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Abstract—This risk of catastrophe from an attack is a con-
sequence of a network’s structure formed by the connected
individuals, businesses and computer systems. Understanding the
likelihood of extreme events, or, more generally, the probability
distribution of the number of compromised nodes is an essen-
tial requirement to provide risk-mitigation or cyber-insurance.
However, previous network security research has not considered
features of these distributions beyond their first central moments,
while previous cyber-insurance research has not considered the
effect of topologies on the supply side.

We provide a mathematical basis for bridging this gap: we
study the complexity of computing these loss-number distribu-
tions, both generally and for special cases of common real-world
networks. In the case of scale-free networks, we demonstrate that
expected loss alone cannot determine the riskiness of a network,
and that this riskiness cannot be naively estimated from smaller
samples, which highlights the lack/importance of topological data
in security incident reporting.

I. INTRODUCTION

Computer systems, businesses, and individuals often form
networks. Computers, for example, are connected by physical
and logical links; businesses provide services to one another;
and individuals make friends and acquaintances encompassing
various implicit levels of trust.

While these networks can be very beneficial, they can
also increase risks, as attackers are often able to exploit the
access and trust relationships that network connections entail.
For example, in 2011, RSA, a major security company, was
compromised; and information on about 40 million SecureID
tokens were stolen. This successful compromise was later used
to attack Lockheed Martin, one of the world’s largest defense
contractors [1]. More recently, hackers calling themselves
the Syrian Electronic Army sent e-mails to Financial Times
employees containing phishing links, which were used to gain
access to FT.com corporate e-mail accounts. These accounts
were then used to propagate the social engineering attack to a
larger number of FT.com users, eventually compromising the
organization’s website and Twitter account [2].

These examples serve to illustrate that implicit trust from
network connections can be used to compromise trusting
neighbors through attacks on their peers. From the attacker’s
perspective, the network structure gives rise to what we might
term systematic opportunity, because the opportunity for an
attacker to strike a large payoff is a consequence of the system
itself. Correspondingly, the users of such systems become
subject to systematic risks, arising from the structure of their
connections.

These systematic artifacts can have consequential effects
on the motivations of users of such systems, as they recognize
that their security is dependent on the investments of their
peers. The resulting environment gives rise to well-documented
problems such as under-investment or free-riding [3]; and it
may also motivate users to consider alternative risk-mitigation
strategies such as purchasing insurance.

Insurance is a promising remedy to many risk-related
problems because it facilitates risk diversification; however,
structural consequences of networked systems can also affect
insurers. Traditionally, insurance is based on the diversifiability
of risks: if an insurance provider has enough clients, the
variability in individual risks cancel, and the aggregate risk
is predictable. But if individual risks are correlated, then even
for a large number of clients, there may be a non-negligible
probability of a catastrophic event in which many clients are
compromised at the same time.

This risk of catastrophe is a consequence of the network
structure formed by the connected individuals, businesses and
computer systems; and this causal relationship warrants our
attention. However, to the best of our knowledge, the effects
of a network’s connective structure on general risk-mitigation
concerns, such as those relevant to a cyber-insurance provider,
have not been researched. For example, Lelarge and Bolot
model interdependent security with insurance, but assume that
there is an insurance provider with an exogenously priced
premium [4], thus sidestepping the question of whether an
insurance provider would be willing to offer such a contract.
Many elements for understanding the relationship between a
network’s structure and the resulting risk to its components can
be found in related work addressing cyber-insurance, models
of interdependent security, or properties of scale-free networks.
But a persistent research gap remains.

In this paper, we provide a mathematical basis for study-
ing the distribution of the number of losses from a set of
interconnected nodes, after individual risk propagates through
a network structure. We illustrate and explain why network-
wide risk-mitigation solutions, such as cyber-insurance, must
consider the variability in the number of compromised nodes;
and that in contrast to its expected value, the variability of
this number cannot be naively estimated from sampling a small
part of the network. This failure is especially interesting from a
practical point of view, as many real-world business and social
networks are resilient against comprehensive data collection,
so that the only viable prediction mechanism for determining
the risk portfolio of these networks relies on extrapolation
from smaller samples. Our previous work emphasized the
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importance of loss distributions to risk mitigation [5], and
exhibited simulations of these distributions for some real-
world networks [6]; while the current work for the first
time proves the NP-hardness of computing the loss-number
distribution, and more generally focuses on important aspects
of computational complexity.

The rest of the paper is organized as follows. In Section II,
we discuss related work from the areas of risk mitigation,
interdependent security, and network structure. Section III
introduces our network risk propagation model, which is
derived from the literature on interdependent security games.
In Section IV, we address the computational complexity of
computing the distribution of the number of compromised
nodes for this model. Section V addresses the question of
systematic risk for scale-free networks. Finally, Section VI
concludes the paper.

II. RELATED WORK

First, we present current challenges in risk mitigation and
risk-transfer mechanisms, such as cyber-insurance. Then, we
summarize previous work on interdependent security models,
which model how risk is propagated between connected nodes,
the main concern of our study. Finally, we discuss scale-free
networks, which realistically model many real-world networks
and which form the basis of our simulation-based analysis.

A. Risk Mitigation and Risk Transfer

Markets for risk-mitigation and risk-transfer mechanisms,
such as cyberinsurance, suffer from the difficulty to predict
systematic risk in networks. A functioning market for cyber-
insurance and a good understanding of the insurability of
networked resources both matter, because they signal that
stakeholders are able to manage modern threats which cause
widespread damage across many systems [7], [8]. However,
the cyber-insurance market is developing at a slow pace due
to a number of factors and is still not fully understood from an
economic modeling perspective (see, in particular, the survey
by Böhme and Schwartz [9]).

A primary difficulty for insurance providers is the cor-
relation of risk. A group of defenders might appear as a
particularly appealing target to an attacker because of a high
correlation in the risk profiles of the defended resources.
For example, even though systems may be independently
owned and administrated, they may exhibit similar software
configurations leading to so-called monoculture risks [10],
[11]. Böhme and Kataria as well as Chen et al. study the
impact of correlations that are due to such monoculture risks
[12], [13].

Our research is complementary to the studies cited above:
they investigate (the effect of) correlations arising from nodes
having the same software configurations, while we study how
correlations arise from nodes being connected to each other.

B. Interdependent Security

The notion of correlation of risks can be extended to
include a better understanding of the underlying interdependent
nature of networks. That is, the mere vulnerability of a large
number of systems to a particular attack is less significant if an

attacker cannot easily execute a sufficiently broad attack and/or
propagation is limited. Interdependence has been considered in
different ways in the academic literature [3].

Varian, for example, studies security compromises that
result from the failure of independently-owned systems to
contribute to an overall prevention objective (i.e., security is
a public good) [14]. In this model, security compromises are
often the result of misaligned incentives which manifest as
coordination failures, such as free-riding on others’ prevention
investments. Grossklags et al. extend this work to allow for
investments in system recovery (i.e., self-insurance) and find
that it can serve as a viable investment strategy to sidestep such
coordination failures [15]. However, the availability of system
recovery will further undermine incentives for collective secu-
rity investments. Johnson et al. add the availability of cyber-
insurance to this modeling framework, and identify solution
spaces in which these different investment approaches may be
used as bundled security strategies [16]. However, due to the
fact that those models capture primarily two security outcomes
(i.e., everybody is compromised, or nobody is compromised),
they can only serve as approximate guidance for realistic
insurance models.

A second group of economic models derives equilibrium
strategies for containing the propagation of a virus or an attack
in a network. For example, the models by Aspnes et al. as
well as Moscibroda et al. would be applicable to the study
of loss distributions, however, several simplifying assumptions
in those models limit the generality of the results [17], [18].
Those limitations include the assumption that every infected
node deterministically infects all unprotected neighbors.

A third class of propagation models that has been widely
studied is the class of epidemic models, which describe
how a virus spreads or extinguishes in a network. In the
literature on epidemic models, the results of Kephart and
White [19] are the closest to our analysis. Kephart and White
study one of the simplest of the standard epidemic models,
the susceptible-infected-susceptible (SIS) model, using various
classes of networks. For Erdős-Rényi random graphs, they
approximate both the expected value and the variance of the
number of infected nodes using formulas. For the more realis-
tic hierarchical network model, they show that the expected
number of infected nodes does not increase with the size
of the graph. This indicates that, even though variance is
typically very high in this case, catastrophic events are unlikely
as the magnitude of losses is low. Kephart and White also
present two new, more realistic epidemiological models in
[20]. In the first model, called “kill signals”, they find large
oscillations in the number of affected nodes using simulation,
but only in two-dimensional square lattices, which are too
regular to model a number of practical networks. In the second
model, called “organizations”, they show that the incident size
distribution follows approximately an exponential distribution,
which implies that catastrophic events are unlikely. Pastor-
Satorras and Vespignani analyze real data from computer
virus infections in order to define a dynamical SIS model for
epidemic spreading in scale-free networks [21]. They find that,
in scale-free networks, the epidemic threshold (the minimum
ratio of the virus’s birth rate to death rate such that an epidemic
occurs) and its associated critical behavior do not exist (in
other words, the threshold is zero). Eguı́luz and Klemm study



the spreading of viruses in scale-free networks with large
clustering coefficient and degree correlation, which they model
as highly clustered scale-free graphs [22]. They show that, in
contrast to randomly-wired scale-free networks, there exists
a finite epidemic threshold for highly clustered scale-free
networks, even if they are infinite in size. Pastor-Satorras and
Vespignani study epidemic dynamics in finite-size scale-free
networks, and show that, even for relatively small networks, the
epidemic threshold is much smaller than that of homogeneous
systems [23]. Wang et al. propose a general epidemic threshold
condition, which applies to arbitrary graphs, based on the
largest eigenvalue of the adjacency matrix [24], [25]. To show
that the model yields precise results, they conduct simulations.
They also prove that, when the network is below the epidemic
threshold, the number of infected nodes decays exponentially
over time. In a follow-up, Ganesh et al. obtain the same
epidemic threshold result (along with other results) using
another approach [26]: Wang et al. use point estimate, while
Ganesh et al. derive exact bounds on the propagation equations.

Finally, a popular approach to model interdependent risk
is taken by Kunreuther and Heal, and forms the basis for our
formal analysis [27], [28]. The basic premise of this work is to
separately consider the impact of direct attacks and propagated
attacks. We explain the details of the model in Section III.
The model has been generalized to consider distributions of
attack probabilities [29] and strategic attackers [30]. Similarly,
Ogut et al. proposed a related model that allows for continuous
(rather than binary) security investments [31]. Our analysis
setup draws from these extensions by implicitly considering
a continuum of risk parameters to study the distribution of
outcomes.

C. Scale-Free Networks

Many real-world networks are believed to be scale-free,
including social, financial, and biological networks [32]. A
scale-free network’s degree distribution is a scale-free power
law distribution, which is generally attributed to robust self-
organizing phenomena. Recent interest in scale-free networks
started with [33], in which the Barabási-Albert (BA) model
is introduced for generating random scale-free networks. The
BA model is based on two concepts: network growth and
preferential node attachment. We discuss this model in detail
in Section V. Li et al. introduce a new, mathematically more
precise, and structural definition of “scale-free” graphs [34],
which promises to offer a more rigorous and quantitative
alternative. The networks discussed in our paper satisfy this
definition as well.

One of the important questions addressed by our paper
is whether small samples can be used to predict systematic
risks in scale-free networks. Stump et al. show that the
degree distributions of randomly sampled subnets of scale-free
networks are not scale-free [35]; thus, subnet data cannot be
naively extrapolated to every property of the entire network.
However, random samples are unbiased estimators of some
properties (e.g., average degree). In Section V, we investigate
whether they are unbiased estimators of systematic risk.

III. MODEL OVERVIEW

Our modeling framework builds on the network security
game introduced by Kunreuther and Heal [27], [28]. This

model has been studied and extended by many authors (e.g.,
[29], [30], [36], [37]), with a common focus on understanding
how individuals in a networked system make individualized
choices in response to probabilistic threats, along with how
these choices affect other individuals.

At a high level, the model describes risk effects of any
networked system in which there are two possible levels of
security breach. A low level security breach damages only
the breached node, while a high level security breach both
damages the breached node and allows the node to damage
its neighbors. The most general form of this model can be
applied directly to two-tiered computer access systems or two-
tiered management structures. Extensions of the model are also
possible, and we defer those analyses to future work.

Although we use this model’s risk propagation structure,
our focus is different from prior work. We concentrate ex-
clusively on properties of the network’s loss distribution as a
function of each node’s direct risk, and the probabilities of
propagation from one node to another.

This propagation structure yields a simple mechanism for
studying network risk, and it captures the core dynamics of risk
transfer from a node-centric perspective. For example, consider
node 1 in Figure 1. Any risk to this node may be categorized
as either originating outside the network or originating within
the network. If the risk originates outside the network we
may categorize it in terms of its expected magnitude; while
if the risk originates from within the network, from one of its
connected nodes, we may quantify the magnitude of the risk
derived from that connection.

For a list of symbols used in the paper, see Table I.

TABLE I: List of Symbols

Symbol Description

N number of nodes
p probability of direct compromise (when it is uniform over the nodes)
pi probability of node i being directly compromised
q probability of compromise propagation (when it is uniform over the

links)
qij probability of compromise propagation from node i to node j (given

that node i is directly compromised)
qin probability of compromise propagation from an outer node to the

internal node in star topologies
qout probability of compromise propagation from the internal node to an

outer node in star topologies
NL random variable measuring the number of compromised nodes
ρ edge inclusion probability in ER random graph model
m0 size of the initial clique in the BA random graph model
m number of connections per additional node in the BA random graph

model

A. Network Risk Propagation Model

Consider a network of N nodes. Each node has two types
of connections: one type which connects to other nodes in the
same network, and another type which connects to a system
outside the network. For an illustration, see Figure 1. Threats
originate outside the network, and subject each node to some
risk of compromise. If an outside threat successfully reaches
a node, that node is compromised. This outcome is binary so
that each node is either compromised or not.
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Fig. 1: Network Risk Arrival and Propagation

If a node is compromised, the risk may propagate within
the network to that node’s direct neighbors. In our interpre-
tation of the model, the risk does not propagate further than
one hop, so that each node’s risk exposure is bounded by the
aggregate probability of direct external risks to itself and its
immediate neighbors. While this model does not encompass
all conceivable multiple-hop propagation structures, it strikes
a good balance between realistic risk transfer properties and
conceptual simplicity.

Risk of direct compromise threatens each node i with
probability pi, and for the analysis we assume that direct
compromises for different nodes are independent events. Our
framework is agnostic about the origin of direct risk, although
it could be motivated in an active attacker model by assuming
that each node has a different attacker.

If a node is directly compromised, it transfers risk to
each neighboring node j with probability qij . If a node is
not directly compromised, it cannot transfer risk to any other
node. Notice that we can use the matrix [qij ] to directly
specify network topology alongside risk propagation simply
by requiring qij = 0 whenever node i is not connected to
node j.

B. Game-Theoretic Actors

Many studies have used this model to understand interde-
pendent security by considering a game in which each individ-
ual can reduce the risk of her own node by making a security
investment. In this case, actors with various motivations make
choices whose consequences either increase or decrease the
node-centric risk parameters pi and qij . A game-theoretic
analysis informs us about the set of configurations in which
the model might be likely to end up after some time, but once
each actor has made her choice, the system rests in a fixed
configuration. In this paper, we build on the previous results on
this model, and assume that this configuration is given. We then

study the challenging problem of ascertaining the probability
distribution on loss outcomes from the perspective of the entire
network.

C. Loss Distribution

A loss outcome is an event in which some nodes are
compromised and others are not. To completely specify a
loss outcome requires listing the set of compromised nodes.
So a complete distribution on loss outcomes is a probability
distribution on all subsets of nodes. This distribution is not
tractable to analyze since the number of subsets of nodes is
exponential in the number of nodes. However, if we consider
only the number of compromised nodes, then its distribution is
tractable to analyze. Moreover, the information obtained from
studying this distribution remains highly relevant to network
security and insurability. Let NL be the random variable that
counts the number of compromised nodes in an outcome of the
model. Then, the loss distribution is a set of N + 1 numbers
giving Pr[NL = k] for k = 0, . . . , N .

IV. COMPUTABILITY OF THE LOSS
DISTRIBUTION

Notational Conventions

Whenever necessary for convenience throughout this paper,
we adopt the following common mathematical conventions:

00 = 1,
∑
∅

= 0,
∏
∅

= 1(
n

m

)
= 0 whenever m < 0 or m > n.

A. General Formula

We start by giving a general formula for the N + 1 terms
of the loss distribution on NL.

Lemma 1. For each k = 0, . . . , N ,

Pr[NL = k]

=
∑
C,D:

C⊆{1,...,N}
D⊆C
|C|=k

[ ∏
i∈D

pi ·
∏

i∈C\D

(
(1− pi)(1−

∏
j∈D

(1− qji))
)

·
∏
i/∈C

(
(1− pi)

∏
j∈D

(1− qji)
)]

.

Proof: We compute the probability of the event NL = k
by enumerating all events in which k nodes are compromised
and summing their probabilities.

Let us first subdivide outcomes meeting the criteria NL =
k into disjoint classes according to which nodes were com-
promised directly, indirectly, or neither. Let C be the set
of all compromised nodes, and let D be the set of directly
compromised nodes. Then D ⊆ C and, for outcomes in the
class specified by this pair (C,D), we know that:

1) every node in D is directly compromised, and



2) every node in C \D is not directly compromised but
is indirectly compromised by at least one of the nodes
in D, and

3) every node not in C is neither directly compromised
nor indirectly compromised by a node in D.

Denoting these events with their numbers, respectively, we
have

Pr[1] =
∏
i∈D

pi

Pr[2|1] =
∏

i∈C\D

(
(1− pi)

(
1−

∏
j∈D

(1− qji)
))

Pr[3|1] =
∏
i/∈C

(
(1− pi)

∏
j∈D

(1− qji)
)
.

In any outcome where 1 happens, events 2 and 3 are
independent, which implies Pr[2 ∧ 3|1] = Pr[2|1] · Pr[3|1].

The probability of an event in the class (C,D) happening
is then

Pr[1 ∧ 2 ∧ 3] = Pr[1] · Pr[2 ∧ 3|1]
= Pr[1] · Pr[2|1] · Pr[3|1] . (1)

The probability that any event satisfying NL = k happens
can now be computed by taking the sum of Equation (1) over
all pairs C,D with D ⊆ C ⊆ {1, . . . , N} and |C| = k.

Notice that the number of terms in the lemma’s formula
is exponential in the number of nodes N . Consequently, the
running time of a straightforward algorithm computing the
value of the formula is also exponential. Even for relatively
small networks, the number of terms can be considerably large;
for example, the number of 150-element-subsets of the set
{1, . . . , 300} is approximately 1088, which is greater than the
number of atoms in the observable universe. In practice, this
prevents us from using the above formula for networks that
are not very small.

B. NP-Hardness

The question naturally arises: is this exponential running
time a defect of our formula or an inherent property of the
problem? In this subsection, we show that, unfortunately, the
general problem is indeed NP-hard; thus, assuming that P 6=
NP 1, no polynomial-time algorithm can exist that computes
the exact value of Pr[NL = k] for each k. However, in the
subsequent subsections, we also show that the distribution can
be computed efficiently for certain classes of networks.

Our hardness proof is based on reduction from a well-
known NP-complete problem, the Minimum Set Cover prob-
lem.

Definition 1. Minimum Set Cover: Given a universe U , a
family F of subsets of U , and an integer m, is there a collection
of at most m subsets in F whose union is U?

To perform the reduction, we first define a decision problem
that can be easily reduced to computing the distribution of NL.

1P 6= NP is a widely accepted conjecture; if it were not true, we would
be able to solve all NP-hard problems in polynomial time.

Definition 2. Total Loss Probability: Given an integer N ,
probabilities pi, qij for i, j = 1, . . . N , and a real number
δ, does the network of N nodes having direct compromise
probabilities pi and indirect risk transfer probabilities qij
satisfy Pr[NL = N ] ≥ δ?

Theorem 1. Set Cover reduces to Total Loss Probability in
polynomial time.

Proof: Given an instance (U,F,m) of Set Cover, we con-
struct an instance (N, {pi}, {qij}, δ}) of Total Loss Probability
as follows.

• Let N = 1 + |F |+ |U |.
• Let r be a network node with direct compromise

probability pr = 1.

• For each subset S ∈ F , let S also be a network node
with direct compromise probability pS = 1

|F |! .

• For each element u ∈ U , let u also be a network node
with direct compromise probability pu = 0.

• For each S ∈ F , add an edge from r to S with risk
propagation probability qrS = 1.

• For each pair (u, S) from U × F with u ∈ S, add
an edge from S to u with risk propagation probability
qSu = 1.

• Let δ = 1
|F |!m .

This reduction can be carried out in time and space that
is polynomial (quadratic) in the size of the Minimum Set
Cover problem instance. To see this, note that the size of the
proscribed Total Loss Probability instance is at most quadratic
in the size of the Minimum Set Cover instance. (It is potentially
quadratic because there are potentially a quadratic number
of propagation probabilities qSu.) There is no computation
involved in the reduction except for computing the factorial of
|F |, which can done naively in |F | multiplications/divisions
and using at most log2 |F |! < |F | log2 |F | < |F |2 bits.

1r

1
|F |!S1S2S3S4S5

0u1u2u3u4

1

1

Fig. 2: NP-hardness reduction.

See Figure 2 for an example instance of Total Loss
Probability generated by the reduction. Observe that in every
outcome for this network, the node r and the nodes S ∈ F
are always compromised, because r is directly compromised,
and r propagates its risk to each node S ∈ F with probability
1. Thus all nodes are compromised and NL = N if and only
if each node u ∈ U is compromised.

We claim that there exists a collection of at most m subsets
in F whose union is U if and only if Pr[NL = N ] ≥ δ.



For the forward direction, assume that there exists a col-
lection C of at most m subsets in F whose union is U . Then,

Pr[NL = N ] ≥ Pr[every subset in C is compromised]

=

(
1

|F |!

)m
= δ .

Conversely, assume that there does not exist an m-cover
of U , so that every collection of sets in F that covers U has
size at least m+ 1. Then

Pr[NL = N ]

= Pr
[

some collection C ⊆ F
that covers U is compromised

]
≤ Pr

[
some collection C ⊆ F having
m+ 1 subsets is compromised

]
≤
(
|F |
m+ 1

)(
1

|F |!

)m+1

< |F |!
(

1

|F |!

)m+1

=

(
1

|F |!

)m
= δ .

The equivalence shows that if we had an efficient algorithm
to solve the Total Loss Probability problem, we could apply the
above reduction to an arbitrary instance of the Minimum Set
Cover problem, and use the reduction to solve that instance
efficiently. However, since Minimum Set Cover is NP-hard,
there is no efficient means to compute Total Loss Probability
unless P = NP .

C. Special Case Topologies

Since the problem of computing the exact distribution is
NP-hard, we have two viable options for larger networks.
First, we can focus on restricted classes of networks. We
give efficient formulas for three such classes in the following
subsubsections. A second option is to use heuristic algorithms
to approximate the general case. We take this second approach
in Subsection IV-D.

1) Homogeneous Topologies: For a homogeneous network,
the topology of the network is a complete graph; each node
has a direct compromise probability of p; and each edge has a
propagation probability of q (in both directions). Homogeneous
topologies arise in practice whenever the network is fully
connected. See Figure 3a for an illustration.

Lemma 2. The probability of k nodes being compromised in
a homogeneous network is

Pr[NL = k]

=

(
N

k

) k∑
d=0

[ (
k

d

)
pd(1− p)(N−d)

·
(
1− (1− q)d

)k−d · ((1− q)d)(N−k) ] .
Proof: Suppose that for each i and j, pi = p and qij = q.

Fix C,D with D ⊆ C ⊆ {1, . . . , N}, |C| = k and |D| = d.
Then ∏

i∈D
pi = pd, (2)

∏
i∈CrD

(
(1− pi)

(
1−

∏
j∈D

(1− qji)
))

=
(
(1− p)(1− (1− q)d)

)k−d
, (3)

and∏
i/∈C

(
(1− pi)

∏
j∈D

(1− qji)
)
=
(
(1− p)(1− q)d

)N−k
. (4)

From Lemma 1, Pr[NL = k] has the form
k∑
d=0

∑
C,D:

C⊆{1,...,N}, D⊆C, |D|=d, |C|=k

Pr[(C,D)] , (5)

where Pr[(C,D)] is the product of Equations (2), (3) and (4).

The number of pairs (C,D) with D ⊆ C ⊆ {1, . . . , N},
|C| = k, and |D| = d is exactly

(
N
k

)
·
(
k
d

)
; and Pr[(C,D)] is

uniform over all pairs (C,D) satisfying these properties. So
we have

Pr[NL = k]

=

k∑
d=0

(
N

k

)(
k

d

)
Pr[(C,D)]

=

(
N

k

) k∑
d=0

[(
k

d

)
pd(1− p)(N−d)

·
(
1− (1− q)d

)k−d · ((1− q)d)(N−k) ] .
2) Star Topologies: A star graph is a tree with one internal

node and N −1 outer nodes. See Figure 3b for an illustration.
We let p0 denote the direct compromise probability of the
internal node, and assume that the outer nodes have a uniform
direct compromise probability, denoted by p1. Furthermore, we
assume that the probability of propagation is uniform from the
internal node to the outer nodes, denoted by qout, and from
the outer nodes to the internal node, denoted by qin.

This can model, for example, a network that consists of a
single server and N−1 clients. We can assume that each client
communicates directly only with the server; e.g., there are
strict firewalls or no physical connections between the clients.
Hence, there is no propagation between the clients.

Lemma 3. The probability of k nodes being compromised in
the star network is

Pr[NL = k]

=

(
N − 1

k − 1

) k−1∑
d=0

[(
k − 1

d

)
· p0pd1(1− p1)N−1−d

· q(k−1)−dout · (1− qout)N−k
]

+

(
N − 1

k − 1

)
pk−11 (1− p0)(1− p1)N−k · (1− (1− qin)k−1)

+

(
N − 1

k

)
pk1(1− p0)(1− p1)N−1−k · (1− qin)k .
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Fig. 3: Special case topologies.

Proof: We divide the set of outcomes into three possibil-
ities. Either

1) the center node is directly compromised, or
2) the center node is not directly compromised, but is

indirectly compromised, or
3) the center node is neither directly nor indirectly

compromised.

We address each case separately, and then add their prob-
abilities.

1) In the first case, we further subdivide the space
according to the number d of directly-compromised
exterior nodes. Fix k and d. In this sub-case we know
that k − d − 1 exterior nodes were not directly but
indirectly compromised, and N − k nodes were not
compromised at all. The total probability of this case
happening is the product of the probabilities that

a) the center node is directly compromised
b) d exterior nodes are directly compromised
c) k − d − 1 exterior nodes are not directly

compromised but are indirectly compromised
d) N −k exterior nodes are neither directly nor

indirectly compromised
which gives

p0p
d
1((1− p1)qout)k−d−1((1− p1)(1− qout))N−k

= p0p
d
1(1− p1)N−1−d · q

(k−1)−d
out · (1− qout)N−k .

The number of ways to choose d and k in this case
is
(
N−1
k−1

)
·
(
k−1
d

)
; and the total probability of this

case is obtained by summing the probabilities over
all possible values for d, i.e.,

(
N − 1

k − 1

) k−1∑
d=0

[(
k − 1

d

)
· p0pd1(1− p1)N−1−d

· q(k−1)−dout · (1− qout)N−k
]
.

(6)

2) In the second case, each of the k − 1 external
compromised nodes must be directly compromised,
because the center node is not directly compromised,
and only the center node can indirectly compromise

external nodes. For a fixed choice of these k − 1
compromised external nodes, the probability of this
configuration is the product of the probabilities that

a) the center node is not directly compromised,
but is indirectly compromised

b) k−1 exterior nodes are directly compromised
c) N − k exterior nodes are not directly com-

promised

which gives

(1− p0) · (1− (1− qin)k−1) · pk−11 · (1− p1)N−k

=pk−11 (1− p0)(1− p1)N−k · (1− (1− qin)k−1) .

There are
(
N−1
k−1

)
ways to choose the external com-

promised nodes, so the probability of this case is(
N − 1

k − 1

)
pk−11 (1−p0)(1−p1)N−k·(1−(1−qin)k−1) .

(7)
3) In the third case, there are k external compromised

nodes, each of which must be directly compromised;
and for a fixed choice of these k compromised
external nodes, the probability of this configuration
is the product of the probabilities that

a) the center node is neither directly nor indi-
rectly compromised

b) k exterior nodes are directly compromised
c) N − 1 − k exterior nodes are not directly

compromised

which gives

(1− p0) · (1− qin)k · pk1 · (1− p1)N−1−k

= pk1(1− p0)(1− p1)N−1−k · (1− qin)k .

There are
(
N−1
k

)
ways to choose the external com-

promised nodes, so the probability of this case is(
N − 1

k

)
pk1(1−p0)(1−p1)N−1−k ·(1−qin)k . (8)

Finally, the total probability of k losses is the sum of Equations



(6), (7) and (8).(
N − 1

k − 1

) k−1∑
d=0

[(
k − 1

d

)
· p0pd1(1− p1)N−1−d

· q(k−1)−dout · (1− qout)N−k
]

+

(
N − 1

k − 1

)
pk−11 (1− p0)(1− p1)N−k · (1− (1− qin)k−1)

+

(
N − 1

k

)
pk1(1− p0)(1− p1)N−1−k · (1− qin)k .

3) E-R Random Topologies: In the Erdős-Rényi (E-R)
random graph model, undirected edges are set between each
pair of nodes with equal probability ρ, independently of other
edges [38].

Assume that the propagation probability of every edge
is q. Then, the probability that a directly compromised node i
propagates compromise to any given node j is

Pr[i and j are connected] · q = ρq . (9)

Consequently, the probability of any given node i being
compromised in an E-R random graph with a propagation
probability of q and an edge probability of ρ is equal to
the probability of i being compromised in a homogeneous
network with a propagation probability of ρq. Therefore, the
distribution of NL is the same for a random network with
parameters p, q, and ρ and for a homogeneous network with
parameters p and ρq. See Figure 3c for an illustration.

Corollary 1. The probability of k nodes being compromised
in an E-R random network is

Pr[NL = k]

=

(
N

k

) k∑
d=0

[ (
k

d

)
pd(1− p)(N−d)

·
(
1− (1− ρq)d

)k−d · ((1− ρq)d)(N−k) ] .
Proof: It follows immediately from Lemma 2 and the

structure of the E-R random network.

Notice that for each of these network topologies, the
formula giving the distribution on the number of losses is at
most quadratic in N . Thus we can compute the distribution
efficiently for networks with these topologies.

D. Simulation

For more general network topologies, we use simulation to
obtain an approximate distribution. The simulation computes
an empirical distribution by repeatedly choosing outcomes that
result from a simulated attack following the direct compromise
and propagation probabilities, as follows:

• In each iteration, choose an outcome randomly in the
following way:
◦ First, for each node i, decide whether node

i is directly compromised (or not) at random
according to pi.

◦ Second, for each directly compromised node
i, iterate over all of its non-compromised
neighbors. For each non-compromised neigh-
bor node j, decide whether node i propagates
compromise to node j (or not) at random
according to qij .

• Count the nodes that have been compromised and
add 1 to the number of occurrences of this outcome.

• After a fixed number of iterations, terminate the
simulation and, for each outcome, output the number
of occurrences over the number of iterations as the
empirical probability of that outcome.

The running time of the above algorithm is polynomial in the
size of the network, given a constant number of iterations.
Furthermore, we have from the strong law of large numbers
that the empirical distribution function converges to the actual
function almost surely. To show that this convergence is indeed
fast enough in practice, we ran the simulation for a number
of homogeneous and star graph networks and compared the
approximate distributions to the exact ones. In the following,
we present two of these results.
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Fig. 4: Comparison of distributions obtained using simulation
(solid red) to the exact distributions obtained from the formulas
(dotted green).

Figure 4 compares distributions obtained from simulations
to the exact distributions for a homogeneous and a star
network, respectively. The homogeneous network consists of
300 nodes with p = 0.01 and q = 0.2. For this network,
the simulation ran for 50,000 iterations, which took less
than 14 seconds on an average desktop computer. The star
network consists of 300 nodes with pi = 0.3, p1 = 0.1, and
qin = qout = 0.2. For this network, the simulation ran for
20,000 iterations, which took 19 seconds. As can be seen in
the figures, the distributions obtained from the simulations,
which consisted of only relatively small numbers of iterations,
are very good approximations to the exact distributions.

Notice that these distributions have multiple local maxima,
which distinguish them substantially from the common bell
shape of a normal or a binomial distribution. To explain this
phenomenon in the homogeneous network, the global maxi-
mum at the very beginning represents the event in which no
nodes are directly compromised, while each consecutive local
maximum primarily contains events in which one additional
node is directly compromised. In the star network, the first
maximum primarily contains events in which the center node is



not compromised, and the second maximum consists primarily
of events in which the center node is compromised.

V. SYSTEMATIC RISK IN SCALE-FREE
NETWORKS

To study how systematic risk is affected by the network
topology, we ran a large number of simulations on scale-free
networks. The networks were generated according to one of the
most prevalent models, the Barabási-Albert (BA) model [33].
The BA model is based on the concept of preferential attach-
ment, which means that the more connected a node is, the
more likely it is to receive new connections.

The BA model generates scale-free graphs as follows. First,
a clique of m0 initial nodes is constructed. Then, the remaining
N − m0 nodes are added to the network one by one. Each
new node is randomly connected to m existing nodes with
probabilities proportional to the degrees of the existing nodes.

A. Measuring Systematic Risk

In this subsection, we compute the mean, the variance,
the 99.9% quantile, and the safety loading2 requirement at
probability 99.9% for the loss distributions of several scale-
free networks. We also compare these quantities to those of
the binomial distributions having the same mean. Note that
binomial distributions are of special interest to us, because if
the node compromise events were independent, then the loss
outcomes would follow a binomial distribution. In particular,
setting parameters q = 0 and p = µ/N in our network
model would yield a binomial loss distribution with mean
µ. Consequently, the binomial distribution with the same
mean is the distribution with the same overall risk, but with
minimal systematic risk. We use the comparison to illustrate
the systematic risk of scale-free networks.

Figure 5 and Table II compare binomial distributions to
the actual loss distributions resulting from various direct com-
promise and propagation probabilities. The network consists
of N = 600 nodes, and it was generated using the parameters
m0 = 15, and m = 4. As expected, increasing the propagation
probability increases the difference between the actual loss dis-
tribution and the binomial distribution through increasing the
interdependence between the nodes of the network. Increasing
the direct node compromise probability has a less pronounced
effect in the same direction. Again, this is unsurprising, since
correlations are caused by interdependence, which is not
affected by direct node compromise probabilities in our model.

Figure 6 and Table III compare binomial distributions to
the actual loss distributions for varying network sizes. The
direct compromise and propagation probabilities are p = 0.01
and q = 0.1. As can be seen in both the figure and the
table, the difference between the actual loss distribution and
the binomial distribution does not diminish as the size of the
network increases. This observation is very important, since

2If an insurer collected only the expected value of the loss in insurance
premiums, then these premiums would be insufficient to cover those cases
where the loss is higher than its expected value. Since the loss can be much
higher than its expected value with a non-negligible probability, the insurer
must set higher premiums to avoid ruin. Safety loading is the excess premium
required to ensure that the probability of ruin for an insurer is at most the
given probability.
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Fig. 5: Comparison of the actual loss distribution (solid red)
to the binomial distribution (dotted green) for various direct
compromise and propagation probabilities, and constant net-
work size N = 600. (Note that the slightly irregular subfigure
for p = 0.005 and q = 0.5 is correctly drawn.)

insurance is based on the idea of diversifiability, which means
that individual risks cancel out as the number of individuals
increases. Since we would see a binomial distribution if all
risks were independent, the fact that the difference does not
diminish indicates that these risks are not diversifiable, and
highlights the importance of knowing the actual loss distribu-
tion.

B. Sampling Scale-Free Graphs

In the previous subsection, we illustrated the extent to
which systematic risk is present in scale-free networks. In this
subsection, we investigate the properties of random subnets
of scale-free networks. The network from which the samples
are drawn is a scale-free network with parameters N = 600,
m0 = 15, and m = 4, and with compromise probabilities
p = 0.05 and q = 0.15. Figure 7 shows the loss distribution
for the entire network, compared to the binomial distribution
with the same expected number of losses.

Figure 8 and Table IV compare the actual loss distributions
of randomly drawn samples to binomial distributions. We study
four different sample sizes: 30, 60, 120, and 240. For each
samples size, three samples of that size were drawn uniformly
at random from the set of all nodes. For each sample, its
loss distribution was computed by running the simulation for
the entire network, but counting only the compromised nodes
belonging to the sample. This models the real-world scenario
where incident reports are collected from only a sample, but
the security of this sample is affected by the rest of the world
through external connections. The number of iterations was
200,000 for each sample. As before, the binomial distributions,
with which the samples are compared, have exactly the same
expected losses E[NL] as the corresponding sample distribu-
tions.



TABLE II: Comparison of the actual loss distribution to the binomial distribution for various direct compromise and propagation
probabilities, and constant network size N = 600.

p q E[NL] Variance V ar(NL) Quantile Q(NL, 0.999) Safety loading Q(NL, 0.999)− E[NL]
actual binomial actual binomial actual binomial

0.005
0.05 4.22 7.76 4.19 17 12 12.78 7.78
0.1 5.41 14.82 5.36 24 14 18.59 8.59
0.5 14.87 145.51 14.50 77 28 62.13 13.13

0.01
0.05 8.40 15.31 8.29 24 19 15.60 10.60
0.1 10.80 28.83 10.60 34 22 23.20 11.20
0.5 29.11 264.77 27.70 101 47 71.89 17.89

0.05
0.05 41.31 67.72 38.47 69 62 27.69 20.69
0.1 52.19 118.52 47.65 90 75 37.81 22.81
0.5 125.56 728.81 99.28 218 157 92.44 31.44
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Fig. 6: Comparison of the actual loss distribution (solid red) to the binomial distribution (dotted green) for various network sizes
and constant p = 0.01, q = 0.1.

TABLE III: Comparison of the actual loss distribution to the binomial distribution for various network sizes and constant p = 0.01,
q = 0.1.

N E[NL] Variance V ar(NL) Quantile Q(NL, 0.999) Safety loading Q(NL, 0.999)− E[NL]
actual binomial actual binomial actual binomial

300 5.44 14.81 5.35 23 14 17.56 8.56
600 10.80 28.83 10.60 34 22 23.20 11.20
900 16.17 43.42 15.88 43 30 26.83 13.83

1200 21.51 58.81 20.69 53 36 31.49 14.49

TABLE IV: Comparison of the actual loss distribution of randomly drawn samples to the binomial distribution for varying sample
sizes and constant N = 600, p = 0.05, q = 0.15.

Sample size E[NL] Variance V ar(NL) Quantile Q(NL, 0.999) Safety loading Q(NL, 0.999)− E[NL]
actual binomial actual binomial actual binomial

30 3.05 2.96 2.74 9.33 9.00 6.28 5.95
60 6.58 6.92 5.86 16.00 15.00 9.42 8.42

120 12.50 15.24 11.20 26.00 24.00 13.50 11.50
240 25.59 42.80 22.86 48.33 41.33 22.74 15.74

Figure 8 shows the three random samples for each size,
together with the corresponding binomial distributions, while
Table IV gives a more detailed comparison in terms of the
metrics we are considering. As can be seen in the figure, the
loss distributions of the samples are almost indistinguishable
from the binomial distributions for sample sizes of 30 and
60 nodes. Consequently, by observing only a sample of the
entire network, one might arrive at the wrong conclusion
that individual node compromises are independent events.
As the sizes of the samples increase, the loss distributions
become more distinguishable from the binomial distribution,
eventually approaching the distribution of losses for the full
network. This phenomenon can be explained by considering
the probability of two nodes sharing a neighbor, which could
cause correlation between them, or two nodes being connected.
In smaller samples, this probability is negligible, which means
that individual risks are almost always independent; hence, the
loss follows a binomial distribution. As we increase the size of

the samples, this probability increases and correlations appear
between individual risks. Furthermore, this transition happens
relatively quickly due to the birthday paradox.

C. Application to Cyber-Insurance

As a motivating example, consider an insurer who provides
insurance coverage to the entities that form a network with
parameters N = 600, p = 0.01, and q = 0.1. Suppose that the
insurer uses a smaller sample of incident reports to estimate the
risk associated with these insurance policies. Since even small
samples are unbiased estimators of the average probability that
a given node is compromised3, it can correctly estimate the
average risk as E[NL]/N = 1.79% based on the individual

3Table IV shows that the ratio E[NL]
N

is independent of the sample size,
which means that even small samples are unbiased estimators of average risk.
Note that, since Table IV is based on different parameter values, the ratio is
approximately 10.5% there.
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Fig. 7: The loss distribution (solid red) of a scale-free network
of N = 600 nodes with parameters m0 = 15, m = 4, p =
0.05, q = 0.15, compared to the binomial distribution (dotted
green).
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Fig. 8: Loss distributions of randomly drawn samples (solid
red) compared to binomial distributions (dotted green). For
each size, three randomly chosen samples are used to compare
the distributions. The parameters are N = 600, p = 0.05,
q = 0.15.

incident reports. In order to keep its probability of ruin (i.e., the
probability that the loss exceeds the premiums) below a given
level 0.001, the insurer wants to compute the necessary amount
of premiums to be collected as Q(NL, 0.999). In other words,
it wants to compute the safety loading Q(NL, 0.999)−E[NL]

using the quantile premium principle. Since the insurer as-
sumes that risks are very close to independent, it estimates
the necessary safety loading based on a binomial distribution,
which gives a value of 11.1. However, its safety loading should
be in fact 23.2 (see Table II). This mistake has rather harsh
consequences for the insurance provider: the probability that
the total loss exceeds the erroneously computed insurance
premium is Pr[NL > E[NL]+ 11.1] = 3.1%. In other words,
the probability of ruin is 3.1% instead of 0.1%.

VI. CONCLUSIONS

The systematic risk of a networked system depends jointly
on the topology of the network and the security levels of
individual nodes. In this paper, we studied a well-known risk
propagation model which concretely specifies this connection.

We found that the distribution of the number of com-
promised nodes has a number of interesting properties. It
is expressible as a simple closed formula; it is NP-hard to
compute in general; it is efficiently computable for several
interesting special cases; and it can be efficiently approximated
using simulation for other, more general cases.

By applying our methodology to scale-free networks, we
found that the full network possesses systematic risks, which
may require large amounts of safety capital to properly insure.
Yet we found much lower systematic risk in random samples
of the same networks. This observation yields two contrasting
applications to cyber-insurance. On the one hand, it may be
possible to insure random subsamples of a network with scale-
free properties while bearing only a modest loading cost. On
the other hand, an insurer cannot readily deduce the systematic
risk of a networked system by taking random samples.
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[8] R. Böhme, “Towards insurable network architectures,” it - Information
Technology, vol. 52, no. 5, pp. 290–293, 2010.
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