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Abstract—Vyper has been proposed as a new high-level lan-
guage for Ethereum smart contract development due to numerous
security vulnerabilities and attacks witnessed on contracts written
in Solidity since the system’s inception. Vyper aims to address
these vulnerabilities by providing a language that focuses on
simplicity, auditability and security. We present a survey where
we study how well-known and commonly-encountered vulnera-
bilities in Solidity feature in Vyper’s development environment.
We analyze all such vulnerabilities individually and classify them
into five groups based on their status in Vyper. To the best of
our knowledge, our survey is the first attempt to study security
vulnerabilities in Vyper.

I. INTRODUCTION

Ethereum [1] is an open source, blockchain-based dis-
tributed computing platform that features smart contract [2]
functionality. A smart contract is essentially a set of rules
and procedures enforced digitally through pieces of Turing-
complete code. Ethereum went live in July 2015, and is
currently the most popular blockchain-based system for de-
ploying smart contracts. Ethereum stores smart contracts in
a public distributed database, i.e., a blockchain [3]. Smart
contracts are executed by the participants of the network via
transactions. Smart contracts exist on the Ethereum blockchain
in opcode form. These opcodes are executed by the nodes of
the Ethereum network inside the Ethereum Virtual Machine [4]
which is a stack based virtual execution environment. Having
contracts executed inside the EVM ensures that the execution
results are deterministic and identical in all the nodes regard-
less of their underlying computing capabilities.

Almost since the inception of Ethereum, Solidity [5] has
been the most popular high level language for writing smart
contracts. Developed by the contributors of the Ethereum
project, Solidity continues to be the most popular tool for writ-
ing Ethereum smart contracts today. However, smart contracts
written in Solidity are riddled with security vulnerabilities,
which have been exploited in many highly publicized attacks
on various Ethereum based projects [6]. Table I lists some
of the most notable incidents due to smart-contract vulner-
abilities. Although Solidity has undergone many revisions
and updates in order to address these vulnerabilities, multiple
improvements can still be made. Perhaps the major reason of

Solidity-written smart contracts encountering vulnerabilities, is
that the language has been influenced by JavaScript and C++.
Uninitiated developers, coming from web development and
other backgrounds are lead to draw parallels between Solidity
and these languages even where they do not exist. To be able to
write secure smart contracts in Solidity, it is essential to have
a sound understanding of the underlying Ethereum system and
its various subtleties.

Recently, an alternate to Solidity, Vyper [7] has been
developed to offer a better medium for writing smart contracts
that are easier to understand. Vyper aims to make it harder
for developers to intentionally write misleading or malicious
code and also protects developers from unintendedly leaving
vulnerabilities in their contract code. A stable version of Vyper
is yet to be released but we offer a comparison between
Vyper’s latest beta version at the time of writing, i.e., 0.1.0-
beta.15 and Solidity’s latest release at the time of writing, i.e.,
v0.6.2. It is worth mentioning that Vyper does not claim to be
a replacement for Solidity. It actually claims to strive towards
goals of auditability, simplicity and security. To achieve these
goals, it sacrifices various features and functionalities found
in Solidity. This is done to make code written in Vyper more
human readable, especially for the inexperienced users. If
any of the more complex features of Solidity, which Vyper
does not adapt, is required by the programmer then they will
have to use Solidity for writing the smart contract. Moreover,
Vyper also introduces additional features to support security
and readability.

This paper presents a comparison of how various vulnerabil-
ities, which are known to exist in the domain of smart contract
development in Solidity, feature in Vyper’s environment. The
paper targets smart contract developers, users, and researchers
who can use this resource to get up to speed with Vyper’s cur-
rent standing on known security issues. We are not currently
aware of any other literature that provides such a comparison
or details Vyper’s vulnerabilities. In Section II, the paper first
outlines Vyper’s principles and design goals along with the
various features added in Vyper to improve upon Solidity. It
also enumerates the features that exist in Solidity but have
not been provided in Vyper in order to achieve its design
goals. In Section III, we present a taxonomy of the known
vulnerabilities in smart contract development in Solidity and
compare how Vyper features in each of those vulnerabilities.



TABLE I
RECENT INCIDENTS AND CYBER-ATTACKS DUE TO SMART-CONTRACT VULNERABILITIES.

Incident Date Amount Vulnerabilities Mitigation References
King of Ether Throne February 6–8, 2016 98 Ether Insufficient gas send,

Exception for external
call not handled

Manually sending back
the failed transactions to
participants

[8]

Rubixi Vulnerability April 2016 1.3k Ether Wrong constructor name [9]
GovernMental April 2016 1.3k Ether Insufficient gas ∼50 ETH transaction fee

paid to raise gas limit
[9]

The DAO Attack June 16, 2016 3.6M Ether Reentrancy Addressed with a fork to
the Ethereum blockchain

[10], [11]

Parity Wallet Hack July 19, 2017 150k Ether Missing access control [12]
Parity Wallet Freeze November 6, 2017 ∼500k Ether Unprotected suicide [13]
POWH Coin Hack January 28, 2018 2k Ether Integer overflow [14]
BEC Token Attack April 2018 Integer overflow [15]
Fomo3D Attack August 22, 2018 10.5k Ether Block stuffing [16]
SpankChain Attack October 8, 2018 170 Ether Reentrancy [17]

II. VYPER PRINCIPLES AND FEATURES

Vyper, according to its official documentation, is a contract-
oriented, pythonic programming language targeting the Ethe-
reum virtual machine. Although Vyper is still in development
and a production ready release is yet to come out, we base
this paper on the latest beta release, i.e., v0.1.0-beta.15. We
do not expect there to be major design changes once a stable
version comes out or once the Vyper project migrates from its
current Python based compiler to a Rust based compiler [18].
Vyper claims to be designed towards achieving the following
three design goals or principles [7]:

• Language and compiler simplicity: Vyper aims to keep
the language and the compiler implementation as simple
as possible.

• Security: Vyper aims to provide the programmer the
ability to write smart contracts without any undesired
vulnerabilities or loopholes.

• Auditability: Vyper is aimed at making smart contracts
easy to read for the users, especially those with insignif-
icant prior experience with smart contracts or program-
ming in general. Users should be able to identify mali-
cious contracts with minimal effort. Vyper claims to give
user readability preference over even the development
experience for writing the contracts.

In order to achieve these desired goals, Vyper provides the
following features not found in Solidity [7]:

1) Bounds and overflow checking on array accesses and
arithmetic;

2) Support for signed integers and decimal fixed point
numbers;

3) Decidability: possible to compute the precise upper
bound for the gas consumption of any Vyper function.;

4) Strong typing, including support for units (e.g., times-
tamp, timedelta, seconds, wei, wei per second, meters
per second squared);

5) Small and understandable compiler code;
6) Limited support for pure functions: anything marked

constant is not allowed to change the state..

Vyper also does not contain many of the features found
in Solidity in order to achieve its desired objectives of mini-
mal complexity and easy-to-do auditability by inexperienced
developers. Following are the features that it does not contain:

1) Binary Fixed Point: to avoid approximations associated
with using binary fixed point.

2) Recursive Calling: makes it impossible to compute an
upper bound on gas consumption.

3) Operator Overloading: makes writing misleading or
complex code possible.

4) Class Inheritance: makes understanding the code com-
plex since precedence rules come into play in case
of conflicts.

5) Inline Assembly: makes it impossible to search around
for all instances of a variable name.

6) Function Overloading: Can be confusing for the inex-
perienced programmer to keep track of which instance
is executed

7) Infinite-Length Loops: makes it impossible to compute
an upper bound on gas consumption.

8) Modifiers: makes it easy to write misleading code.

III. COMPARISON OF VYPER WITH SOLIDITY’S
VULNERABILITIES

In this section we provide a detailed taxonomy of commonly
known vulnerabilities in Solidity smart contracts and compare
how each vulnerability fares in Vyper. Although numerous
resources list the known vulnerabilities and attacks on smart
contracts developed in Solidity, we use the vulnerabilities
listed in Chen et al. [6] as our base reference since we believe
that this paper is the most comprehensive publication of these
known vulnerabilities. Chen et al. attribute 19 vulnerabilities
in Ethereum systems security either to smart contract program-
ming or to the Solidity language and toolchain. We analyze
each of these vulnerabilities in Vyper’s context and present
our findings. Vyper may introduce additional vulnerabilities
of its own in smart contract development that have not been
observed in Solidity. However, given that the Vyper project is
still in development and due to inadequate resources and test
cases we do not attempt to study those in the present survey.



TABLE II
SMART CONTRACT VULNERABILITIES IN VYPER AND SOLIDITY. FA, PA,

AND NA STAND FOR ‘FULLY ADDRESSED’, ‘PARTIALLY ADDRESSED’, AND
‘NOT ADDRESSED’ BY VYPER, RESPECTIVELY. SIMILARLY, AA AND NP

STAND FOR ‘ALREADY ADDRESSED BY SOLIDITY/VYPER’ AND ‘NOT
ADDRESSABLE BY LANGUAGE OR TOOLCHAIN,’ RESPECTIVELY.

Vulnerabilities in Solidity FA PA NA AA NP
Integer overflow and underflow 7
DoS with unbounded operation 7
Unchecked call return value 7
Reentrancy 7
Delegatecall injection 7
Forced Ether to contract 7
DoS with unexpected revert 7
Erroneous visibility 7
Uninitialized storage pointer 7
Erroneous constructor name 7
Upgradeable contract 7
Type casts 7
Insufficient signature information 7
Frozen Ether 7
Authentication through tx.origin 7
Unprotected suicide 7
Leaking Ether to arbitrary address 7
Secrecy failure 7
Outdated compiler version 7

This survey is intended to only explore how the currently
known vulnerabilities translate to Vyper’s environment.

We divide these 19 known vulnerabilities into five groups
(Table II) which are: 1) vulnerabilities addressed by Vyper,
2) vulnerabilities partially addressed by Vyper, 3) vulnera-
bilities not addressed by Vyper, 4) vulnerabilities that have
already been mitigated in Solidity and 5) vulnerabilities which
we believe are not addressable by the programming language
or the tool chain, despite being listed as such by Chen et al.

The first group consists of currently existing vulnerabilities
in Solidity that have been addressed in Vyper by providing an
additional function or feature or disallowing specific features.
These vulnerabilities can be completely avoided in Vyper.
The second group consists of vulnerabilities which have been
partially addressed by Vyper but still may exist if proper
development practices are not followed by the developer. The
third group consists of vulnerabilities that still exist both in
Solidity and Vyper if the best programming practices and
recommendations are not followed. The fourth group consists
of historical vulnerabilities in the Solidity environment that
were mitigated through later Solidity releases and do not exist
in Solidity anymore and are also not present in Vyper. The fifth
group consists of those vulnerabilities that have been listed by
Chen et al [6] as being caused by smart contract programming
or the underlying Solidity language and toolchain. However,
in the context of this survey, we argue that these vulnera-
bilities can only be avoided through proper understanding of
the underlying Ethereum system on part of the programmer
and following the best programming practices and security
recommendations. For this group of vulnerabilities, Vyper or
any other high level language is not a candidate to address
them. However, these vulnerabilities may be addressed by

design and verification tools for smart contracts [19], [20],
[21], [22], [23], [24], [25]. For detailed discussion of such
tools, we refer the reader to relevant surveys [26], [27], [6],
[28], [29], [30]. We now proceed to describe each of these 19
vulnerabilities in Vyper’s context and provide reasoning for
the classification of each of these into their respective group.

A. Vulnerabilities addressed by Vyper

1) Integer overflow and underflow: This vulnerability oc-
curs due to the fact that both Solidity and the EVM do not
enforce integer overflow / underflow detection. This can lead to
attacks which make unauthorized or unintended manipulation
to a contract’s state variables if proper measures were not
taken during development. Libraries such as SafeMath [31]
do provide mechanisms for protecting against over/underflows
in Solidity but Vyper has this feature built-in. In Vyper,
the contract execution will revert if an over/underflow is
detected [32].

2) DoS with unbounded operations: This vulnerability oc-
curs when the operations required in the execution of a func-
tion exceed the block gas limit due to unbounded operations
either in the contract itself or in one of the called contracts.
Vyper solves this problem by having a precise upper bound
for the gas consumption of any function call. This is possible
because infinite length loops and recursive function calling are
not allowed in Vyper [7].

3) Unchecked call return value: This vulnerability exists
due to the discrepancy in Solidity’s handling of exceptions
occurring in callee contracts. Solidity handles exceptions
when calling another contract in two ways: (1) when di-
rectly referencing the callee’s contract instance or using the
transfer() function; (2) when using one of the four low
level methods (call, staticcall, delegatecall, and
send). In the first instance, the exception is “bubbled up”
and the entire transaction is reverted whereas in the second
case only a false is returned to the calling contract. The
uninitiated developer can be misled to think that any call(s)
to other contracts were successful because no exception was
thrown in the latter case. Solidity does not enforce any checks
on the return values. In comparison, Vyper only provides
two ways to call another contract in addition to the direct
reference, i.e., the functions send() and raw_call() [33].
The current Vyper compiler has built-in asserts for both of
these functions [34], so that in case of a failure the entire
transaction will be reverted.

B. Vulnerabilities partially addressed by Vyper

1) Reentrancy: The reentrancy vulnerability occurs when a
contract calls an external contract, handing it over the execu-
tion control, which allows the callee to call back to the calling
contract and then be able to perform some malicious steps. A
contract is particularly vulnerable to reentrancy attacks if it
does not make the necessary state changes before calling the
external contract or if the code does not protect against multi-
contract access situations. Vyper provides the functionality to
the programmer to protect a contract against multi-contract



access situations by providing a nonreentrant decorator
which places a lock on the current function and all functions
with the same key value [35]. Fig. 1 provides an example
of how to use this feature (for function sendFunc). If
any external callee tries to callback into such functions, it
will result in a revert call. Solidity did not provide such
functionality and the developer had to implement locks or
mutexes themselves or through some third party libraries [36].
However, even in Vyper, the developer still has to identify
the functions or blocks of code that might be susceptible to
such a vulnerability and also has to ensure that all necessary
state changes are made before making an external interaction.
The current Vyper compiler does not warn the developer for
such cases.

1 sent: public(bool)
2
3 @public
4 def __init__():
5 self.sent = False
6
7 @public
8 @nonreentrant("exampleKey")
9 def sendFunc(to: address) -> uint256:

10 if self.sent == False:
11 send(to, 1)
12 self.sent = True
13 return 1

Fig. 1. Nonreentrant decorator feature.

C. Vulnerabilities not addressed by Vyper

1) Delegatecall Injection: EVM provides the option
of calling an external contract with the context of
the caller contract using the DELEGATECALL opcode.
This is achieved by using the delegatecall
function in Solidity and using the raw_call function
with the delegate_call keyword argument set
to True in Vyper, e.g., raw_call(argAddress,
example_bytes, outsize=0, gas=10000,
value=1, delegate_call=True). However, if
the contract being called is malicious, it can manipulate the
state variables of caller contract. This vulnerability can be
mitigated in Solidity by only using the DELEGATECALL
with contracts that have been declared as libraries. In Vyper
this vulnerability can similarly be avoided by only using
DELEGATECALL with functions that are declared with the
@constant decorator, which ensures that the functions
will not mutate the state. However, like Solidity, this is
not enforced in Vyper because there are legitimate cases,
using the DELEGATECALL opcode, where the caller wants
the callee to modify its state. Perhaps the best way to
completely avoid this vulnerability is for the EVM to provide
another opcode (just like DELEGATECALL) which retains
the context of the caller contract but causes a revert if the
callee tries to make any changes to the caller’s state (just like
STATICCALL). Another possible solution at the language
level could be to have the compiler place appropriate checks

on state variables before and after the DELEGATECALL
opcode is used and to give the user an option to enable to
disable these checks.

2) Forced Ether to contract: This vulnerability occurs when
the developer of the smart contract incorrectly assumes that the
contracts fallback or payable function will be executed each
time Ether is transferred to the contract. There are two situa-
tions in which Ether can be sent to a contract without invoking
its fallback or payable functions. Firstly, when a contract that
is self-destructing sends its remaining Ether to the contract
or secondly, if Ether is transferred to an address even before
the contract is loaded to that address. The second situation is
possible because the contract addresses are deterministic and
can be calculated before deploying them [37]. This vulnera-
bility is due to the design of the underlying Ethereum protocol
and the developer has to be aware of Ethereum’s design and
functionality when writing smart contracts. This vulnerability
can be avoided if the contract does not place checks on the
exact values of the contract’s balance (self.balance).
Currently, the Vyper compiler does not warn the developer
if checks are placed on the self.balance variable in the
contract code.

Another possible workaround could be to have a built-
in mechanism in contracts to run the payable or fallback
functions if a contract is invoked and its balance is different
from its last invocation (meaning Ether was forced to the
contract in between the invocations).

3) DoS with unexpected revert: This vulnerability occurs
when an external contract causes a revert resulting in disrup-
tion of execution of the caller contract before it has completed
its function [38]. The most common scenario is when the
developer fails to account for the case when a payment is made
to an external contract whose fallback or payable function
execution results in a revert. This vulnerability is addressed in
Solidity and Vyper by making use of a pull rather that push
based mechanism when making external payments [39]. Alter-
natively, contracts in Solidity can take measures to handle the
cases in code where an external call might throw an exception.
Vyper currently, does not allow the handling of exceptions.

D. Vulnerabilities addressed in Solidity or Ethereum

1) Erroneous Visibility: This vulnerability occurs when a
contract’s visibility is incorrectly specified and thus permits
unauthorized access. Solidity used to make functions public
by default if the visibility was not specified. However, this
was addressed with version 0.5.0 by making it compulsory to
specify visibility when defining functions [40]. Vyper allows
functions without visibility (v0.1.0beta15) but defaults them
to being of private visibility instead of public.

2) Uninitialized storage pointer: This vulnerability occurs
due to the fact that prior to Solidity 0.5.0, if a complicated
local variable (e.g., struct, array or mapping) was not explicitly
initialized at the time of declaration, then the local variable’s
reference points to slot 0 in storage by default, possibly
overwriting a state variable [41]. Since Solidity v0.5.0, the
Solidity compiler reports an error to contracts that contain



uninitialized storage pointers. Also, explicit data location (i.e.,
storage, memory, or calldata) for all variables of struct, array
or mapping type is now mandatory in Solidity [40]. Vyper
also mandates the initialization of local variables at the time of
declaration and failure to do so results in a compile time error.

3) Erroneous constructor name: This vulnerability oc-
curred due to the fact that prior to Solidity version 0.4.22,
a function declared with the same name as the contract
was considered to be the contract’s constructor function.
A constructor function is called only once at the time of
contract creation to perform initialization. If the programmer
accidentally misspelled this function name then it became a
public function which allowed anyone to call it and possibly
compromise the contract [42]. This vulnerability was mitigated
in Solidity version 0.4.22 by introducing the usage of manda-
tory keyword constructor when defining the constructor
function [43]. Similarly, Vyper uses the keyword __init__
for the constructor.

E. Vulnerabilities not addressable by language or toolchain

1) Upgradeable Contract: This vulnerability occurs when
a contract relies on external contracts for critical functions
and the external contracts can be dynamically updated [6].
This vulnerability cannot be avoided in Vyper either. The
developers have to ensure that they do not outsource critical
functions to untrusted external contracts which are built such
that their functionality can be dynamically updated. In the
future, tools and utilities may be developed that traverse the
entire call hierarchy of the contract and its callees to identify
functionality which is susceptible to being updated but we are
not aware of any such software available at the time of writing.

2) Type casts: This vulnerability occurs due to the Solidity
compiler flagging some type errors (e.g., assigning an integer
value to a string type) but not all [6]. Types are also used in
direct calls, where the caller must declare the callee’s interface
and cast to it the callee’s address when performing the call.
Having some type checks may mislead the programmer to
believe that all type checks are made. If the function being
called doesn’t exist in the callee contract then the callee
contract’s fallback is executed without any exception being
thrown to alert the programmer. The functionality is the same
in Vyper. Fig. 2 shows an example of a smart contract which
defines two contract interfaces (LibA and LibB) but will have
no way of knowing if the argument address passed to function
workerFunction is of type LibA and not LibB. Smart
contract development tools such as VeriSolid [25] can be used
to build and deploy smart contracts that are free from this
vulnerability in Solidity.

3) Insufficient signature information: This vulnerability
occurs in a contract that uses a signed message to autho-
rize payments to participants (e.g., a micropayment channel
contract [44]) and the signed message can be used by the
participants to claim authorization for a second action (replay
attack). This vulnerability can result in replay attacks in
the same contract, across multiple contracts, or even across
multiple blockchains. This vulnerability was exploited for

1 contract LibA:
2 def featureFunc(arg: uint256): constant
3
4 contract LibB:
5 def featureFunc(arg: uint256): constant
6
7 @public
8 def workerFunction(inputLib: address):
9 LibA(inputLib).featureFunc(1)

Fig. 2. Type-cast vulnerability in Vyper.

cross-blockchain replay attacks after the Ethereum classic hard
fork [45] and was addressed by the Ethereum Improvement
Proposal (EIP) 155 [46]. To avoid this vulnerability within
the same contract or across multiple contracts, the developer
has to ensure that the contract’s signed message generation and
authentication mechanism is properly implemented. This can
be achieved by including the requisite information (e.g., nonce
and contract address) in the message [47]. The developer can
also rely on trusted standards like the ERC-721 [48] when
implanting token functionality to avoid these problems.

4) Frozen Ether: This vulnerability is observed when Ether
is stuck in a contract with no way to send it to other contracts
or external accounts. This can happen due to the contract
having a faulty or nonexistent function for sending Ether. It can
also occur due to the contract relying on another contract for
its money-spending functions and the callee contract having
been deleted or not being usable anymore. Since this can
occur due to a wide range of reasons we believe it is best
addressed by the required due diligence on the developer’s
part and by not outsourcing critical spending functions to
untrusted contracts. Third party development and verification
tools such as VeriSolid [25] can be used to ensure that the
appropriate withdrawal functions always remain reachable in
the developed smart contracts.

5) Authentication through tx.origin: The tx.origin
variable is used in Solidity as well as Vyper to refer to
the original external account that initiated the transaction in
question, whereas the msg.sender variable is used in both
to refer to the sender of the message for the current call.
This vulnerability occurs when an inexperienced developer
mistakenly checks tx.origin for authentication purposes
rather than msg.sender [49]. Fig. 3 provides an example of
this vulnerability (Line 9) in function withdrawAll, which
uses tx.origin to confirm the owner of the contract that is
calling the function. This is an error on the developer’s part
due to their inadequate understanding of the Ethereum system
and the Solidity / Vyper language.

6) Unprotected suicide: This vulnerability occurs due to
the fact that contract bytecode and storage can be deleted
from the Ethereum network by using the SELFDESTRUCT
opcode. Both Solidity and Vyper provide functions to use this
bytecode. Many contracts implement a self-destruct/suicide
function. Developers have to ensure that the authentication
mechanism is correctly implemented in such contracts so that
only the owner and trusted third parties are able to self-



1 owner: address
2
3 @public
4 def __init__():
5 self.owner = msg.sender
6
7 @public
8 def withdrawAll(to: address):
9 assert tx.origin == self.owner

10 send(to, self.balance)

1 contract UserWallet:
2 def withdrawAll(recipient: address):

↪→ modifying
3
4 attacker: address
5
6 @public
7 def payFunc():
8 UserWallet(msg.sender).

↪→ withdrawAll(self.attacker)

Fig. 3. tx.origin misuse in Vyper.

destruct the contract. Developers must also ensure that their
contracts do not depend on third party contracts that might be
deleted in the future rendering their own contracts unusable.
Development and verification tools such as VeriSolid [25]
ensure that the suicide statement in smart contracts cannot
be reached using an unintended execution trace.

7) Leaking Ether to arbitrary address: This vulnerability
exists when a contract is able to send funds to a caller who is
not an owner or investor or a legitimate payee of the contract. It
occurs due to the contract not enforcing adequate authorization
mechanisms before transferring funds or can occur as a result
of the many other vulnerabilities mentioned in this survey.
This vulnerability can be mitigated by the developer adapting
proper authorization logic in code to ensure that only the
intended recipients are able to withdraw Ether because the
language is blind to the intentions of the developer.

8) Secrecy failure: This vulnerability occurs when devel-
opers incorrectly assume that restricting a variable / function’s
visibility would make its value/functionality hidden from the
participants of the Ethereum network [50]. This is not the case
due to the public nature of the blockchain. If a state variable
is declared private, other contracts are not allowed to access
it but participants can still see its value from transaction data.
Similarly, the inner-workings of a private function are also
visible to all. Hence, the vulnerability is only mitigated if the
developer has an understanding of the underlying Ethereum
system and cannot be addressed by the language or toolchain.

9) Outdated compiler version: This vulnerability occurs
when a contract is compiled using an outdated compiler ver-
sion which might contain unresolved bugs and vulnerabilities.
This vulnerability is addressed by using the latest compiler
version when compiling contracts in either Solidity or Vyper.

IV. CONCLUSION

We presented a detailed comparison of how the known
vulnerabilities that exist in the Solidity smart contract de-

velopment environment translate to the Vyper development
environment. We believe that most of the vulnerabilities listed
in Chen et al. [6] are either not addressable at the language
/ toolchain level or have already been mitigated in Solidity
through its subsequent releases and do not surface in Vyper’s
environment. Vyper may introduce additional vulnerabilities of
its own but those will only become evident once a stable ver-
sion of Vyper is released and adapted by a larger development
community. Based on this survey it now appears that most
of the vulnerabilities that can be attributed to the language
/ toolchain have been addressed in Vyper, albeit at the cost
of complex functionality. Most remaining vulnerabilities are
either due to developers not following the recommended devel-
opment practices and safety precautions or due to them having
insufficient knowledge of the underlying Ethereum system.
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