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ABSTRACT
The systematic risk of a networked system depends to a large
extent on its topology. In this paper, we explore this depen-
dency using a model of risk propagation from the literature
on interdependent security games. Our main area of focus
is on the number of nodes that go down after an attack
takes place. We develop a simulation algorithm to study
the effects of such attacks on arbitrary topologies, and ap-
ply this simulation to scale-free networks. We investigate by
graphical illustration how the outcome distribution of such
networks exhibits correlation effects that increase the likeli-
hood of losing more nodes at once – an effect having direct
applications to cyber-insurance.

Categories and Subject Descriptors
K.6.m [Management of Computer and Information
Systems]: Miscellaneous—Security, Insurance; C.2.0 [Com-
puter Communication Networks]: General—Security
and protection

General Terms
Security, Economics, Measurement, Management, Theory

Keywords
Networks, Security, Topology, Cyber-insurance, Risk Miti-
gation, Economics of Security, Scale-Free Networks

1. INTRODUCTION
Researchers across the spectrum from industry, govern-

ment, and academia have struggled for years to understand
and remedy market failures in the cyber-insurance industry.
These failures serve to motivate a tremendous need for a
better understanding of systematic risk for real-world net-
works.
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One reason for these market failures is a lack of good
data,1 but this is certainly not the only problem. Risk cor-
relation and interdependency combine together in networked
systems to make understanding the problem hard. For ex-
ample, risks to two different networked individuals can be
highly correlated, due to vulnerabilities in a shared common
platform, or due to a shared communication channel, or for
a variety of other reasons. This problem is further exacer-
bated by misaligned incentives whereby network-benefiting
security practices may not be cost-effective for some indi-
viduals.

This paper aims to address this problem by analyzing
the systematic risk of a networked system that is subject
to both direct risks based on individual investments, and
indirect risks based on the network’s topology. By system-
atic risk, we mean vulnerability to events which cause catas-
trophic losses, for example, a very large number of individu-
als in the network being compromised. Systematic risks are
of special interest to cyber-insurers because, in contrast to
non-systematic risks, they cannot be diversified by having a
sufficiently large portfolio.

Our risk propagation model is borrowed from the litera-
ture on interdependent security games, where it has been
used primarily to study the incentives of individuals within
a networked system. Our focus here is rather on the state
of the entire networked system. In particular, we are inter-
ested in understanding the distribution on the number of
lost nodes within a network after an attack occurs.

To evaluate this focus, we implement a simulation algo-
rithm that approximates the loss distribution for an arbi-
trary network topology. We then apply this simulation to
randomly-generated scale-free networks. We find that the
loss distribution derived from this topology differs signifi-
cantly from the binomial distribution (i.e., the distribution
that we would see if the risks to individuals were indepen-
dent). Quantifying the risk in this scenario has applications
for cyber-insurance.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss related work. Section 3 describes our
network risk model, which comes from the literature on in-
terdependent security games. In Section 4, we apply a risk
simulation based on our model to randomly-generated scale-
free networks, and discuss the corresponding applications to
cyber-insurance. Finally, Section 5 concludes the paper.

1Industry specialists gain valuable information from cyber-
security incident reporting. But these data may suffer from
selection bias, and for a variety of reasons many incidents
go unreported [13].



2. RELATED WORK
Our work is relevant to the fields of cyber-insurance, and

security in networked systems. We also utilize insights from
studies about the network structure of real-world networks.
We review important works in these areas in the following
subsections.

2.1 Cyber-insurance
A functioning market for cyber-insurance and a good un-

derstanding of the insurability of networked resources are
both important, because they signal that stakeholders are
able to manage modern threats that cause widespread dam-
age across many systems [1, 6]. However, the market for
cyber-insurance is developing at a frustratingly slow pace
due to several complicating factors, which are discussed in
the detailed review of the security economics and cyber-
insurance literature by Böhme and Schwartz [8]. The out-
lined key challenges and the progress made by academics in
addressing them serve as important motivators for our work.

A group of defenders might appear as a particularly ap-
pealing target to an attacker because of a high correlation
in the risk profiles of the defended resources. For exam-
ple, even though systems may be independently owned and
administrated, they may exhibit similar software configu-
rations leading to so-called monoculture risks [5]. Böhme
and Kataria study the impact of correlation that is readily
observable for an insurer, and found that the resulting in-
surance premiums to make the risks insurable would likely
endanger a market for cyber-insurance [7]. Chen et al. study
correlated risks by endogenizing node failure distribution
and node correlation distribution [10]. In their work, they
allow for different risk mitigation measures, but do not con-
sider the impact on the insurability of risks, or different cases
of interdependence.

Our research is complementary to the studies cited above:
they investigate (the effect of) correlations arising from nodes
having the same software configurations, while we study how
correlations arise from nodes being connected to each other.

2.2 Security in Networked Systems
The problem of interdependence in networked systems has

been considered in a variety of different ways in the academic
literature [22]. Varian, for example, studies security com-
promises that result from the failure of independently-owned
systems to contribute to an overall prevention objective (i.e.,
security is a public good) [29]. In this model, security com-
promises are often the result of misaligned incentives which
manifest as coordination failures, such as free-riding on oth-
ers’ prevention investments. Grossklags et al. extend this
work to allow for investments in system recovery (i.e., self-
insurance) and find that it can serve as a viable investment
strategy to sidestep such coordination failures [14]. How-
ever, the availability of system recovery will further under-
mine incentives for collective security investments. Johnson
et al. add the availability of cyber-insurance to this model-
ing framework, and identify solution spaces in which these
different investment approaches may be used as bundled se-
curity strategies [16].

A second group of economic models derives equilibrium
strategies for containing the propagation of a virus or an
attack in a network. For example, the models by Aspnes
et al. as well as Moscibroda et al. would be applicable to
the study of loss distributions; however, several simplifying

assumptions in those models limit the generality of the re-
sults [2, 26]. Those limitations include the assumption that
every infected node deterministically infects all unprotected
neighbors.

A third class of propagation models that has been widely
studied is the class of epidemic models, which describe how a
virus spreads or extinguishes in a network. In the literature
on epidemic models, the results of Kephart and White [20]
are the closest to our analysis. Kephart and White study
one of the simplest of the standard epidemic models, the
susceptible-infected-susceptible (SIS) model, using various
classes of networks.

Finally, a popular approach to model interdependent risk
is taken by Kunreuther and Heal, and forms the basis for
our formal analysis [15, 21]. The basic premise of this work
is to separately consider the impact of direct attacks and
propagated attacks. We explain the details of the model in
Section 3. The model has been generalized to consider dis-
tributions of attack probabilities [17] and strategic attack-
ers [9]. Similarly, Ogut et al. proposed a related model that
allows for continuous (rather than binary) security invest-
ments [27]. Our model draws from these extensions by im-
plicitly considering a continuum of risk parameters to study
the distribution of outcomes.

2.3 Real-World Networks
The Internet and many other real-world networks have

been shown to be scale-free [3]. For example, several studies
have measured and made attempts to characterize proper-
ties of online social networks. Mislove et al. [25] studied a
dataset with over 10 million nodes and over 300 million links
to characterize properties of Flickr, YouTube, LiveJournal,
and Orkut. They confirmed power law and scale free prop-
erties of these networks. More recent work has concentrated
on Facebook, today’s most popular online social network-
ing platform (e.g., [12]). More generally, a scale-free net-
work’s degree distribution is a scale-free power law distribu-
tion, which is generally attributed to robust self-organizing
phenomena. Recent interest in scale-free networks started
with [4], in which the Barabási-Albert (BA) model is in-
troduced for generating random scale-free networks. The
BA model is based on two concepts: network growth and
preferential node attachment. Li et al. introduce a new,
mathematically more precise, and structural definition of
“scale-free” graphs [24], which promises to offer a more rig-
orous and quantitative alternative. The networks discussed
in our paper satisfy this definition as well.

3. MODEL OVERVIEW
Our modeling framework is grounded in a set of models

introduced by Kunreuther and Heal [15, 21] in the context
of interdependent security games. These models supply a
mechanism for nodes in a network to be attacked, and to
attack their immediate neighbors. The primary motivating
purpose of these models and their myriad of extensions [9,
11,17,19] has been to understand what motivates networked
individuals to invest in security.

Our focus in this paper differs from prior work in that we
concentrate primarily on the inter-node risk transfer mech-
anism as opposed to individual operator decisions. Our re-
search questions are to understand the factors contributing
to the loss of a catastrophically large number of nodes, and



to assess the probabilities with which these bad events may
happen.

The Kunreuther–Heal risk propagation structure provides
a convenient mechanism to address these questions. In this
regime, each network node is exposed to risk from two dif-
ferent types of attacks – external and internal. A success-
ful external attack results in a complete compromise of the
node, allowing the node to attack its neighbors. A successful
internal attack can results in the complete failure of a node
but it does not allow the failed node to attack its neighbors.

3.1 Network Risk Model
More formally, consider a network of size N . Each node is

connected to its neighbors and also to an outside system such
as the internet. We thus divide threats against nodes into
two types – those that originate from outside the network,
and those that originate from within the network.

If a node is successfully attacked from outside the net-
work, then the node becomes an attacker; while if a node
is successfully attacked from within the network, it is sim-
ply damaged. We do not directly model the attacker in this
framework. Rather, attacks occur probabilistically. An ex-
ternal attack against node i succeeds with probability pi.
If node i is compromised by an external attack, then qij is
the conditional probability that an attack by node i against
node j succeeds.

3.2 Loss Distribution
Once a set of attacks happen with their respective proba-

bilities, we are interested in the aftermath from the perspec-
tive of the whole network. That is, we want to know how
many total nodes went down from this attack.

To formalize this, let NL be the random variable that
counts the total number of compromised nodes in an out-
come of the model. Then we define the loss distribution as
a set of N + 1 numbers giving Pr[NL = k] for k = 0, . . . , N .

3.3 Simulation
To compute a probability distribution on these outcomes,

we use simulation. The simulation repeatedly chooses out-
comes from a simulated attack following the external and
internal attack success probabilities. The simulation pro-
ceeds as follows:

• For each node i, decide whether node i is directly com-
promised (or not) at random according to pi.

• For each externally compromised node i, and for each
of its non-compromised neighbors j, decide whether
node i successfully attacks node j at random according
to qij .

• Count the total number of nodes that have been com-
promised and call this the outcome. Add 1 to the
number of occurrences of this outcome.

• After the empirical distribution becomes Cauchy within
some epsilon, or after a fixed number of iterations, ter-
minate the simulation and, for each outcome, output
the number of occurrences over the number of itera-
tions as the empirical probability of that outcome.

The running time of the simulation is polynomial in the
size of the network, given a constant number of iterations.

Furthermore, we know from the strong law of large num-
bers that this simulation converges to the actual function
almost surely. To verify that the simulation is working, we
randomly generated scale free networks using the Barabási-
Albert (BA) model [4], and ran the simulation with varying
number of iterations. In each case, the shape of the distri-
bution settled down to a smooth form within a few tens of
thousands of iterations.

Figure 1 shows a series of simulated distributions using a
single network and with varying numbers of iterations. As
can be seen from the figure, once the number of iterations is
sufficiently high, the empirical distribution reaches a fixed
state.

4. SCALE-FREE NETWORKS
The BA model generates scale-free graphs in stages, based

on the principle of preferential attachment, meaning that the
degrees of nodes with high degrees tend to get even higher as
the graph grows. The parameters of the model are the initial
clique size m0, the number of edges added at each stage m,
and the total size of the graph N . An instance of a graph
with these parameters is constructed randomly as follows.
We first initialize with a clique of m0 > m nodes. The
remaining N −m0 nodes are added one at a time, with each
new node being randomly connected to m existing nodes
with probabilities proportional to the degrees of the existing
nodes.

4.1 Simulation Results
We study the risk of scale-free networks using various met-

rics. For each network, we compute the mean E[NL], the
variance V ar(NL), and the value of the quantile function
QNL for probability 99.9%. In probability theory, the quan-
tile function (also called the inverse cumulative distribution
function) of a random variable gives, for a probability p, the
lowest value such that the outcome of the random variable
is less than or equal to the value with probability p. This
value will play an important role in our cyber-insurance ap-
plication example.

Besides comparing the loss distributions of various net-
works to each other, we also compare them to loss distribu-
tions without any interdependence effects. To derive loss dis-
tributions without interdependence effects, we assume that
node compromises are completely independent events. In
other words, we use binomial distributions with population
size N for the comparisons. Finally, to make the compar-
isons fair, we set the mean of each binomial distribution
equal to the mean of the actual distribution. Formally, we

use the binomial distribution B(E[NL]
N

, N).
First, we study the effects of varying the compromise prob-

abilities p and q. Figure 2 and Table 1 show the actual loss
distributions and the corresponding binomial distributions
for various internal and external compromise probability val-
ues. In each case, the network consists of N = 500 nodes,
and it was generated using the B-A model with parame-
ters m0 = 15 and m = 4. We see that, for lower internal
probabilities, the relationship between external compromise
probability and the mean of total loss is roughly linear. For
the other metrics, the relationships to the probabilities seem
much less predictable.

By comparing the actual loss distributions to binomial
distributions, we see a huge difference in variability. This
means that, as expected, interdependence in networks causes
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Figure 1: Loss distributions obtained from simulations with various numbers of iterations.

Table 1: Comparison of the actual loss distribution to the binomial distribution for various direct compromise and propagation
probabilities, and constant network size N = 500.

p q E[NL] Variance V ar(NL) Quantile QNL(0.999)
actual binomial actual binomial

0.005

0.025 3.01 4.25 2.99 12 10
0.05 3.51 6.51 3.49 15 10
0.1 4.52 12.45 4.48 22 12
0.2 6.51 29.80 6.43 35 16
0.4 10.42 84.54 10.21 59 22

0.01

0.025 6.01 8.43 5.94 17 15
0.05 7.01 12.81 6.92 22 16
0.1 9.00 24.28 8.84 30 19
0.2 12.91 56.92 12.58 47 25
0.4 20.46 156.24 19.62 77 35

0.02

0.025 11.99 16.49 11.70 27 24
0.05 13.97 24.85 13.58 33 27
0.1 17.85 46.10 17.21 44 32
0.2 25.39 104.48 24.10 66 42
0.4 39.58 270.16 36.45 105 59
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Figure 2: Comparison of the actual loss distribution (solid red) to the binomial distribution (dotted green) for various direct
compromise and propagation probabilities, and constant network size N = 500. (Note that the slightly irregular subfigures
for p = 0.005 and q = 0.2 or q = 0.4 are correctly drawn.)

high systematic risk. Furthermore, we see that increasing in-
ternal compromise probability has a much higher impact on
systematic risk than increasing external compromise prob-
ability. Again, this is unsurprising, since internal compro-

mises model the interdependence between the nodes, while
external compromises model independent events.

Second, we study the effects of varying the size N of the
network. Figure 3 and Table 2 show the actual loss dis-
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Figure 3: Comparison of the actual loss distribution (solid red) to the binomial distribution (dotted green) for various network
sizes and constant p = 0.01, q = 0.1.

Table 2: Comparison of the actual loss distribution to the
binomial distribution for various network sizes and constant
p = 0.01, q = 0.1.

N E[NL] Var. V ar(NL) Quant. QNL(0.999)
actual binomial actual binomial

250 4.55 12.13 4.46 21 12
500 9.01 23.98 8.84 30 19
750 13.45 37.16 13.21 39 26

1000 17.92 49.56 17.60 47 32
1250 22.37 61.75 21.97 55 38

tributions and the corresponding binomial distributions for
various network sizes. In each case, the internal and external
compromise probabilities are p = 0.01 and q = 0.1, and the
network was generated using the B-A model with the same
parameters as for the previous figure and table. The main
observation here is that systematic risk does not disappear
as the size of the network increases. This can be observed in
both the figure and the table, which show that the difference
between the actual loss distributions and the binomial distri-
butions does not diminish. For example, the ratio between
the variance of the actual distribution and the binomial dis-
tribution remains around 2.77 (more precisely, the ratios are
2.72, 2.71, 2.81, 2.82, and 2.81). In the following subsection,
we will show that this has important implications for the
viability of cyber-insurance.

4.2 Cyber-Insurance Example
The viability of cyber-insurance – just like any other in-

surance – depends on the diversifiability of risks. Diversifi-
ability means that, in a large set of entities, the individual
risks of the entities cancel out, and the aggregate risk of the
whole set is relatively low. More specifically, for a sufficiently
large set of entities, it is very unlikely that the total loss is
much higher than its expected value, even when the indi-
vidual entities themselves are very risky. In a competitive
market, the diversifiability of risks leads to insurance premi-
ums that are only marginally higher than the expected loss.
Here, we show that underestimating the systematic risk of
networked systems can have catastrophic consequences for
an insurance provider, which highlights the importance of
studying systematic risk.

Suppose that an insurer plans to provide coverage to a set
of N = 500 networked entities, whose external and internal
compromise probabilities are p = 0.01 and q = 0.1. We
assume that the insurance provider is able to measure the
average probability of a node being compromised, which is
equal to E[NL]/N = 1.8% in this example. In practice, the

insurer can obtain this value by randomly choosing nodes
and measuring their probability of being compromised. On
the other hand, the insurance provider is unable to learn the
topology of the network, since this would require detailed
data collection from a large number of nodes. Note that,
for learning the network topology, random sampling is not
a viable solution either [28].

To avoid bankruptcy, the insurance premiums are chosen
so that the total losses exceed the sum of the premiums
with only a very low probability, which is called the proba-
bility of ruin. Let us assume that the highest probability of
ruin that an insurance provider can tolerate is 0.1%. Then,
in the above example, the sum of the premiums has to be
at least QNL(0.999) = 30 (see the actual quantile in Ta-
ble 1). Now, consider an insurance provider who underesti-
mates systematic risk, and assumes that individual risks are
mostly independent. Based on this assumption, the insurer
will calculate an incorrect sum premium QNL(0.999) = 19
(see the binomial quantile in Table 1). The consequences of
this mistake can be catastrophic, as the probability of ruin
for the incorrect sum premium is Pr[NL > 19] = 3.3%, more
than 30 times the intended value.

5. CONCLUSIONS AND FUTURE WORK
Systematic risks in networked systems depend on both

the network’s topology and the security levels of individual
nodes. In this work, we explored the loss outcomes of a
model in which nodes face both external and internal risks.
Applying the model to randomly generated scale-free net-
works, we found that the risk of catastrophe was substan-
tially higher than if the node compromises were independent
events, yielding an application to cyber-insurance.

Alongside this introductory work are many key questions,
some of which we have already begun to study. The compu-
tational complexity of computing loss distributions for var-
ious classes of networks is addressed in [18]. Methods for
better extrapolating the correct risk portfolio of a network
from sample data on subnets are addressed in [23]. An im-
portant remaining research goal is to develop mechanisms for
a cyber-insurer to estimate the direct risks of compromise
and the probabilities of internode risk transfer for relevant
real-world networks.

Acknowledgements: We thank the reviewers for their
comments on an earlier draft of the paper. We gratefully
acknowledge the support of the Penn State Institute for
CyberScience and the National Science Foundation under
ITR award CCF-0424422 (TRUST). In addition, this re-
search was partially sponsored by the Army Research Lab-
oratory and was partially accomplished under Cooperative



Agreement Number W911NF-13-2-0045 (ARL Cyber Secu-
rity CRA). The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the Army Research Laboratory or the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstand-
ing any copyright notation here on.

6. REFERENCES
[1] R. Anderson. Liability and computer security: Nine

principles. In Proceedings of the Third European
Symposium on Research in Computer Security
(ESORICS), pages 231–245, Nov. 1994.

[2] J. Aspnes, K. Chang, and A. Yampolskiy. Inoculation
strategies for victims of viruses and the sum-of-squares
partition problem. Journal of Computer and System
Sciences, 72(6):1077–1093, Sept. 2006.

[3] A.-L. Barabási. Scale-free networks: A decade and
beyond. Science, 325(5939):412–413, July 2009.

[4] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, Oct.
1999.

[5] K. Birman and F. Schneider. The monoculture risk
put into context. IEEE Security and Privacy,
7(1):14–17, Jan. 2009.
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