
978-1-4577-0351-5/11/$26.00 c©2011 IEEE

Optimal Selection of Sink Nodes in Wireless Sensor Networks

in Adversarial Environments

Áron Lászka and Levente Buttyán

Department of Telecommunications

Budapest University of Technology and Economics

www.crysys.hu

Dávid Szeszlér

Department of Computer Science and Information Theory

Budapest University of Technology and Economics

szeszler@cs.bme.hu

Abstract—In this paper, we address the problem of assigning
the sink role to a subset of nodes in a wireless sensor
network with a given topology such that the resulting network
configuration is robust against denial-of-service type attacks
such as node destruction, battery exhaustion and jamming. In
order to measure robustness, we introduce new metrics based
on a notion defined in [1]. We argue that our metrics are
more appropriate to measure the robustness of network con-
figurations than the widely known connectivity based metrics.
We formalize the problem of selecting the sink nodes as an
optimization problem aiming at minimizing the deployment
budget while achieving a certain level of robustness. We propose
an efficient greedy heuristic algorithm that approximates the
optimal solution reasonably well.

Keywords-wireless sensor networks; denial-of-service at-
tacks; topology robustness measures

I. INTRODUCTION

Wireless sensor networks are often envisioned to operate

in hostile environments, where an adversary can try to mount

different types of attacks against the network. Given that

wireless sensor networks are usually assumed to consist

of resource constrained and physically unprotected devices

that use wireless channels for communications, one of the

major concerns is to protect the network against denial-of-

service type attacks based on physical destruction of devices,

exhaustion of their batteries, and jamming of the wireless

channels. Such attacks may be addressed at different levels

in the system architecture; however, in our work, we are

interested in the question of what one can do about them by

carefully designing the deployment configuration of the net-

work. By deployment configuration, we mean the ensemble

of the topology of the network (determined by the placement

of the nodes, the power and channel settings of their radios,

the propagation characteristics of the environment, etc.) and

the assignment of the sink role to a subset of the nodes.

This question makes sense because in most of the applica-

tions the network is static and, contrary to what is suggested

in many research papers on sensor networks, the nodes are

not deployed randomly, but in a systematic and controlled

manner. Thus, the deployment configuration of the network

can be designed before the actual deployment, taking into

account the constraints imposed by the application, the

deployment environment, and the available budget, and

aiming at maximizing the resistance of the network against

node disabling and jamming attacks. In addition, ensuring

the robustness of the deployment configuration is crucial

in the sense that one cannot hope for providing robustness

guarantees at higher layers if certain level of robustness

is not guaranteed at the lowest layer by the deployment

configuration.

While our ultimate goal is to understand how to design

robust deployment configurations, as a first step towards

this general objective, we restrict ourselves, in this paper, to

study the simpler problem of how to assign the sink role to a

subset of the nodes in a given network topology such that the

robustness of the resulting deployment configuration exceeds

a given threshold and the deployment budget is minimized.

The general problem, where, in addition, one is also required

to determine the network topology, is left for future work.

An important part of the problem we are tackling is to

identify an appropriate metric that can be used to measure

the robustness of deployment configurations. Instead of

relying on the commonly used connectivity based metrics to

measure robustness, we use persistence, a notion obtained

by an extension of directed graph strength defined in [1].

We will explain in Subsection II-A why we believe that per-

sistence is a better robustness metric for our purposes than

connectivity. Based on this metric, we translate deployment

configuration problems into optimization problems that aim

at maximizing the persistence of the graph that represents

the deployment configuration while keeping the deployment

cost under a certain bound, or minimizing the deployment

cost while achieving a certain level of persistence.

The organization of the paper is the following: In Sec-

tion II, we give an overview of previously proposed topology

robustness metrics, we present a motivating example to show

why we believe that vertex and edge connectivity as ro-

bustness metrics are not practical and we introduce (various

versions of) persistence for the purpose of measuring the

robustness of deployment configurations of wireless sensor

networks. In Section III, we formalize the sink selection

problem for a given network topology as a family of

optimization problems, and we introduce one specific variant

of the problem: sink selection with required persistence. We

present an integer program formulation of the sink selection

problem and we propose a greedy algorithm as a heuristics

to efficiently get solutions that are reasonably close to the

optimal selection of sink nodes. In Section IV, we describe

the simulations that we used to analyze the performance of

our greedy algorithm in terms of sink selection cost incurred

and its running time. More specifically, we compare the re-

sults of our greedy algorithm to that of the optimal solutions

obtained by integer programming. Finally, in Section V, we

conclude the paper and sketch our plans for future work.

II. MEASURING THE ROBUSTNESS OF DEPLOYMENT

CONFIGURATIONS

A. Related work

In the literature on wireless sensor networks, vertex- and

edge-connectivity are the most frequently used metrics for

measuring the robustness of network topologies [2], [3],

[4], [5], [6], [7]. These metrics take the topology graph as

input and return the minimum number of vertices or edges,

respectively, that have to be removed in order to disconnect

the graph. More precisely, a graph is said to be k-vertex-
connected, if it remains connected whenever fewer than k
vertices are removed, and the vertex-connectivity of a graph

is the largest k for which it is k-vertex-connected. The

definitions of k-edge-connectedness and edge-connectivity

are similar, with the difference that they are concerned with

the removal of edges, instead of vertices.

Unfortunately, connectivity as a measure of topology

robustness has some weaknesses, which limit its practical

usage, especially in adversarial environments. The basic

problem is that the connectivity metrics are only concerned

with whether a graph remains connected or not under an

attack of a given maximum strength, but in practice, the

strength of the attacker, in terms of number of vertices

or edges that he can remove from the network, may be

difficult to estimate. In addition, connectivity metrics are

only concerned with the effect of the smallest effective

attack, but they do not shed light on how “scattered” the

graph becomes when it gets disconnected. In real scenarios,

it is also important to characterize how the network fails as

the strength (or budget) of the attacker increases.

As an example, let us consider Figure 1, where two graphs

are shown. Each graph represents a sensor network, in which

the objective is to transfer measurement data from the nodes

to the sink, represented by the shaded vertex. Both of these

graphs have an edge-connectivity of 2, and therefore, they

are supposed to be equally robust. Obviously, this is not true,

because if the dashed edges are removed from the graphs, a

single vertex is separated from the sink in graph (a), while

all of the vertices are separated from the sink in graph (b).

Another known topology robustness metric, with several

theoretical results, is graph toughness [8]. Toughness mea-

sures the minimum ratio of vertices removed to the number

(a) (b)

Figure 1. Illustration of why connectivity based metrics do not characterize
topology robustness of wireless sensor networks well enough. The edge-
connectivity of both graphs is 2, and thus, they are equally robust in terms
of edge-connectivity. However, when the two dashed edges are removed,
only a single vertex is separated from the sink in graph (a), while all of
the vertices are separated from the sink in graph (b).

of components in the resulting graph. Unfortunately, the

toughness of a graph is NP-hard to compute, and thus, it

is not well-suited for general practical use, especially when

one is concerned with large graphs.

Another similar metric is graph strength, which measures

the minimum ratio of edges removed to the increase in the

number of components in a graph [1]. The advantage of

graph strength as a robustness metric is that it considers

various attack strengths by default due to the fact that the

minimum is taken over all possible edge removal attacks.

However, unlike toughness, it can be computed efficiently.

B. Our proposed metrics

A common disadvantage of all robustness metrics men-

tioned above is that they lack the ability to incorporate

the role of sink nodes. The following notion of persistence

attempts to fill this hiatus. Its definition is obtained by an

extension of the notion of directed graph strength introduced

in [1]. However, since this notion is substantially differ-

ent from graph strength defined above, we renamed it to

avoid ambiguity. We also tailored the definition (and the

corresponding computation algorithm) to the needs of sensor

networks: we can allow for multiple sinks, attacks against

vertices and undirected edges.

Consider a directed graph G and suppose that a subset

of vertices R ⊆ V (G) is given. Assume that each vertex

v needs to communicate with any arbitrary element of

R (that is, an element of R should be reachable from v
through a directed path in G). Furthermore, each arc e is

assigned a weight s(e) that measures the cost of removing

(or “attacking”) e. Finally, each node v is assigned a weight

d(v) that measures the loss (or “punishment”) if no element

of R becomes reachable from v. When applied to model

sensor networks, elements of R correspond to sink nodes,

the edge weight s(e) represents the difficulty of jamming the

corresponding link e and the node weight d(v) represents the
importance of information collected by v.

For every subset of arcs A ⊆ E(G) let s(A) =
∑

e∈A s(e)
and let λ(A) be the sum of the weights d(v) on those

vertices v from which no element of R becomes reachable

after deleting all arcs in A. Obviously, s(A) and λ(A) can

be assumed to be the total attack cost and the total gain

of the attacker, respectively. Accordingly, the smaller the

ratio
s(A)
λ(A) is, the more efficient the attack of removing A

is. Therefore it makes sense to define a robustness measure

as the minimum of these ratios.

Definition: Given a directed graph G, sink nodes

R ⊆ V (G), edge weights s : E(G) → R
+ and node weights

d : V (G) → R
+, the persistence (or edge-persistence) π(G)

is defined as

π(G) = min

{

s(A)

λ(A)
: A ⊆ E(G), λ(A) > 0

}

.

For example, consider again the two graphs of Figure 1.

Assume in both cases that the shaded vertex is the (single)

sink node, all edge weights s(e) and node weights d(v) are
1 and all edges are directed both ways. Then for both graphs

the minimum in the above definition is attained at the set

of edges entering the sink node. Therefore π(G) = 1 for

graph (a) and π(G) = 2
5 for graph (b). This coincides with

our previous observation that graph (a) is intuitively more

robust than graph (b), and thus, supports our statement that

persistence is a more suitable robustness metric for wireless

sensor networks than connectivity.

As mentioned in Section I, attacks against sensor networks

are not restricted to destroying links between the devices

(that is, edges of the graph), the devices themselves (that

is, vertices of the graph) can also be the target of an

attack. Therefore, in order to serve the needs of sensor

networks, the above definition should be modified to allow

the destruction of both edges and vertices: given a directed

graph G, sink nodes R ⊆ V (G), edge and node de-

struction costs s : (V (G) ∪ E(G)) → R
+ and node weights

d : V (G) → R
+, the edge-vertex-persistence πv(G) should

be defined as

πv(G) = min

{

s(A)

λ(A)
: A ⊆ (V (G) ∪ E(G)), λ(A) > 0

}

,

where s(A) =
∑

a∈A s(a) and λ(A) is the sum of weights

d(v) on those vertices v from which no (remaining) element

of R is reachable after deleting all edges and vertices in

A. (Naturally, vertices belonging to A also become isolated

from R, so these contribute to the value of λ(A) too.)

Fortunately, computing edge-vertex-persistence can easily

be reduced to computing edge-persistence by vertex splitting,

a well-known trick in graph theory: replace each node

v by two nodes v1 and v2, add the arc (v1, v2) to G,

let s ((v1, v2)) = s(v), d(v1) = d(v), d(v2) = 0 and

let v2 ∈ R if and only if v ∈ R was originally true;

finally, replace each original arc (u, v) by (u2, v1) and set

s((u2, v1)) = s((u, v)). It is fairly easy to see that the edge-

persistence of the obtained graph is the same as the edge-

vertex-persistence of the original one.

We mention that handling undirected edges is also

straightforward: each undirected edge e = {u, v} has to be

replaced by the directed arcs e1 = (u, v) and e2 = (v, u)
and s(e1) = s(e2) = s(e) has to be set.

Due to the arguments above, we only consider edge-

persistence of directed graphs in the remainder of the paper.

C. Computing persistence

It is shown in [1] that computation of persistence can be

performed using a maximum flow algorithm1. In particular,

assume that besides the input data used above (that is, G,

R ⊆ V (G), s : E(G) → R
+ and d : V (G) → R

+) a con-

stant π0 is also given: π0 represents a required persistence

value and the task is to decide if π(G) ≥ π0 holds.

For any set X ⊆ V (G), denote by δ(X) the set of

edges leaving X and let δs(X) =
∑

{s(e) : e ∈ δ(X)}.
It is easy to see that the minimum in the definition of

π(G) is attained at a set A = δ(X) for a suitable

X ⊆ V (G) \ R. (Indeed, “spare” edges could be deleted

from A without increasing the ratio s(A)/λ(A).) Of course,
A = δ(X) implies s(A) = δs(X) and λ(A) = d(X) (where
d(X) =

∑

v∈X d(v)). Therefore π(G) ≥ π0 is equivalent

to saying that δs(X) − π0 · d(X) ≥ 0 holds for all

X ⊆ V (G) \ R. Adding π0 · d(V (G)) to both sides we

get that π(G) ≥ π0 is equivalent to

δs(X) + π0 · d(X) ≥ π0 · d(V (G)) (∗)

for all X ⊆ V (G) \R (where X = V (G) \X).

Consider the following maximum network flow problem.

Add two new nodes, s∗ and t∗ to G; for each v ∈ V (G) add
a new arc from s∗ to v and set its capacity to π0 · d(v); for
each v ∈ R add a new arc from v to t∗ and set its capacity

to infinity; finally, set the capacity of each original arc of

G to s(e). Denote the obtained network by G∗. According

to the well-known “max-flow-min-cut” theorem of Ford and

Fulkerson, the maximum flow in the obtained network from

s∗ to t∗ is equal to the minimum cut capacity, that is, the

minimum of the sum of capacities on arcs leaving a set X ,

where minimum is taken over all subsets X ⊆ V (G∗) for

which s∗ ∈ X and t∗ /∈ X . Obviously, the capacity of the cut

X is δs(X)+π0 ·d(X) if X∩R = ∅ (and infinity otherwise).

Comparing this with (∗) above, we get that π(G) ≥ π0 is

equivalent to the existence of a flow of value π0 · d(V (G))
from s∗ to t∗ in the above constructed network; or, in other

words, a flow that satures all arcs leaving s∗.
Consequently, the question of π(G) ≥ π0 can be answered

by a maximum flow algorithm. From this, the actual value

of π(G) (that is, the maximum π0 for which the above

described flow exists) can be determined by binary search

(which yields a polynomial time algorithm if all input

numerical data is assumed to be integer). In [1] a refinement

1In this subsection we build on the basics of network flow theory;
the required background can be found in most introductory graph theory
textbooks.

of this approach is also given: it is shown that π(G) can be

determined by at most |V (G)| maximum flow computations

(even for arbitrary input data); we disregard the details here

due to lack of space.

III. THE SINK SELECTION PROBLEM AND ITS SOLUTION

Based on the above defined robustness metric π(G), in
this section, we formalize the problem of optimal selection

of sink nodes in a network with a given topology. We show

that the optimal selection can be found by solving an integer

program and we also introduce a more efficient greedy

algorithm that approximates the optimal solution reasonably

well.

A. The sink selection problem

We assume that assigning the sink role to a node v
has some cost c(v) resulting from the establishment of an

external connection with the node, regularly visiting the node

for data collection, etc. We call this cost the selection cost

of the sink, and we assume that the cost of assigning the

sink role to a set of nodes is simply the sum of selection

costs of the nodes in the set. We also assume that the

network topology is given and our task is to select the sink

vertices such that the persistence of the resulting network

configuration is above a given threshold, while the total

selection cost of the sink nodes is minimized. This models

the design of a wireless sensor network with strict security

requirements, but a flexible budget.

According to the above, the sink selection problem is

formalized as follows:

Definition: Sink selection with required persistence:

INSTANCE: Directed graph G, edge weights

s : E(G) → R
+, node weights d : V (G) → R

+, sink

selection costs c : V (G) → R
+, and required persistence

π0 ∈ R
+.

SOLUTION: A subset R ⊆ V (G) such that the persis-

tence π(G) of G is at least π0 with R as its sink nodes.

MINIMIZE: Selection cost of subset R, i.e.,
∑

v∈R c(v).

Obviously, the variant of the sink selection problem where

an upper bound on the total sink selection cost is given and

the persistence of the configuration is to be maximized is

also sensible. We disregard this version of the problem, we

restrict ourselves to mentioning that any algorithm to solve

one of the two versions can also be used to solve the other

one by binary search.

B. An integer programming model for the sink selection

problem

To formulate the sink selection problem as an integer

program, we assign a binary variable r(v) to each node v:
the value of r(v) is 1 or 0 if v belongs or does not belong to

R, respectively. The formulation relies on the construction

presented in Section II-C: π(G) ≥ π0 is true if and only

if there exists a flow in the network G∗ described there

that saturates all edges (s∗, v). Correspondingly, we assign

a variable f(e) to each edge e ∈ E(G∗) to measure the flow

on e. As it is natural in network flow theory, all the con-

straints ensuring that f is a flow (that is, capacity constraints

and flow preservation constraints) can straightforwardly be

formalized as linear constraints.

The only difference from the construction described in

Section II-C is that the set of sink nodes R is not known

in advance. Therefore we assume that an arc from v to t∗

exists from each node v ∈ V (G) and we ensure that the

capacity of the arc (v, t∗) is ∞ or 0 for sink nodes and

non-sink nodes, respectively. This is achieved by imposing

the inequality f((v, t∗)) ≤ bignum · r(v) on each edge

(v, t∗), where bignum is a sufficiently large constant (e.g.,

bignum = π0·d(V (G)), the sum of the capacities on all arcs

leaving s∗ suffices, as it is an upper bound on the maximum

flow value even if all vertices are assumed to be sinks).

With respect to the above, the integer program is the

following:

Constants:

• bignum: a sufficiently large number

• s((u, v)): weight of edge (u, v)
• d(v): weight of node v
• c(v): selection cost of node v
• π0: required persistence

Variables:

• r(v) ∈ {0, 1} for all v ∈ V (G)
• f(e) ∈ R for all e ∈ E(G∗)

Minimize:
∑

v∈V (G) c(v) · r(v)

Constraints:

1) ∀v ∈ V (G) : f((v, t∗)) ≤ bignum · r(v)
2) ∀e ∈ E(G) : f(e) ≥ 0
3) ∀e ∈ E(G) : f(e) ≤ s(e)
4) ∀v ∈ V (G) :

∑

(u,v)∈E(G)

f((u, v)) =
∑

(v,u)∈E(G)

f((v, u))

5) ∀v ∈ V (G) : f((s∗, v)) ≥ π0 · d(v)

Constraints 2, 3 and 4 ensure that f is a flow: Con-

straints 3 and 4 correspond to capacity and flow preservation

constraints, respectively. Note that capacity constraints are

not imposed on (s∗, v) type arcs (as opposed to what was

said in Section II-C); obviously, these can be omitted as they

would not affect the optimum solution. On the other hand,

Constraint 5 ensures that all edges (s∗, v) are saturated.

Finally, the role of Constraint 1 was already explained above.

Obviously, the above integer program does not yield an

efficient algorithm for solving the sink selection problem.

However, it makes it possible to obtain the optimum solution

for relatively small problem instances and thus test the

heuristics presented in the next section.

C. A greedy algorithm

In this section, we propose an efficient greedy algorithm

as a heuristic approach to find a sub-optimal, but reasonably

good solution for the sink selection problem.

The algorithm starts with the set of selected sinks R as

the empty set. In each step, a new vertex v is added to R;

v is chosen in a simple, but sensible way: such that the

ratio of the gain in persistence by adding v to R to the

selection cost c(v) is maximum. The algorithm stops when

the persistence π(G) of the network with set of sinks R is

at least the required persistence π0.

To formally describe the algorithm, denote by π(G,R)
the persistence of the network G with R as its set of sink

nodes. Then our greedy algorithm for sink selection with

required persistence is the following:

1) R := ∅
2) let v ∈ V (G) \R be a vertex for which the maximum

max
v∈V (G)\R

π(G,R ∪ {v})− π(G,R)

c(v)

is attained and let R := R ∪ {v}
3) If π(G,R) ≥ π0 then return R; otherwise continue

from Step 2.

We emphasize that, obviously, the above algorithm runs

in polynomial time since it makes at most |V (G)| iterations
and each iteration requires at most |V (G)| persistence com-

putations.

IV. EXPERIMENTAL RESULTS

In this section, we present simulation results on the per-

formance of our greedy algorithm described above. We study

two performance measures: (1) the ratio between the total

selection costs of the sinks in case of the greedy algorithm

and in case of the optimal solution, and (2) the running times

of the greedy algorithm and our integer programming based

algorithm to compute the optimal solution.

A. Simulation settings

The most prevalent model of a wireless sensor network is

a unit disc graph, which models a wireless network where

each node has the same transmission radius, and two nodes

are considered to be neighbors if they are within each other’s

transmission range. In our simulations, we generated graphs

of this type in a probabilistic manner. More precisely, a given

number of nodes were placed uniformly at random on a disk

of unit radius, and the transmission radius of the nodes was

calculated from a given expected average node degree using

the approximations given in [9]. Disconnected graphs were

connected using minimum distance extra edges.

In the experiments, we set all node and edge weights

to one. In addition, the sink selection costs were also set

to one, therefore the total sink selection cost was equal

to the number of the selected sinks. This means that our

first performance measure became the ratio between the

 1

 1.2

 1.4

 1.6

 1.8

 2

 16 18 20 22 24 26 28 30 32

S
e

le
c
te

d
 h

e
a

d
q

u
a

rt
e

rs
 c

o
u

n
t

ra
ti
o

Node count

Average degree
2
3
4

Figure 2. Sink selection with required persistence: Ratio between the
numbers of necessary sink nodes in case of the greedy algorithm and in
case of the optimal solution for different node counts and average degrees.

numbers of the selected sinks in the two cases. This ratio

was computed for each randomly generated graph, and the

average of the values was taken as the approximate expected

value of the given performance measure.

B. Simulation results

Figure 2 shows the number of sinks needed in case of

the greedy algorithm compared to the number of sinks

in case of the optimal solution for different node counts

and expected average degrees. The comparison is done by

plotting the ratio between the numbers of the necessary sinks

in the two cases. Hence, the closer the ratio to 1 is, the

better the performance of the greedy algorithm is. In this

experiment, the required persistence was a constant 1, while

the number of nodes in the network was increased from

16 to 32, and the node degree was increased from 2 to 4.

The excess requirement in sink count fluctuated between

20% and 30%. We observe that the expected average degree

has some impact on the ratio between the numbers of sinks

required: as the average degree increases, the performance

of the greedy algorithm slightly improves. This is surprising,

if we consider that a higher degree means a more complex

network. Nevertheless, this performance improvement is not

significant, and all together, the performance of the greedy

algorithm seems to be quite stable with respect to both the

node count and the average degree.

Figure 3 shows the expected running times, measured on

an average desktop PC, of the integer programming based

optimal solution and the greedy algorithm as a function of

the node count. For each node count, the running times

for expected node degrees of 2, 3 and 4 were measured,

and the arithmetic mean of these results was taken. For

solving integer programs, lp solve2, a free, open source

mixed integer linear programming solver was used that is

2lpsolve.sourceforge.net

 10

 100

 1000

 10000

 100000

 16 18 20 22 24 26 28 30 32

D
u

ra
ti
o

n
 [

m
s
]

Node count

Greedy
Optimal

Figure 3. Sink selection with required persistence: Expected running time
of the greedy algorithm and the integer programming based optimal solution
for different node counts. Please, note the logarithmic scale on the y axis.

based on the Branch-and-Bound method combined with the

revised simplex method. As expected, the running time of

the optimal solution is exponential and grows faster than that

of the greedy algorithm by an order of magnitude. For small

node counts, however, the integer programming solution

outperforms the greedy algorithm. This is not surprising, if

we compare the complexity of computing persistence several

times to that of solving only one small integer program.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the optimization problem of

selecting the sink nodes, with minimal budget, in a wireless

sensor network with a given topology, such that the resulting

network has a certain level of robustness. We proposed

to use the notion of persistence to measure robustness,

we presented an integer program that yields the optimal

solution, albeit inefficiently, and proposed an efficient greedy

heuristic algorithm that approximates the optimal solution

reasonably well.

We addressed only part of the general problem of design-

ing robust deployment configurations in this paper. Namely,

we assumed that the network topology is given, and our

task was to select the sink nodes such that a given level

of robustness is achieved while the incurred sink selection

cost is minimized. In the future, we also intend to work on

more general settings. For instance, one interesting question

is how to add new nodes to an already existing network to

achieve maximal increase in robustness.

ACKNOWLEDGEMENTS

The work presented in this paper has been carried out in the

context of the WSAN4CIP Project3, which receives funding from

the European Community through the Seventh Framework Pro-

gramme (grant agreement no. 225186). Levente Buttyán has also

been supported by the Hungarian Academy of Sciences through the

Bolyai János Research Fellowship. Dávid Szeszlér is supported by

grants Nr. OTKA 67651 and Nr. OTKA 100238 of the Hungarian

National Science Fund.

REFERENCES

[1] W. H. Cunningham, “Optimal attack and reinforcement of a
network,” J. ACM, vol. 32, no. 3, pp. 549–561, 1985.

[2] J. Li, L. Andrew, C. Foh, M. Zukerman, and H. Chen, “Con-
nectivity, coverage and placement in wireless sensor networks,”
Sensors, vol. 9, no. 10, pp. 7664–7693, 2009.

[3] M. Younis and K. Akkaya, “Strategies and techniques for node
placement in wireless sensor networks: A survey,” Ad Hoc
Networks, vol. 6, no. 4, pp. 621–655, 2008.

[4] S. Misra, S. Hong, G. Xue, and J. Tang, “Constrained relay
node placement in wireless sensor networks to meet connec-
tivity and survivability requirements,” in INFOCOM 2008. The
27th Conference on Computer Communications. IEEE. IEEE,
2008, pp. 281–285.

[5] A. Kashyap, S. Khuller, and M. Shayman, “Relay placement
for higher order connectivity in wireless sensor networks,” in
Proceedings of the IEEE Conference on Computer Communi-
cations (Infocom), 2006.

[6] W. Zhang, G. Xue, and S. Misra, “Fault-tolerant relay node
placement in wireless sensor networks: Problems and algo-
rithms,” in Proceedings of the IEEE Conference on Computer
Communications (Infocom), 2007.

[7] X. Han, X. Cao, E. L. Lloyd, and C.-C. Shen, “Fault-tolerant
relay node placement in heterogeneous wireless sensor net-
works,” in Proceedings of the IEEE Conference on Computer
Communications (Infocom), 2007.

[8] D. Bauer, H. J. Broersma, and E. Schmeichel, “Toughness in
graphs - a survey,” Graphs and Combinatorics, vol. 22, no. 1,
pp. 1–35, April 2006.

[9] C. Bettstetter, “On the connectivity of ad hoc networks,” The
Computer Journal, vol. 47, no. 4, p. 432, 2004.

3www.wsan4cip.eu

