too large, it may induce a player to seek to be damaged.

In [Varian, 2004], it is also shown that liability is not adequate in general to achieve socially optimal
levels of investment in the weakest link model. In such cases, a negligence rule can be used to induce optimal
investments. Under the doctrine of the negligence rule, a regulatory authority determines the level of due care
prior to the game. Then, in the event of a security breach, a player can be held liable only if her investment
level is below the level of due care. It can be shown that the negligence rule induces optimal investment
decisions in the weakest link and many other similar models, such as the total effort model [Varian, 2004].
It is noted that this is a standard result in liability law.

7.2.4 Subsidies and Fines

Subsidies/fines might seem to be similar to bonuses/ penalties at first sight, but there is a fundamental
difference between the two mechanisms: the former rewards/punishes the effort of a player, while the latter
rewards/punishes the outcome [Grossklags et al., 2010b].

In [Kunreuther and Heal, 2003], it is proposed that the public sector could intervene directly in free-riding
problems by levying a fine on players who do not invest in security or, equivalently, by providing a subsidy
to players who do invest.

In [Amin et al., 2011], a fine is suggested to alter the individually optimal security choices, in which the
players tend to under-invest in security relative to the socially optimal choices. It is shown that a range of
penalties can be computed such that the individually optimal choices in the game with penalties coincide
with the socially optimal ones.

In [Omic et al., 2009], it is shown the Nash equilibrium of the virus protection game depends on the
vector of the unit costs of investment C. By varying C, a “network manager” (e.g., the public sector) can
influence the network equilibrium point. One way of adjusting the unit cost is through subsidizing the cost of
security investments (e.g., the price of antivirus software); for example, players who have many interactions
and are densely connected can be given cheaper (per unit) antivirus. Another possible way of adjusting the
relative cost of insurance is to levy a fine on those players who do not invest. Some conditions are introduced
in [Omic et al., 2009] that can give guidance to choosing the right values for the costs of security investments.
If all Ci > 1, there is only one equilibrium, in which no player invests in security. If Ci <

1
di

, a player always
invests a positive amount in security. Finally, too low relative prices can lead a network further away from
the optimum: if a densely connected player invests in expensive security, other players can invest less such
that the network reaches the epidemic threshold.

In [Grossklags et al., 2010b], subsidies are discussed as a mechanism that ISPs can use to influence
customer behavior. For example, security products can be offered at a reduced cost. Similarly to bonuses
and penalties, it is observed that subsidies and fines only work at margin in the total effort interdependence
model, when the subsidizer provides security products free of charge [Grossklags et al., 2010b].

7.2.5 Regulations

Instead of relying on economic incentives, such as subsidies or liabilities, to influence the investment decisions
of the players, a social planner might be able to dictate decisions using regulations.

In [Kunreuther and Heal, 2003], the question under what conditions should regulations be considered is
studied. In an example of N identical players, regulations are shown to be desirable from both private and
social welfare perspectives if

• there are two stable Nash equilibria, in which everyone and no one invests in security,

• the equilibrium where everyone invests yields higher payoffs for all players than the equilibrium where
no one invests, and
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• none of the players voluntarily invested in security because they believed others would not do so.

Therefore, regulations should be considered when the cost of security investment is between the threshold
under which investing is always optimal (regardless of the decisions of the other players) and the expected
loss through direct risk. In this case, regulations solve a coordination problem.

In [Omic et al., 2009], imposing upper bounds Γi, for i = 1, . . . , N , on the infection probabilities in the
virus protection game is studied. These bounds can serve as a form of strict regulation, which requires the
players to reach a level security, regardless of the costs incurred. Two particular upper bound settings are
discussed.

• If Γi → 0 for a given player i and Γj is finite for every other player, the curing rate of i (i.e., the
investment of i) will tend to infinity.

• If Γj = Γ, there exists a feasible strategy profile in which every player invests an amount that is
proportional to her degree in the network di. Unfortunately, this is not a stable point: if there is an
unfair player, who reduces her investment against the rule such that her infection probability rises
above the bound, she can cause the other players to invest more than what was planned.

The latter result suggests a strategy for steering autonomous systems (ASs) to invest an amount in security
that is proportional to the amount of interactions they have with other ASs [Omic et al., 2009]. Security can
be enforced by requiring their infections probabilities to be under a certain fixed bound. Together with the
fact that the cheapest threshold, in terms of total security investment, is reached when the players invest
proportionally to their own degrees, this is a very fair way to provide overall security.

If negative externalities dominate, such as in the weakest target model of [Grossklags et al., 2008], the
social planner has to either create a “honeypot player” or, if that is not an option, to select an individual
to act as a target. Unfortunately, if insurance is not available or too expensive, the selected player essen-
tially sacrifices herself. The willingness of individuals to serve as “sacrificial lambs” has been studied by
anthropology and economics [Grossklags et al., 2008].

Regulations are only useful if they can be enforced. In order to do that, one has to first reliably measure
the security level of players and their investments. In practice, security audits and third-party inspections,
which are discussed in the following subsection, are commonly used for this.

One way for the public sector to enforce regulations is to turn to the private sector for assistance [Kun-
reuther and Heal, 2003]: third-party inspections coupled with insurance protection can encourage players
to reduce their risks from incidents. Such a management-based regulatory strategy forces the players to do
their own planning as to how they meet the regulations, instead of regulatory decision-making.

7.2.6 Audits and Third-Party Inspections

Regulations prescribe rules for the players, but additional mechanisms are needed to enforce these rules18.
Audits and third-party inspections are required to check the compliance of the players to the regulation.
Security audits can generate positive utility through two channels [Böhme, 2012]:

• First, they can help overcoming information asymmetries described in Section 2.2. Security products
constitute a lemon market, which results in the price for goods of unknown quality dropping to the
price of insecure goods. Audits can be used to signal the quality of security and, thus, establish a
market for secure products.

• Second, they can solve coordination problems. Audits can be used as credible signals, which the players
can use to announce information about their investment and security levels. This allows new, socially
better equilibria that would not be stable otherwise.

18Another way to improve security is to establish industry good practices, but they typically remain recommendations only
with no enforcement power.
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Of these two channels, the first one affects the relationship between a player and an external entity; hence,
it is not directly connected to interdependent security games. The second one, on the other hand, can be
used to improve the interdependent players’ security decisions through coordination.

In [Böhme, 2012], the author studies the question under which conditions do security audits generate
positive utility by solving the coordination problems, which would otherwise hinder the reduction of in-
terdependent risks. Based on the degree of interdependence and the security productivity19, the following
equilibrium situations are identified:

• If the degree of interdependence is low, players always have incentives to invest at or above a certain
level. Therefore, audits below this level are ineffective. Thorough audits, however, can improve social
welfare. Since this involves coordination at non-equilibrium points, such audits have to be bilateral.

• If the degree of interdependence and the level of security productivity are both high, there exists three
Nash equilibria. In one of them, all players abstain from investment. In this case, security audits
can be maximally effective in solving the coordination problem between multiple equilibria. Unilateral
audits above a certain level are enough to move all players to the best possible equilibrium. However,
even the best possible equilibrium is below the social optimum. To further approach the optimum,
more through, bilateral audits are needed.

• If the degree of interdependence is high, but the level of security productivity is low, there exists exactly
one Nash equilibrium, in which all players abstain from investment. This case is not a coordination
game in the strict sense; therefore, the effectiveness of all audits is limited. Audits may contribute to
higher security level if all players perform bilateral audits. Unilateral audits are less effective in general
and completely ineffective for a certain range of the parameters.

• If the degree of interdependence is very high and the level of security productivity is very low, there
exists exactly one Nash equilibrium, in which all players abstain from investment, which concurs with
the corner solution of the social optimum. In this case all audits are useless. Mandatory audits with
sanctions would induce over-investment and decrease social welfare.

• If the degree of interdependence is zero (i.e., there is no interdependence at all), there exists exactly
one Nash equilibrium which concurs with the social optimum.

One of the main implications of the analysis is that effectiveness is very sensitive to the situation as unfitting
audits are often useless. As a solution, audits should best be designed in a modular manner to allow tailored
examinations. However, the first situation can serve as a rule of thumb, since it covers more than half of the
parameter space: audits at very low security levels are often ineffective; therefore, they should be focused on
the possibility to extract verifiable information about high security levels. Finally, mandatory audits seem
unnecessary in situations where the players have their own incentives to conduct audits.

7.2.7 Coordination and Cooperation

In the absence of a social planner, the players can choose to cooperate for the common goal of reducing
social cost and coordinate the game themselves.

In [Kunreuther and Heal, 2003], two non-centralized coordinating mechanisms are discussed, both in the
context of airline security. First, an association of players could play a coordinating role by requiring every
member to follow certain rules and regulations, including the adoption of security measures. The association
could then refuse to do business with players who are not members and/or not follow the rules. Second,
players who have invested in security could announce publicly that they will not do business with players
who have not done so. This tactic may encourage irresponsible players to invest in security.

In [Saad et al., 2010], coalitional game theory is used study the cooperation between players whose
security is interdependent. The players can form cooperative groups, i.e., coalitions, which allow them to

19For the definitions of these parameters, see Section 4.3.
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• improve the positive effects of their security investments and

• reduce the negative effects of their threats on the other players of the same coalition.

The formation of coalitions also entails costs for the players. First, there are usually natural frictions between
the players due to differences that need to be overcome, which can be modeled by a friction matrix, where
each element is the degree of friction between a pair of players. Second, coordinating the coalition requires
effort from the participating players, which can be modeled by a cost that is proportional to the size of the
coalition. The model is used to establish the necessary and sufficient conditions under which it is beneficial for
two coalitions to merge into one. These results are applied in the study of an example network, which models
the cooperation between the different divisions of a large company that offer video-on-demand services.

7.2.8 Sharing of Security Information

In [Gordon et al., 2003], security-based information sharing organizations (SB/ISOs) are studied in a general
two-player model. In this model, if player i shares security information with the other player, a portion
(denoted by θi ∈ [0, 1]) of her security investment benefits the other player without diminishing the benefit
of the providing player. It is shown that information sharing always decreases the social cost through
increased positive externalities. Consequently, if there are no enforcement costs associated with a sharing
policy, the mandated degree of sharing should always be increased. It is also shown that without mandatory
sharing, players have no incentives to share security-based information: if the players are free to select
their sharing portions, the only equilibrium is when the portions of both players are zero. This discrepancy
between the socially and individually optimal strategies (i.e., between sharing and not sharing) implies that
there is a greater need for cooperation when information sharing is possible.

In [Ogut et al., 2005], two models of information sharing are analyzed. First, information sharing reduces
direct attack probability, but not the degree of interdependence. Second, information sharing reduces the
degree of interdependence, but not direct attack probability. In the second case, a central agency informs
firms on how to protect themselves from indirect attacks.

8 Summary and Future Directions

In this paper, we survey the state-of-the-art of interdependent security games. We also distill the most
important core modeling decisions and provide an overview of extensions found in the literature. The game-
theoretic models in this survey identify a few key problems in information security investments and the
authors propose potential remedies to mitigate these problems. Yet, we believe that several open problems
remain that need more attention from the research community. We now present a few of these open problems
in the hope of bootstrapping new exciting research in the area.

8.1 Security Investments

In interdependent security games, the security investment of the players is modeled either as a discrete or a
continuous variable. To keep the models tractable, the discrete security investment is usually defined as a
binary decision between full protection or no protection at all. Similarly, continuous investments are easy to
use in modeling. This simplifications do not capture the real nature of security modeling, where investment
typically happens in discrete steps (such as buying a set of security products or conducting X number of
system tests). Multidimensional security investments are not thoroughly considered in the literature. A
player can invest in different types of security mitigating options, for example allocate some budget on user
education and/or security technology improvements and/or cyber-insurance. The modeling of this diversity
of security options is a potential improvement to many of the existing game-theoretic models.
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8.2 Strategic Adversaries

Most papers in the interdependent security literature consider the attackers as an exogenous, persistent threat
and not as players in a game. Note that the interdependent security models are fundamentally different from
research modeling the attackers–defenders interaction as a two-player game.20 Nonetheless, the attacker
have their strategic incentives and they are working towards maximizing their, mostly unknown, utilities.
Moreover, there is evidence that the attacks experienced by the defenders are the result of the cooperation
of various participants in the underground economy [Levchenko et al., 2011]. We believe that the proper
modeling of strategic adversaries in interdependent security games is a largely undiscovered research area.
It was partially untouched, because the utilities of attackers are difficult to judge and quantify. With an
increasing number of papers including measurements about the activity underground black markets [Holz
et al., 2009], the opportunity opens to develop appropriate game models.

8.3 Negative Externalities

In this survey, we have seen that the security investment decisions of players create both positive and negative
externalities. Most of the interdependence models focus on positive externalities as they typically rely on
relationship information that is easy to model, maybe even known to the players. On the contrary, negative
externalities typically arise when attackers substitute a target for another one upon discovering the adequate
protection of their original target. The selection involves the rational (or not so rational) decision-making
process of the attacker that is notoriously difficult to model. In [Herley, 2010], the author point out that there
is a scalability issue when modeling attackers, and indeed attackers cannot just target the total population
of potential victims. The author argues that finding the right target (i.e., correctly assessing the security
posture of the targets) is a key task the attackers need to do and is a modeling aspect most existing models
neglect.

8.4 Topology and Network Modeling

Most interdependent security models abstract away the real topology of computer networks to be able to for-
mulate closed-form equilibrium and efficiency results. Yet, network topology plays an important role as it is
the true basis for security interdependence. Epidemic models come closest to considering the network topol-
ogy when they model the explicit spreading behavior of a virus and other malware in a network. Nonetheless,
epidemic models carry their legacy from biology and thus their assumptions are often inappropriate in com-
puter networks. For example, recovery and resistance in epidemic models do not correspond to the recovery
and forensics of computer networks. To date, there is a lack of reliable, extensive and diverse data sources
that would enable researchers to verify the predictions of their models in a real-world environment. Very
recently, there has been some effort in industry to collect and share extensive security data on a large-scale
and make it available to researchers [Dumitras and Shou, 2011]. Such datasets will lead to a new avenue of
research that hopefully results in more applicable, realistic models and enable the establishment of various
security metrics that can be used in risk modeling.

Understanding the impact of network topologies is not the last step. Network topologies emerge from
the strategic interaction of players in a global interaction game. One can argue that topology formation is
not driven by security concerns, but by other utility components. Yet, we believe that security should be
considered when making decisions about whom to connect with, as the resulting topology can have an impact
on the emerging security risks. To the best of our knowledge, strategic and secure network formation has not
been addressed in the research literature of interdependent security games. We argue that this fundamental
emerging property, which not only affects the risks of individual players (individual point of view) but also
defines network robustness (social point of view), should be studied in more detail. Understanding the
characteristics of strategic network formation should ideally lead to efficient and secure network topologies,

20Most papers that do model strategic adversaries consider them in an attacker-defender two-player game. One of the few
exceptions including interdependency of the defenders is [Hausken, 2006] covered in Section 5.3.
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otherwise more attention needs to be paid to incentive mechanisms to drive the players towards robust and
secure networks.

8.5 Reducing Uncertainty and Information Sharing

One of the key factors to hamper proper security investments is the inability of players to assess their
environment, the risks they face and the cost of the potential options to mitigate these risks. We touch upon
a few papers in this survey that address uncertainty in security investment decision-making. We believe
that the lack of transparency in security is a significant problem that reinforces the attackers’ advantages.
The uncertainties surrounding risks and the benefit from implementing security-improving remedies can be
greatly reduced by establishing extensive, industry-wide datasets for specific domains of security research.
The availability of real-world dataset should allow researchers and practitioners to establish widely-accepted
risk metrics and security benchmarks. In addition, uncertainty can be greatly reduced across players using
information sharing. In practice, industry has established common standard for security information sharing,
for example by means of IP blacklists [Sinha et al., 2008]. The authors of [Gordon et al., 2003] show that
information sharing reduces the need for security investment for firms while increasing the social welfare
(that is they are protected with less investments). Yet, the same authors also prove that information sharing
is not in the best interest of rational players and if they are to select the amount of information shared, they
will select none. Thus external enforcement mechanisms are needed to improve social welfare. Indeed, in
practice, information sharing remains a key ingredient of agile, reactive defense solutions, but there is a lot
of room for improvement, for example in forensics [Bencsáth et al., 2012] and coordinated action against the
attackers’ infrastructure in phishing [Moore and Clayton, 2008].

8.6 Dynamic and Repeated Games

Establishing and maintaining information security is not a static process. Nonetheless, most of the research
papers consider single stage (that is one-shot) games. We mention in Section 7.1.1 that repeated games allow
players to establish more efficient equilibria. The number of equilibria typically increases in repeated games,
but the multitude of equilibria emphasizes the question of equilibrium selection. Equilibrium selection comes
with the price of increasing coordination and communication overhead between the players. In an extreme
case, the cost of coordination can completely cancel out the benefits of repeated interactions. Thus, the
players have to weigh carefully if and how much they are willing to coordinate in order to achieve a better
equilibrium in interdependent security games. Since security is inherently a cat-and-mouse game between
attackers and defenders, dynamic games seem to be a logical next step as modeling tools. We encourage
more research contributions modeling information security using both dynamic repeated and evolutionary
games.
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[Böhme and Kataria, 2006] Böhme, R. and Kataria, G. (2006). Models and measures for correlation in
cyber-insurance. In 5th Workshop on the Economics of Information Security (WEIS 2006).
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[Herley and Florêncio, 2009] Herley, C. and Florêncio, D. (2009). A profitless endeavor: Phishing as tragedy
of the commons. In Proceedings of the 2008 Workshop on New Security Paradigms (NSPW 2008), pages
59–70. ACM.
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