
Autonomous Agents and Multi-Agent Systems

A Game-Theoretic Approach for Selecting Optimal
Time-Dependent Thresholds for Anomaly Detection

Amin Ghafouri · Aron Laszka ·
Waseem Abbas · Yevgeniy Vorobeychik ·
Xenofon Koutsoukos

Received: July 26, 2018 / Accepted: May 8, 2019

Abstract Adversaries may cause significant damage to smart infrastructure
using malicious attacks. To detect and mitigate these attacks before they
can cause physical damage, operators can deploy anomaly detection systems
(ADS), which can alarm operators to suspicious activities. However, detection
thresholds of ADS need to be configured properly, as an oversensitive detector
raises a prohibitively large number of false alarms, while an undersensitive
detector may miss actual attacks. This is an especially challenging problem in
dynamical environments, where the impact of attacks may significantly vary
over time. Using a game-theoretic approach, we formulate the problem of com-
puting optimal detection thresholds which minimize both the number of false
alarms and the probability of missing actual attacks as a two-player Stack-
elberg security game. We provide an efficient dynamic programming-based
algorithm for solving the game, thereby finding optimal detection thresholds.
We analyze the performance of the proposed algorithm and show that its run-
ning time scales polynomially as the length of the time horizon of interest
increases. In addition, we study the problem of finding optimal thresholds in
the presence of both random faults and attacks. Finally, we evaluate our result
using a case study of contamination attacks in water networks, and show that

A. Ghafouri, Y. Vorobeychik, and X. Koutsoukos
Institute for Software Integrated Systems,
Vanderbilt University, Nashville, TN, USA.
E-mail: {amin.ghafouri, yevgeniy.vorobeychik, xenofon.koutsoukos}@vanderbilt.edu

A. Laszka
Department of Computer Science,
University of Houston, TX, USA.
E-mail: alaszka@uh.edu

W. Abbas
Department of Electrical Engineering,
Information Technology University, Lahore, Pakistan.
E-mail: w.abbas@itu.edu.pk

2 Amin Ghafouri et al.

our optimal thresholds significantly outperform fixed thresholds that do not
consider that the environment is dynamical.

Keywords Anomaly detection systems · Game theory · Smart infrastructure ·
Stackelberg security game · Random faults

1 Introduction

Smart infrastructures equipped with data-gathering devices and computa-
tional capabilities for data-intensive analysis lead to efficient monitoring and
management of cyber-physical systems including transportation, electrical,
and water distribution systems. The ability to collect diverse data at low-cost
allows for intelligent system monitoring, automation, and efficient resource
management. Continuous monitoring of modern infrastructure networks to de-
tect anomalies and malicious intruders is a prominent requirement for smart
operations. Inability to early detect a malicious attack on some system com-
ponent might not only cause disruption of services but could lead to complete
system failure, excessive physical and financial losses. For instance, in water
networks, water pipes are exposed to the risk of intentional contamination
with toxic chemicals. If not detected early, such a malicious attack may have
detrimental consequences, including poisoning and propagation of infectious
diseases.

Efficient intrusion and attack detection mechanisms need to be employed
to quickly and accurately detect attacks. Attackers, on the other hand, strive
to maximize the damage inflicted to the system while remaining covert and
not getting detected for an extended duration of time. An anomaly detection
system (ADS) can monitor the system for signatures of known attacks or
for anomalies. When an ADS detects suspicious activity, it raises an alarm,
which can then be investigated by system operators and experts. For instance,
in the case of water networks, water quality sensors continuously monitor
parameters such as chlorine, pH, and turbidity. The collected data is then
analyzed by detection systems such as CANARY [15] to detect anomalous
events and provide an indication of potential contamination.

A well-known method that can be used for detecting anomalies is sequential
change detection [5]. This method considers a sequence of measurements that
starts under the normal hypothesis and then, at some point in time, changes
to the anomaly hypothesis. In sequential change detection, the detection delay
is the time difference between when an anomaly occurs and when an alarm is
raised. Detection algorithms may induce false positives that are alarms raised
for normal system behavior. In general, it is desirable to reduce detection
delay as much as possible while maintaining an acceptable false-positive rate.
There exists a trade-off between the detection delay and the rate of false
positives, which can be controlled by changing the sensitivity of the detector.
A typical way to control the sensitivity is by changing the detection threshold.
By decreasing (increasing) the detection threshold, a defender can decrease
(increase) the detection delay and increase (decrease) the false-positive rate.

Time-Dependent Thresholds for Anomaly Detection 3

Consequently, the detection threshold must be carefully selected, since a large
value may result in large detection delays, while a small value may result in
wasting resources on investigating false alarms.

Finding an optimal threshold, which optimally balances the trade-off be-
tween detection delay and rate of false positives is a challenging problem. The
problem is exacerbated when detectors are deployed in systems with dynamic
behavior and when the expected damage incurred from undetected attacks
depends on the system state and time. For example, in water distribution
networks, contamination attacks at a high-demand time are more calamitous
than attacks at a low-demand time. Hence, defenders need to incorporate
time-dependent information in computing optimal detection thresholds when
facing strategic attackers. In dynamic systems, potential damage from attacks
changes over time, which implies that optimal thresholds must also change
with time. However, if we have to select a different threshold for each time
period, then the number of possible solutions grows exponentially with the
time-horizon.

An adversary can attack a system in multiple ways, and each of these may
cause a different amount of damage or may be detected with a different delay.
To account for these differences, attack types available to the adversary must
be explicitly modeled. For instance, in water-distribution networks, potassium
ferricyanide and arsenic trioxide are both chemicals that can be used to con-
taminate water. In this case, addition of a specific toxic chemical constitutes an
attack type as each chemical affects water quality in different ways and hence
may cause different damage or may be detected with different delay [14].

Contamination events may also occur due to non-malicious incidents or
equipment failures. For instance, pipe bursts and leakages can become a source
of water contamination. Therefore, it is desirable to design ADS that are able
to quickly and accurately detect either incidental contaminations or malicious
attacks.

We study the problem of finding optimal thresholds for anomaly-based
detection in dynamical systems in the face of strategic attacks.1 Our main
contributions are the following:

– We formulate a two-player Stackelberg game between a defender and an
adversary. We assume that the adversary attacks the system, choosing the
time and type of the attack (e.g., type of harmful chemical introduced
into a water-distribution network) to maximize the inflicted damage. On

1 This work is a significant extension of our conference paper [11], which appeared at the
7th Conference on Decision and Game Theory for Security (GameSec 2016). The novel con-
tributions are the following: (1) extended model that considers multiple attack types, which
can be used to represent, for example, multiple targets within a system that an adversary
may attack or multiple choices for the magnitude of the attack; (2) novel polynomial-time
algorithms and theoretical analysis for finding optimal detector configurations against mul-
tiple attack types; (3) extended model that considers both intentional attacks and random
faults (e.g., reliability failures that occur at random) and novel algorithms for finding optimal
detection thresholds in the presence of both attacks and random faults; (4) comprehensive
numerical results based on real-wold data and simulations, which study multiple attack
types, random faults, sensitivity analysis, etc.

4 Amin Ghafouri et al.

the other hand, the defender selects detection thresholds to minimize both
damage from best-response attacks and the cost of false alarms.

– We present a dynamic-programming based algorithm to solve the game,
thereby computing optimal time-dependent thresholds. We call this ap-
proach the time-dependent threshold strategy. We analyze the performance
of the proposed algorithm and show that its running time scales poly-
nomially as the length of the time horizon of interest increases, which is
important in practice from the perspective of scalability.

– We also provide and study a polynomial-time algorithm for the problem of
computing optimal fixed thresholds, which do not change with time.

– In addition, we study the problem of finding optimal thresholds in the
presence of random faults and attacks, and present an algorithm that com-
putes the optimal thresholds. The running time of the algorithm scales
polynomially as the length of the time horizon of interest increases.

– Finally, we evaluate and apply our results to the detection of contamina-
tion attacks in a water-distribution system as a case study. Since expected
damage to the system by an attack is time-dependent as water demand
changes throughout the day, the time-dependent threshold strategy can
achieve much lower losses than a fixed-threshold strategy. Our simulation
results confirm this, showing that time-dependent thresholds significantly
outperform fixed ones.

2 Related Work

The problem of optimal design of anomaly detection systems has been studied
in a variety of different ways in the academic literature [31, 7]. Nevertheless,
to the best of our knowledge, prior work has not specifically addressed the
optimal threshold selection problem in the face of strategic attacks when the
damage corresponding to an attack depends on time-varying properties of the
underlying system.

Change detection methods with adaptive thresholds have been previously
used. An extension of CUSUM test that can be configured at run-time is
proposed in [1]. The paper discusses methods to configure the detector’s pa-
rameters, and shows how the detector performs when the correct configuration
is not known a priori. Further, a procedure to obtain adaptive thresholds for
CUSUM-type detectors is presented that takes into account non-stationary
nature of the stochastic systems under supervision [33]. The proposed method
outperforms fixed threshold in obtaining desired rate of false alarms. Finally,
an adaptive CUSUM control chart is presented that uses variable sampling
intervals [19]. The method is shown to perform better than the fixed sampling
interval approach. Nonetheless, unlike our work, these studies fail to address
dependencies between the detector’s performance and dynamic properties of
a system that can be maliciously exploited by strategic adversaries.

There have been several distinct efforts involving game-theoretic modeling
of anomaly detection. The first is signaling games used to model intrusion de-

Time-Dependent Thresholds for Anomaly Detection 5

tection [25, 10]. For example, an intrusion detection game based on a signaling
game is proposed in order to select the optimal detection strategy that lowers
resource consumption [29]. Further, distributed intrusion detection is studied
as a game between an IDS and an attacker using a model that represents the
flow of information from the attacker to the IDS [2, 3]. The work investigates
the existence of a unique Nash equilibrium and best-response strategies. Nev-
ertheless, the IDS models used in these works are significantly different from
the ones used in our work (i.e., anomaly-based change detection). Another
related game-theoretic setting is FlipIt game [32, 18]. FlipIt is an attacker-
defender game that studies the problem of stealthy takeover of control over
a critical resource, in which the players receive benefits proportional to the
total time that they control the resource. A framework for the interaction be-
tween an attacker, defender, and a cloud-connected device is presented in [26].
The interactions are described using a combination of a FlipIt game and a
signaling game. What distinguishes our work from FlipIt is using an anomaly
detector that has detection delay and false alarms. Finally, our work is related
to the broad literature on Stackelberg security games [24, 17, 30], although
our particular problem and model are novel in that context.

Contaminant intrusion in water distribution network has been considered
in water security literature [8, 9]. In particular, data-driven water monitor-
ing approaches have received considerable attention due to the advances in
smart monitoring technologies [22, 16]. Bayesian sequential analysis is inte-
grated with neural network models to detect possible quality threats in water
distribution systems [28]. Further, a dynamic thresholds scheme for contami-
nation event detection is presented by defining optimal detection thresholds as
the ones that maximize detection rate [4]. While the mentioned work also uses
detection thresholds that change in time, the method of threshold selection
does not consider losses obtained by detection delay and false alarms. In ad-
dition, unlike our work, it does not consider malicious adversaries that exploit
time-varying aspects of WDS.

Sequential change detection methods such as CUSUM have been used to
detect changes in water quality. Combined Shewhart-CUSUM control charts
are used for ground water monitoring in [12]. The study uses Shewhart con-
trol chart for identifying large changes at a single timestep in addition to
CUSUM chart for detecting small continuous changes. The method is eval-
uated by presenting false-positive rate, false-negative rate, and detection de-
lay. Further, CUSUM methods for water quality monitoring are implemented
in [20]. Considering six kinds of quality trends, the performance of CUSUM is
studied by measuring detection delay and false-negative error. It is concluded
that CUSUM performs well when used for monitoring water quality. While
such studies effectively use sequential change detection for water quality mon-
itoring, they simply use fixed thresholds and do not consider time-dependent
thresholds. In this work, we show that time-dependent thresholds significantly
outperform the fixed threshold in terms of minimizing the losses.

6 Amin Ghafouri et al.

Physical system
D, T Sensors

Detector
δ, FP

Attacker
Λ

Optimal thresholds
Cf , Cd

ka, λ η

Fig. 1: System description.

3 System Model

We consider a system which may be attacked by an adversary. We assume
a discrete-time system model with a finite time horizon of interest denoted
by {1, ..., T}. The system provides some utility in its normal state and this
utility is substantially reduced when the system is under attack. Further, the
system and hence these utilities may be be time-dependent. Instead of explic-
itly considering these quantities, we take a general, security-focused approach
and model the impact of attacks using a time-dependent damage function D.
Finally, we assume that the system is monitored by a set of sensors and an
operator can use anomaly detection based on sensor data for detecting attacks.

For example, consider a water distribution network that is monitored by
sensors that measure water quality using pH or choline levels. The system is
subject to attacks such as intrusive contamination with toxic chemicals [13].
The utility from supplying clean water for residential consumption depends
on the water demand, which fluctuates significantly over time. The damage
caused by a contamination attack depends on both the lack of clean water
supply as well as the impact on public health of the population exposed to
contaminated water. Water quality sensors may be used to detect anomalies,
such as changes in chemical concentrations that could be attributed to the
introduction of harmful chemicals.

Our primary goal is to address the problem of finding optimal time-dependent
configurations for anomaly detection algorithms. Table 1 shows a list of sym-
bols used in this paper. In addition, Figure 1 shows a high level overview of the
system model, whose elements will be detailed in the following subsections.

Attack Model. Adversaries may compromise the system through an at-
tack of type λ ∈ Λ (e.g., type of harmful chemical introduced into a water-
distribution network). The attack starts at time ka and ends at ke, thus span-
ning the interval [ka, ke]. If an attack remains undetected, it will enable the
attacker to cause physical or financial damage. In order to represent the tight
relation between the system’s dynamic behavior and the expected loss in-
curred from undetected attacks, we model the potential damage of an attack
as a function of time.

Definition 1 (Expected Damage Function) The damage function of a
system is a function D : {1, ..., T} × Λ → R+ which represents the expected

Time-Dependent Thresholds for Anomaly Detection 7

Table 1: List of Symbols

Symbol Description

T cardinality of time horizon of interest

η vector of time-dependent threshold η = 〈ηk〉Tk=1

Λ set of attack types

D(k, λ) expected damage caused by an attack of type λ ∈ Λ at timestep k

δ(ηk, λ) detection delay given detection threshold ηk and attack type λ

FP (ηk) false alarm probability given detection threshold ηk
Cf cost of false alarms

Cd cost of changing the detection threshold

P(η, ka, λ) attacker’s payoff for time-dependent threshold η = 〈ηk〉Tk=1 and
attack (ka, λ)

L(η, ka, λ) defender’s loss for threshold η = 〈ηk〉Tk=1 and attack (ka, λ)

E set of thresholds corresponding to set of possible detection delays
∆

PF (η) defender’s loss for time-dependent threshold η = 〈ηk〉Tk=1 due
to random faults

LC(η, ka, λ) defender’s loss for threshold η = 〈ηk〉Tk=1 due to random faults
and attack (ka, λ)

damage D(k, λ) incurred by the system from an undetected attack of type
λ ∈ Λ at time k ∈ {1, ..., T}.

Detector. We consider a defender whose objective is to protect the system
using anomaly detection based on the sensor measurements. The detector’s
goal is to determine whether a sequence of received measurements corresponds
to normal behavior or an attack. Although the proposed approach can be used
for various detection algorithms, we consider a widely used method known as
sequential change detection [5]. This method assumes a sequence of measure-
ments that starts under the normal hypothesis, and then, at some point in
time, changes to the attack hypothesis. Change detection attempts to detect
this change as soon as possible. Examples of change detection algorithms are
geometric moving average, generalized likelihood ratio (GLR), and cumulative
sum (CUSUM) [5].

The performance of change detectors is characterized by the detection de-
lay, which is the time between the beginning of an attack and the time when
an alarm is raised, and the false-positive probability, which is the probability
of raising an alarm when there has been no attack. In general, it is desirable
to reduce detection delay while maintaining an acceptable false-positive prob-
ability. However, there exists a trade-off between the detection delay and the
probability of false positives, which can be controlled by changing the detection
threshold. In particular, by decreasing (increasing) the detection threshold, a
defender can decrease (increase) the detection delay and increase (decrease)
the false-positive probability. Finding the optimal trade-off and its correspond-
ing optimal threshold is an important problem since the damage from an attack
depends on the performance of the detector.

8 Amin Ghafouri et al.

The time-dependent threshold is denoted by η = 〈ηk〉Tk=1 and the detection
delay by δ : R+ × Λ → N ∪ {0}, where δ(η, λ) is the detection delay (in
timesteps) when the threshold is η ∈ R+ and the type of the attack is λ ∈ Λ.
The rationale behind this model of delay is that while a certain threshold
might not detect an attack immediately after it happens, the same threshold
might detect the attack later. For example, to detect an attack of type λ
using a CUSUM-based detector, enough error has to accumulate to reach a
threshold η, which takes a certain number of timesteps δ(η, λ). We assume
that for each λ ∈ Λ, δ(η, λ) is a left-continuous function of η. 2 Further, we
denote the false-positive probability (i.e., probability of raising a false alarm
during a single timestep) by FP : R+ → [0, 1], where FP (η) is the false-
positive probability when the detection threshold is η. We assume that FP
is decreasing and δ is non-decreasing with respect to η, which is true for
most typical detectors, including sequential change detectors. For example,
in Section 7, we obtain detection delay and false-positive probability for a
CUSUM detector.

4 Problem Statement

In this section, we present the optimal threshold selection problem. We con-
sider the case in which the defender selects time-dependent thresholds for the
anomaly detection. We model this problem as a conflict between a defender
and an attacker, which is formulated as a two-player Stackelberg security game.

The idea of time-dependent threshold is to reduce the detector’s sensitivity
during less critical periods (via increasing the threshold) and increase the
sensitivity during more critical periods (via decreasing the threshold). As we
will show, this significantly decreases the loss corresponding to false alarms.
However, the defender may not want to continuously change the threshold,
since a threshold change requires a reconfiguration of the detector that has a
cost. Hence, the defender needs to find an optimal threshold, which is a balance
between continuously changing the threshold and keeping it fixed.

Defender’s Loss and Attacker’s Payoff. The defender’s strategic choice
is to select the threshold η = 〈ηk〉Tk=1 for each timestep. We consider a worst-
case attacker who will not stop the attack before detection in order to maximize
the damage. Consequently, the attacker’s strategic choice becomes to select an
attack type λ and a time ka to start the attack.

Since our work focuses on optimizing detection delay, we consider damage
arising from attacks only during the time they remain undetected. In other
words, we consider the impact of an attack from its beginning until its detec-
tion. We define the detection time σ(η, ka, λ) of an attack of type λ that starts

2 We assume that δ(η, λ) is left continuous to ensure that the optimal thresholds exist
(see Definition 3). Without this assumption, the loss L(η, ka, λ) would have an infimum but
not necessarily a minimum. Similarly, the maximum thresholds in Equation (4) would not
necessarily exist. Since these phenomena have virtually no practical relevance (in practice,
values will typically be represented as floating-point numbers with limited precision), we
introduce the mild assumption of left continuity for ease of presentation.

Time-Dependent Thresholds for Anomaly Detection 9

at ka as the first timestep in which an alarm is raised due to the attack. Since
an alarm is raised in timestep k for an attack of type λ that started at ka if
and only if δ(ηk, λ) ≤ k − ka, the detection time of an attack is

σ(η, ka, λ) = {min k | δ(ηk, λ) ≤ k − ka} .

Note that the equation above represents the timestep at which the attack is
first detected, and not the detection delay.

For the strategies (η, ka, λ), the attacker’s payoff is the total damage until
the expected detection time,

P(η, ka, λ) =

σ(η,ka,λ)∑
k=ka

D(k, λ) , (1)

that is, the total damage incurred by the system until the expected detection
time. This payoff function assumes a worst-case attacker that has the goal of
maximizing the damage.

If an alarm is raised, the defender needs to investigate the system to de-
termine whether an attack has actually occurred or not, which will cost Cf .
Further, let Cd be the cost associated with each threshold change. The num-
ber of threshold changes is described by N(η) = |Γ |, where Γ = {k | ηk 6=
ηk+1, k ∈ {1, ..., T − 1}}. When the defender selects a time-dependent thresh-
old η, and the attacker starts the attack at a timestep ka, the defender’s loss
(i.e., inverse payoff) is

L(η, ka, λ) = N(η) · Cd +

T∑
k=1

Cf · FP (ηk) +

σ(η,ka,λ)∑
k=ka

D(k, λ) , (2)

that is, the amount of resources spent on changing the threshold, operational
costs of manually investigating false alarms, and the expected amount of dam-
age caused by the attack before its detection.

Best-Response Attack and Optimal Threshold. We assume that the
attacker has complete and perfect information, and will play a best-response
attack to the defender’s strategy as defined below.

Definition 2 (Best-Response Attack) Assuming a defender’s strategy, the
attacker’s strategy is a best-response if it maximizes the attacker’s payoff.
Formally, an attack (ka, λ) is a best-response given a defense strategy η if it
maximizes P(η, ka, λ) as defined in (1).

Further, the defender must choose his strategy expecting that the attacker
will play a best-response or uniformly random attack. We formulate the de-
fender’s optimal strategy as a strong Stackelberg equilibrium (SSE), which is
commonly used in the security literature for solving Stackelberg games [17].

10 Amin Ghafouri et al.

Definition 3 (Optimal Thresholds) We call a defense strategy optimal if
it minimizes the defender’s loss given that the attacker always plays a best-
response with tie-breaking in favor of the defender. Formally, an optimal de-
fense is

arg min
η,

(ka,λ)∈bestResponses(η)

L(η, ka, λ), (3)

where bestResponses(η) are the best-response attacks against η.

5 Selection of Optimal Thresholds

In this section, we present an approach for computing optimal thresholds for
any instance of the attacker-defender game, based on the SSE. The approach
consists of two steps: 1) a dynamic-programming algorithm (Algorithm 1) for
finding minimum-cost thresholds subject to the constraint that the damage
caused by a best-response attack is lower than or equal to a given damage
bound and 2) an exhaustive-search algorithm (Algorithm 2) that finds an
optimal damage bound and thereby optimal thresholds.

Let ∆ denote the set of all possible detection delay values:

∆ =
{
m ∈ {1, . . . , T}

∣∣ ∃λ ∈ Λ, η ∈ R+

[
m = δ(η, λ)

]}
.

In other words, ∆ is the set of all delay values between 1 and T that can be
attained by some threshold η for some attack type λ.

Next, let E be the set of maximal threshold values that attain the delay
values ∆:

E =

{
η∗
∣∣∣∣ ∃λ ∈ Λ,m ∈ ∆ [

η∗ = max
η : δ(η,λ)≤m

η

]}
. (4)

Introducing the set E enables us to restrict the strategy set of the defender to
a discrete set. The following lemma shows that the defender can always find
optimal thresholds by considering only threshold values from the set E.

Theorem 1 Given an instance of our game, there exist optimal thresholds η
such that

∀k ∈ {1, . . . , T} : ηk ∈ E.

The intuition behind Theorem 1 is that any threshold value ηk 6∈ E can be
replaced with η∗k ∈ E such that δ(η∗k, λ) = δ(ηk, λ), and this replacement
cannot increase attack damage (since detection delay δ remains the same),
but it may decrease false-alert losses (since threshold ηk may increase). We
provide a formal proof in Appendix A.1.

Consequently, for the remainder of this paper, we will consider only strate-
gies in which every threshold ηk is chosen from the set E.

Next, we present the algorithm for computing the optimal thresholds. The
dynamic-programming algorithm (Algorithm 1) finds minimum-cost thresh-
olds subject to the constraint that the damage caused by a best-response
attack is lower than or equal to a given damage bound P . The exhaustive

Time-Dependent Thresholds for Anomaly Detection 11

Algorithm 1 MinimumCostThresholds(P)

1: ∀ m ∈ ∆|Λ|, η ∈ E : Cost(T + 1,m, η)← 0
2: for n = T, . . . , 1 do
3: for all m ∈ ∆|Λ| do
4: for all ηprev ∈ E do

5: if
∨
λ∈Λ

(∑n
k=n−mλ D(k, λ) > P

)
then

6: Cost(n,m, ηprev)←∞
7: else
8: for all η ∈ E do
9: if ηprev = η ∨ n = 1 then

10:
S(n,m, ηprev, η)
← Cost(n+ 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ, η) + Cf · FP (η)

11: else

12:
S(n,m, ηprev, η)
← Cost(n+ 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ, η) + Cf · FP (η) + Cd

13: η∗(n,m, ηprev)← arg minη S(n,m, ηprev , η)
14: Cost(n,m, ηprev)← minη S(n,m, ηprev , η)

15: m← 〈0, . . . , 0〉, η∗0 ← arbitrary
16: for all n = 1, . . . T do
17: η∗n ← η∗(n,m, η∗n−1)
18: m← 〈min{δ(η∗n, λ),mλ + 1}〉λ∈Λ
19: return (Cost(1, 〈0, . . . , 0〉, arbitrary),η∗)

Algorithm 2 OptimalThresholds

1: SearchSpace ←
{∑ka+δ

k=ka
D(k, λ)

∣∣∣
∃ ka ∈ {1, . . . , T − 1}, δ ∈ ∆, λ ∈ Λ}

2: for all P ∈ SearchSpace do
3: (TC(P),η∗(P))← MinimumCostThresholds(P)

4: P ∗ ← arg minP ∈ SearchSpace TC(P) + P
5: return η∗(P ∗)

search (Algorithm 2) computes the optimal thresholds by finding an optimal
damage bound P and using Algorithm 1.

In the first algorithm (Algorithm 1), we use a dynamic-programming ap-
proach, iterating backwards through the timesteps. The key idea of our ap-
proach is that we can compute optimal thresholds for timesteps n, n+1, . . . , T
without knowing the preceding thresholds 1, 2, . . . , n−1: we need to know only
what undetected attacks may be in progress at the beginning of timestep n. We
can describe the state of these attacks by specifying for each attack type λ ∈ Λ
when in the last ∆ timesteps the attacker may have started a yet undetected
attack. Consequently, the optimal thresholds for the remaining timesteps de-
pend only on the attack state m ∈ ∆|Λ|, which enables us to formulate the
following dynamic-programming algorithm. For each timestep n ∈ {T, . . . , 1}
and attack state m ∈ ∆|Λ|, we assume that the optimal thresholds for the
remaining timesteps (for each possible following state) have already been com-
puted, and we compute the optimal threshold ηk for timestep n and attack
state m in polynomial-time.

12 Amin Ghafouri et al.

When computing the optimal threshold ηk, we must consider the cost of
false alerts in the current timestep n as well as the possible costs in the re-
maining timesteps n + 1, n + 2, . . . , T . To keep track of possible costs during
backwards induction, we define Cost(n,m) to be the minimum attainable
cost of false alerts from timesteps n to T subject to the damage bound P ,
given that attacks of type λ can start at ka ∈ {n −mλ, . . . , T} and they are
not detected prior to n. Note that for certain values of n and m, there exist
no thresholds that could satisfy the damage bound P . For such values, we
let Cost(n,m) be equal to ∞. We will assign ∞ to Cost(n,m) directly if
values n and m allow an attack to cause more than P damage by timestep n.
For values that lead to a violation of the damage bound in a later timestep, we
let the backward propagation assign ∞. We can compute cost Cost(n,m)
recursively as

Cost(n,m) =
∞ if

∨
λ∈Λ

∑n
k=n−mλ D(k, λ) > P,

minη Cf · FP (η) + Cost(n+ 1,

〈min{δ(η, λ),mλ + 1}〉λ∈Λ)
otherwise.

Since cost Cost(n,m) depends only on costs Cost(n+1, . . .), we can compute
all cost using backwards induction. Further, by also keeping track of the min-
imizing threshold η∗n, our dynamic programming algorithm will readily have
the optimal thresholds.

In addition to the cost of false alerts, we also need to minimize the cost
of threshold changes. To account for these, we extend the state that is used
by our dynamic programming algorithm to also include the threshold of the
previous timestep. Formally, we define Cost(n,m, ηprev) to be the minimum
attainable cost for timesteps starting from n subject to the same constraints
as before but also given that the threshold value in timestep n − 1 (i.e., the
previous timestep) is ηprev. Again, we can compute this cost recursively as

Cost(n,m, ηprev) =

{
∞ if

∨
λ∈Λ

∑n
k=n−mλ D(k, λ) > P,

minη S(n,m, ηprev, η) otherwise.

where

S(n,m, ηprev, η) ={
Cost(n+ 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ) + Cf · FP (η) if η = ηprev ∨ n = 1,

Cost(n+ 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ) + Cf · FP (η) + Cd otherwise.

(5)

Lemma 1 For any given damage bound P ∈ R, Algorithm 1 computes thresh-
olds η = 〈ηk〉Tk=1 that minimize

N · Cd +

T∑
k=1

Cf · FP (ηk)

Time-Dependent Thresholds for Anomaly Detection 13

subject to

∀ka ∈ {1, . . . , T}, λ ∈ Λ : P(η, ka, λ) ≤ P . (6)

The algorithm returns the minimum cost attained, or if no thresholds exist
satisfying (6), it returns infinity as the cost.

We provide a proof of Lemma 1 and a more detailed discussion of Algorithm 1
in Appendix A.2.

By building on Algorithm 1, our second algorithm (Algorithm 2) finds the
optimal damage bound P ∗ and thereby the optimal thresholds (Definition 3).
Recall that Algorithm 1 finds the minimum cost of false alerts and threshold
changes subject to the constraint that a best-response attack may cause at
most damage P . For a given damage bound P , we let this minimum cost be
denoted by TC(P). Then, we can express the problem of finding an optimal
damage bound P ∗ and optimal thresholds as

min
P

TC(P) + P. (7)

To find the minimizing damage bound P ∗, observe that the amount of
damage that an attack may cause belongs to a limited set of attainable damage
values. In fact, the amount of damage resulting from any attack (regardless of
the thresholds) is necessarily from the following set:{

ka+δ∑
k=ka

D(λ, k)

∣∣∣∣∣∃ ka ∈ {1, . . . , T}, δ ∈ ∆, λ ∈ Λ
}
. (8)

Then, it is easy to see that we can find the optimal damage bound P ∗ by
searching over the above set, whose cardinality is polynomial in the size of
the input. The following theorem establishes that Algorithm 2 indeed finds
optimal thresholds.

Theorem 2 Algorithm 2 computes optimal thresholds that minimize the de-
fender’s loss (see Definition 3).

We provide a proof of Theorem 2 and a more detailed discussion of Algo-
rithm 2 in Appendix A.3.

Proposition 1 The running time of Algorithm 2 is O(T 2 · |∆||Λ|+2 · |Λ|2 · |E|).

We provide a proof of Proposition 1 in Appendix A.4. Note that since
detection delay values can be upper-bounded by T , the running time of Algo-
rithm 2 is also O(T |Λ|+4 · |Λ|2 · |E|).

Finally, note that the running time of the algorithm can be substantially
reduced in practice by computing Cost in a lazy manner. Starting from
n = 1 and m = 〈0, . . . , 0〉, we can compute and store the value of each
Cost(n,m, δprev) only when it is referenced, and then reuse it when it is
referenced again.

14 Amin Ghafouri et al.

Fixed Detection Thresholds We also present an efficient polynomial-time
algorithm to compute the optimal threshold for the special case when the
threshold is fixed for the time horizon {1, . . . , T}. In this case, a detection
threshold is chosen and is kept fixed. Detectors with fixed threshold are widely
used in practice and are advantageous when it is not possible to change the
threshold due to operational restrictions. To compute an optimal fixed thresh-
old, we use an exhaustive search algorithm, which we formally present as Al-
gorithm 3 in Appendix A.5. The algorithm iterates over all possible threshold
values η ∈ E and selects one that minimizes the defender’s loss considering
a best-response attack. Given a threshold η, to find a best-response attack
(ka, λ), the algorithm iterates over all possible pairs of (ka, λ), and selects one
that maximizes the payoff.

Proposition 2 Algorithm 3 computes an optimal fixed threshold in O(T · |E| ·
|Λ|) steps.

We provide a proof of Proposition 2 in Appendix A.5.

6 Optimal Thresholds in the Presence of Faults and Attacks

In this section, we modify our game to take into account random faults and at-
tacks. This is motivated by the fact that contamination may also occur due to
non-malicious incidents such as pipe bursts and leakages. Therefore, it is desir-
able to design anomaly detectors that are able to quickly and accurately detect
either random faults or attacks. We formally define random faults as follows.

Definition 4 (Random Fault) A random fault is represented by (ka, λ)
where ka and λ are randomly selected from uniform distributions over {1, . . . , T}
and Λ.

The expected loss from random faults, denoted by PF (η) is the mean of the
losses, that is

PF (η) =
1

T · |Λ|

T∑
ka=1

∑
λ∈Λ

σ(η,ka,λ)∑
k=ka

D(k, λ). (9)

Then, the combined loss due to faults and attacks can be represented as the
average of the loss (9) due to random faults and the loss (1) due to attacks:3

PC(η, ka, λ) =
1

2
(PF (η) + P(η, ka, λ)) . (10)

3 Note that combined loss could be defined as a general linear combination of faults and
attacks, i.e., PC = αF ·PF +α ·P, where αF and α are arbitrary constants. Our results can
be extended trivially to cover this more general formulation by simply scaling the constants
in our model up or down. For ease of presentation, we consider combined loss to be the
average of faults and attacks.

Time-Dependent Thresholds for Anomaly Detection 15

Therefore, the defender’s total loss with both random faults and best-
response attacks is

LC(η, ka, λ) =N(η) · Cd +

T∑
k=1

Cf · FP (ηk) + PC(η, ka, λ) (11)

=N(η) · Cd +

T∑
k=1

Cf · FP (ηk) +
1

2
(PF (η) + P(η, ka, λ)) (12)

As before, the defender’s problem is to find the thresholds that minimize the
loss, that is

arg min
η,

(ka,λ)∈bestResponses(η)

LC(η, ka, λ), (13)

Algorithm Here, we show how to generalize Algorithms 1 and 2 to account
for random faults. First, we introduce the problem of finding thresholds that
minimize costs and damage from random faults subject to the constraint that
an attack may cause at most P damage. Formally, we define the following
subproblem given a damage bound P :

TCC(P) = min
η
N(η) · Cd +

T∑
k=1

Cf · FP (ηk)

+
1

2
· 1

T · |Λ|

T∑
k′a=1

∑
λ′∈Λ

σ(η,k′a,λ
′)∑

k=k′a

D(k, λ′)

subject to

∀ka, λ :
1

2

σ(η,ka,λ)∑
k=ka

D(k, λ) ≤ P,

We let TCC(P) = ∞ if there exist no ka and λ that would satisfy the con-
straint of TCC(P). Then, it follows from the argument that we presented for
Theorem 2 that we can find an optimal damage bound P ∗ by solving

min
P

TCC(P) + P. (14)

Further, it also follows from the same argument that for an optimal damage
bound P ∗, an optimal solution η∗ to TCC(P ∗) is also an optimal solution
to (13).

16 Amin Ghafouri et al.

Next, to compute TCC(P), we generalize Algorithm 1 by defining the fol-
lowing sub-subproblem:

Cost(P, n,m, ηn−1) = min
ηn,ηn+1,...,ηT

N(〈ηn−1, ηn, . . . , ηT 〉) · Cd

+

T∑
k=n

Cf · FP (ηk)

+
1

2

1

T · |Λ|
∑
λ′∈Λ

T∑
k′a=n−mλ′

σ(η,k′a,λ
′)∑

k=n

D(k, λ′)

subject to

∀λ, ka ∈{n−mλ, . . . , T} :

min{i | i≥n∧ δ(ηi,λ)≤i−ka}∑
k=ka

1

2
D(k, λ) ≤ P,

where P is a real number, n ∈ {1, . . . , T}, m is a |Λ|-element vector of natural
numbers, and ηn−1 ∈ E. Clearly, we have TCC(P) = Cost(P, 1, (0, . . . , 0), η0)
for any η0, and an optimal solution to Cost is also an optimal solution to TCC .

Finally, we show that we can solve Cost using dynamic programming. We
let Cost(P, n,m, ηn−1) =∞ if there exist no ηn, ηn+1, . . . , ηT that would sat-
isfy the constraint of Cost(P, n,m, ηn−1). Then, we can break down the com-
putation of Cost as Equation (15), where 1x is equal to 1 if x is true, and 0
otherwise. The correctness of the reduction follows from the same argument
that was presented in Lemma 1.

Cost(P, n,m, ηn−1) = (15)
∞ if

∨
λ

1
2

∑n
k=n−mλ D(k, λ) > P,

minηn Cost(P, n+ 1, 〈min{δ(ηn, λ),mλ + 1}〉λ∈Λ, ηn)

+ 1{ηn−1 6=ηn}Cd + Cf · FP (ηn)

+ 1
2

1
T ·|Λ|

∑
λ′∈Λ

∑T
k′a=n−mλ′

1{n≤σ(η,k′a,λ′)}D(n, λ′) otherwise.

7 Evaluation

In this section, we evaluate our approach numerically using a case study of
detecting contamination attacks in water distribution systems. Ensuring the
supply of clean and safe drinking water is mandatory for any water infrastruc-
ture. This requires continuous monitoring of water quality parameters and
assessing the sensor measurements for any intrusive (or non-intrusive) con-
tamination.

Time-Dependent Thresholds for Anomaly Detection 17

7.1 System Model

We consider a water distribution system (WDS) and a malicious adversary
who attempts to penetrate the system through one of many entry points, such
as hydrant and connections, and contaminate the water with toxic chemicals
[13]. To model normal behavior, we use data collected by a utility in the
United States available at [6]. The data contains water quality measurements
at a resolution of ten minutes spanning six weeks (i.e., 6048 time steps). All
measurements are taken under normal conditions and include the following
water quality parameters: Total chlorine, electrical conductivity (EC), pH,
total organic carbon (TOC), and turbidity4. We divide the data into two
subsets, 67% for training and 33% for testing. The training subset is used
to construct an estimator used in the detector. The testing subset is used
to imitate real-time operation and to evaluate the detector by considering
contamination attacks.

Contamination Attack A contamination attack consists of adding harm-
ful contaminants in the water-distribution network to decrease the quality of
drinking water below safe levels. As a result of a contamination attack, there
are abrupt changes and spikes in the water quality parameters that are mea-
sured by sensors at various locations within the network. An optimal attack,
which results in maximum damage, is characterized by its magnitude (i.e.,
magnitude of abrupt changes in the water quality parameters) as well as its
starting time. To model the magnitude of a contamination attack, we use a
standard approach that is employed in the water networks literature to simu-
late anomalous events disrupting water quality data [16, 22, 14, 28].

The first step of this approach is the standardization of data to a common
scale since various water quality parameters are measured in different units.
The standardization of data is performed as follows: For each water quality
parameter i, the data collected from the water quality sensors is normalized
by subtracting the mean µi of the parameter value from each water quality
measurement xi(k) and dividing this difference by the standard deviation σi
of the parameter; that is, we compute zi(k) = xi(k)−µi

σi
. For our evaluation, we

estimated the mean µi and standard deviation σi of each parameter i based on
the six weeks of data collected under normal conditions (see Section 7.1). In
the standardized data, all quality parameters have zero mean and unit stan-
dard deviation. To simulate a contamination attack at a particular time k, we
multiply the normal water quality value at that time by a certain factor λ
and then superimpose it on the normal data; that is, the attacked value is
computed as z′i(k) = (λ+ 1) · zi(k). For instance, if the standardized pH value
is zpH(k) = 0.5 at time k, then an attack with factor λ = 3 results in at-
tacked pH value z′pH(k) = (3 + 1) · 0.5 = 2. Once we have superimposed the
anomalous event on the normal standardized data, we de-normalize the data

4 Studies on the response of water quality sensors to chemical and biological loads have
shown that free chlorine, total organic carbon (TOC), electrical conductivity, and chloride
are among the most reactive parameters to water contaminants [14].

18 Amin Ghafouri et al.

1
2
:0

0
A
M

1
:0

0
A
M

2
:0

0
A
M

3
:0

0
A
M

4
:0

0
A
M

5
:0

0
A
M

6
:0

0
A
M

7
:0

0
A
M

8
:0

0
A
M

9
:0

0
A
M

1
0
:0

0
A
M

1
1
:0

0
A
M

1
2
:0

0
P
M

1
:0

0
P
M

2
:0

0
P
M

3
:0

0
P
M

4
:0

0
P
M

5
:0

0
P
M

6
:0

0
P
M

7
:0

0
P
M

8
:0

0
P
M

9
:0

0
P
M

1
0
:0

0
P
M

1
1
:0

0
P
M

1
2
:0

0
A
M

1

2

3

4

5

6

7

Time

P
er
ce
n
t
U
se

Fig. 2: Hourly water demand during a day [21].

by transforming it to the original units. We de-normalize the data by mul-
tiplying z′i(k) with standard deviation σi and adding mean µi to the result.
We refer readers to [22] for a detailed account of this approach for simulating
contamination events. Finally, in our evaluation, we consider six attack mag-
nitudes λ ∈ {1.5, 2, 2.5, 3, 4, 5}, and we consider best-response attacks that
select magnitude and starting time to maximize damage. Note that for given
thresholds, finding a best-response attack is computationally easy since an
exhaustive search needs to consider only T · Λ possible attacks.

Damage Function Figure 2 presents a typical water demand during a day
[21]. Since demand is time-dependent, expected damage caused by contami-
nation attacks, e.g., exposed population and volume of contaminated water,
is also time-dependent. That is, expected disruptions at a high-demand time
would cause higher damage than disruptions at a low-demand time. To model
the damage function, we consider the finite horizon to be a single day divided
into 10 min intervals (i.e., T = {1, ..., 144}). Then, for each timestep k ∈ T ,
we define the expected damage as D(k, λ) = (λ− 1) · d(k), where d(k) ∈ [0, 1]
is the demand ratio at time k and λ− 1 is the added attack magnitude.

Time-Dependent Thresholds for Anomaly Detection 19

Table 2: Model Assessment on Test Data

Chl. EC pH Temp. TOC Turb.
R2 0.939 0.980 0.967 0.344 0.920 0.538
MSE 0.003 14.639 0.001 10.3 0.002 0.000

7.2 Detector Model

The detector comprises two parts: 1) An estimator, which estimates a relation
between the water quality parameters during normal operation, and 2) a detec-
tion algorithm, which identifies whether an attack has occurred in the system.

Estimator We construct an estimator using an artificial neural network
(ANN) for each water quality parameter [28]. For each parameter, the in-
puts to its corresponding ANN are the parameter’s lagged measurements and
current measurements of all the other quality parameters. Formally, we have
ẑi(k) = f(zi(k − 1), z−i(k)), where ẑi(k) and zi(k) are, respectively, the es-
timated and measured values of water parameter i at timestep k, and f is a
function attained by the artificial neural network. The estimated values are
used to calculate the residuals, which are defined as the difference between the
measured and estimated values, denoted by ri(k) = zi(k)− ẑi(k), where ri(k)
is the residual signal for parameter i at timestep k.

Six neural networks, one for each water quality parameter, are trained.
A feed-forward back-propagation network with twenty neurons in the hidden
layer is used, and the network is trained using scikit-learn 0.18.1 library with
tan-sigmoid transfer function in the hidden layer and linear transfer function in
the output layer [27]. Table 2 shows the estimator’s performance using mean
squared error (MSE) and coefficient of determination (R2) as performance
criteria.

Detection Algorithm We use the CUSUM method as the detection algo-
rithm. CUSUM is a sequential algorithm frequently used for change detection
[23, 33]. The CUSUM statistic S(k) is described by S(k) = (S(k− 1) + r(k)−
b)+, where S(0) = 0, (a)+ = a if a ≥ 0 and zero otherwise, r(k) is a resid-
ual difference between expected and measured sensor values generated by an
estimator such that under normal behavior it has expected value of zero, and
b ∈ R+ is a small constant. Assigning ηk as the detection threshold selected
based on a desired false-alarm probability, the decision rule is defined as

d(S(k)) =

{
Attack if S(k) > ηk
Normal otherwise.

As discussed in Section 3, for each attack type (characterized by attack magni-
tude in this case), there exists a trade-off between the false-positive probability
and detection delay, which depends on the detection threshold. To obtain the
trade-off curve for an attack magnitude, we simulate attacks for various thresh-
old values with randomly chosen start times, and then measure the detection

20 Amin Ghafouri et al.

1 3 5 7 9 11 13 15 17 19

Detection Delay [δ(η,λ)]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F
al
se
-P
os
it
iv
e
P
ro
b
ab

il
it
y
[F

P
(η
)]

1.5
2
2.5
3
4
5

Magnitude [λ]

Fig. 3: Trade-off between detection delay and false-positive probability (total
chlorine).

delay values. For each threshold value, we perform 1,000 simulations and com-
pute the average detection delay. Next, using the same threshold, we simulate
the system under normal operation and measure the false-positive probability.
By varying the threshold and repeating these steps for all attack magnitudes,
we derive the attainable detection delays and false alarm probabilities.

We consider six attack magnitudes λ ∈ {1.5, 2, 2.5, 3, 4, 5}. We select b =
0.01 for the CUSUM detector in order to allow small displacements to be
detected quickly. Our results for a water quality parameter (total chlorine) are
demonstrated in the trade-off curve shown in Figure 3, which defines the false-
positive probability that can be obtained as a function of the corresponding
detection delay. The results confirm that the detection delay is proportional
to the threshold, and the false positive rate is inversely proportional to the
threshold. Further, it can be observed that as the absolute value of attack
magnitude increases, the detection delay decreases.

7.3 Optimal Thresholds

The objective is to select the strategy that minimizes the defender’s loss while
assuming that the attacker responds using a best-response attack, which is
characterized by its magnitude and start time. We let Cf = 10 and Cd = 1,
and use Algorithm 2 to compute the optimal time-dependent threshold. Fig-
ure 4 shows the obtained thresholds for each timestep. The resulting opti-

Time-Dependent Thresholds for Anomaly Detection 21

0 20 40 60 80 100 120 140

Timestep [k]

0

5

10

15

20

25

30

35

E
x
p
ec
te
d
D
am

a
ge

[D
(k
,
λ
)]

ka = 116 σ = 120

η = 16.4

η = 3.9

η = 0.8

η = 0.4

η = 0.8

η = 2.2

η = 1.5

η = 0.6

η = 1.5

η = 16.4

2
3
4
5
Attack

Fig. 4: Best-response attack against the optimal time-dependent threshold
has the magnitude λ = 5 and starts at ka = 116.

mal loss is L∗ = 187.72. Figure 4 shows the corresponding best-response
attack. The best-response attack has the magnitude λ = 5 and starts at
ka = 116. The attack is detected 4 timesteps later and attains the payoff
P ∗ =

∑120
k=116D(k, λ) = 120.00. The figure also demonstrates that the de-

tection threshold decreases as the system experiences high-demand, so that
the attacks can be detected early enough. On the other hand, as the system
experiences low-demand, the threshold increases to have fewer false alarms.

We also compute the optimal fixed threshold in order to compare with the
time-dependent thresholds. In this case, we obtain the optimal fixed threshold
η∗ = 0.90 and the optimal loss L∗ = 222.45. Figure 5 shows the best-response
attack corresponding to this threshold. The best-response attack has the mag-
nitude λ = 4 and starts at k∗a = 44. The attack is detected 6 timesteps later

and attains the payoff P ∗ =
∑44+6
k=44D(k, λ) = 144.00. Note that if the attacker

starts the attack at any other timestep, the damage caused before detection is
less than P ∗. We observe that the optimal loss obtained by the time-dependent
threshold is significantly smaller than the loss obtained by the fixed threshold.

Simulation Results We test the optimal thresholds by performing simula-
tions that imitate realistic operation. Using our dataset, we run 42 simulations,
with each of them representing a single day. We consider scenarios where the
defender selects the optimal thresholds for the detector, and then the adversary
attacks the system using a best-response attack. In each simulation, we record

22 Amin Ghafouri et al.

0 12 24 36 48 60 72 84 96 108 120 132 144

Timestep [k]

0

5

10

15

20

25

30

35

E
x
p
ec
te
d
D
am

a
ge

[D
(k
,
λ
)]

η = 0.9

ka = 44 σ = 50

2
3
4
5
Attack

Fig. 5: Best-response attack against the optimal fixed threshold has the
magnitude λ = 4 and starts at ka = 44.

Table 3: Simulation Results

Loss Payoff Delay
Number
of FPs

Mean 195.83 110.29 3.71 5.60
STD 4.66 8.87 0.31 0.25
MSE 87.04 127.99 0.12 0.43

the payoff attained by the attacker and the loss incurred by the defender. Ta-
ble 3 summarizes the simulation results. The results show that the defender’s
actual loss is very close to the optimal loss computed by the algorithm. In
particular, the relative error between the optimal loss and the mean loss is
4.26% for the time-dependent threshold and 2.45% for the fixed threshold.

Sensitivity Analysis Figure 6a shows the optimal loss as a function of cost
of threshold change Cd, when keeping cost of false positive fixed at Cf = 10.
For small values of Cd, the optimal losses obtained by the time-dependent
threshold strategy are significantly lower than the loss obtained by the fixed
threshold strategy. As the cost of threshold change Cd increases, the solutions
of time-dependent and fixed threshold problems become more similar. The
time-dependent threshold solution converges to a fixed threshold when Cd ≥
13.50. Figure 6b shows the optimal loss as a function of cost of false positives
for fixed and time-dependent threshold strategies when the cost of threshold
change is fixed at Cd = 1. It can be seen that in both cases, the optimal loss

Time-Dependent Thresholds for Anomaly Detection 23

0 2 4 6 8 10 12 14

Cost of Threshold Change [Cd]

160

170

180

190

200

210

220

D
ef
en
d
er
’s

L
os
s
[L

∗
]

Fixed Threshold

Time-Dependent Threshold

(a)

0 2 4 6 8 10 12

Cost of False Alarms [Cf]

50

100

150

200

D
ef
en
d
er
’s

L
os
s
[L

∗
]

Fixed Threshold

Time-Dependent Threshold

(b)

0 20 40 60 80 100 120 140

10
-1

10
0

10
1

10
2

10
3

10
4

(c)

Fig. 6: (a) The defender’s loss as a function of cost of threshold change. (b)
The defender’s loss as a function of cost of false alarms. (c) Running time of

Algorithm 2 compared to exhaustive search.

increases as the cost of false alarms increases. However, in the case of time-
dependent threshold, the change in loss is relatively smaller than the fixed
threshold.

Running Time We now compare the running time of Algorithm 2 with
an algorithm that finds the optimal thresholds using an exhaustive search.
Figure 6c plots the running times as a function of T (i.e., time horizon). It
can be seen that the exhaustive search algorithm has an exponential running
time with respect to T , and its running time becomes significantly high even
for small values of T . This is expected as the exhaustive search algorithm has
the running time O(∆T+|Λ|). In contrast, Algorithm 2 performs considerably
better, and the running time is reasonable for all values of T .

24 Amin Ghafouri et al.

7.4 Random Faults

Figure 7 shows a comparison between thresholds chosen based on only attacks
and combination of either faults or attacks. For each set of thresholds, we
compute two different losses, loss due to only attacks (i.e., Equation (2)) and
loss due to combination of either faults or attacks (i.e., Equation (11)). In the
figure, we denote the thresholds obtained by considering faults and attacks
as η∗C and the thresholds obtained by considering only attacks as η∗A. We
also let L∗C(η) be the combination, i.e., (11), when thresholds η are selected.
Similarly, we let L∗A(η) be the loss considering only attacks, i.e., Equation(2),
when thresholds η are selected.

We observe that L∗C(η∗C) outperforms L∗C(η∗A) and LA(η∗A) outperforms
LA(η∗C). This was clearly expected as η∗C are the optimal thresholds with
respect to L∗C and η∗A are the optimal thresholds with respect to L∗A. However,
we notice that the difference between L∗C(η∗A) and L∗C(η∗C) is extremely small,
whereas the difference between L∗A(η∗A) and L∗A(η∗C) is very large. In other
words, the thresholds η∗C perform well only when combination of faults and
attacks is considered and perform very poorly when only attacks is considered,
whereas the thresholds η∗A perform very well in both cases. This highlights
the difference between minimizing losses due to attacks and due to random
faults. In the former case, the defender must focus on the timesteps in which
the system is most vulnerable (i.e., highest expected damage), and it can be
less vigilant at other times since the attacker will not choose to attack when
the system is less vulnerable. Therefore, thresholds η∗A may be “negligent” at
times when the expected damage D is low; however, even if a random fault
occurs at such time, it will cause minor damage. When minimizing losses due to
random faults, the defender must be vigilant at all times, which means that it
cannot afford to focus on the timesteps in which the system is most vulnerable.
Therefore, if thresholds minimize losses due to random faults, an attack can
cause catastrophic losses by targeting one of these vulnerable timesteps. Since
thresholds η∗C consider both attacks and random faults, they do not perform
catastrophically against attacks, but they do perform poorly in comparison
with the other cases.

8 Conclusion

In this paper, we studied the problem of finding optimal detection thresholds
for anomaly-based detectors implemented in dynamical systems in the face of
strategic attacks. We formulated the problem as an attacker-defender secu-
rity game that determined thresholds for the detector to achieve an optimal
trade-off between the detection delay and the false-positive probabilities. To
this end, we presented a dynamic-programming based algorithm that com-
putes optimal time-dependent thresholds. We analyzed the performance of
the time-dependent threshold strategy, showing that the running time of our
algorithm is polynomial in the time dimension. As a special case, we also

Time-Dependent Thresholds for Anomaly Detection 25

0 2 4 6 8 10 12

0

50

100

150

200

250

Fig. 7: The defender’s loss as a function of cost of false alarms for
time-dependent thresholds. η∗A is the optimal threshold for attacks and η∗C is

the optimal threshold for combination of faults and attacks.

studied and provided a polynomial-time algorithm for the problem of comput-
ing optimal fixed thresholds, which do not change with time. In addition, we
studied the problem of finding optimal thresholds in the presence of random
faults and attacks, and presented an efficient algorithm that computes the
optimal thresholds. Finally, we evaluated our results using a case study of de-
tecting contamination attacks in a water distribution system. We showed that
the optimal time-dependent thresholds found using our algorithm significantly
outperform fixed thresholds.

References

1. Alippi C, Roveri M (2006) An adaptive CUSUM-based test for signal
change detection. In: Proceedings of the 2006 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pp 5752–5755

2. Alpcan T, Basar T (2003) A game theoretic approach to decision and
analysis in network intrusion detection. In: Proceedings of the 42nd IEEE
Conference on Decision and Control (CDC), IEEE, vol 3, pp 2595–2600

3. Alpcan T, Başar T (2004) A game theoretic analysis of intrusion detection
in access control systems. In: Proceedings of the 43rd IEEE Conference
on Decision and Control (CDC), IEEE, vol 2, pp 1568–1573

4. Arad J, et al (2013) A dynamic thresholds scheme for contaminant event
detection in water distribution systems. Water Research

26 Amin Ghafouri et al.

5. Basseville M, Nikiforov IV (1993) Detection of abrupt changes: Theory
and application, vol 104. Prentice Hall, Englewood Cliffs

6. CANARY (2010) Canary: a water quality event detection tool. http://
waterdata.usgs.gov/nwis/, [Online; accessed October 20, 2016]

7. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: A survey.
ACM Computing Surveys 41(3):15

8. Deng Y, Jiang W, Sadiq R (2011) Modeling contaminant intrusion in
water distribution networks: A new similarity-based dst method. Expert
Systems with Applications 38(1):571–578

9. Di Nardo A, et al (2013) Water network protection from intentional con-
tamination by sectorization. Water Resources Management 27(6):1837–
1850

10. Estiri M, Khademzadeh A (2010) A theoretical signaling game model for
intrusion detection in wireless sensor networks. In: Proceedings of the 14th
International Telecommunications Network Strategy and Planning Sym-
posium (NETWORKS), IEEE, pp 1–6

11. Ghafouri A, Abbas W, Laszka A, Vorobeychik Y, Koutsoukos X (2016)
Optimal thresholds for anomaly-based intrusion detection in dynamical
environments. In: Proceedings of the 7th Conference on Decision and
Game Theory for Security (GameSec), pp 415–434

12. Gibbons RD (1999) Use of combined Shewhart-CUSUM control charts for
ground water monitoring applications. Ground Water 37(5):682–691

13. Gleick PH (2006) Water and terrorism. Water Policy 8(6):481–503
14. Hall J, et al (2007) On-line water quality parameters as indicators of dis-

tribution system contamination. Journal – American Water Works Asso-
ciation 99(1):66–77

15. Hart D, et al (2007) CANARY: A water quality event detection algorithm
development tool. In: Proceedings of the World Environmental and Water
Resources Congress

16. Klise KA, McKenna SA (2006) Water quality change detection: multi-
variate algorithms. In: Procedings of the International Society for Optical
Engineering, Defense and Security Symposium, International Society for
Optics and Photonics

17. Korzhyk D, Yin Z, Kiekintveld C, Conitzer V, Tambe M (2011) Stackel-
berg vs. Nash in security games: An extended investigation of interchange-
ability, equivalence, and uniqueness. Journal of Artificial Intelligence Re-
search 41:297–327

18. Laszka A, Johnson B, Grossklags J (2013) Mitigating covert compro-
mises: A game-theoretic model of targeted and non-targeted covert at-
tacks. In: Proceedings of the 9th Conference on Web and Internet Eco-
nomics (WINE), pp 319–332

19. Luo Y, Li Z, Wang Z (2009) Adaptive CUSUM control chart with variable
sampling intervals. Computational Statistics & Data Analysis

20. Mac Nally R, Hart B (1997) Use of CUSUM methods for water-quality
monitoring in storages. Environmental Science & Technology 31(7):2114–
2119

Time-Dependent Thresholds for Anomaly Detection 27

21. Mayer PW, et al (1999) Residential end uses of water
22. McKenna SA, Wilson M, Klise KA (2008) Detecting changes in water

quality data. Journal – American Water Works Association 100(1):74
23. Page E (1954) Continuous inspection schemes. Biometrika 41(1/2):100–

115
24. Paruchuri P, Pearce JP, Marecki J, Tambe M, Ordonez F, Kraus S

(2008) Playing games for security: An efficient exact algorithm for solving
bayesian stackelberg games. In: International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), International Foundation for
Autonomous Agents and Multiagent Systems, pp 895–902

25. Patcha A, Park JM (2004) A game theoretic approach to modeling in-
trusion detection in mobile ad hoc networks. In: Proceedings of the 5th
Annual IEEE SMC Information Assurance Workshop, IEEE, pp 280–284

26. Pawlick J, Farhang S, Zhu Q (2015) Flip the cloud: Cyber-physical signal-
ing games in the presence of advanced persistent threats. In: Proceedings
of the 6th International Conference on Decision and Game Theory for
Security (GameSec), Springer, pp 289–308

27. Pedregosa F, et al (2011) Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12:2825–2830

28. Perelman L, et al (2012) Event detection in water distribution systems
from multivariate water quality time series. Environmental Science &
Technology 46

29. Shen S, Li Y, Xu H, Cao Q (2011) Signaling game based strategy of
intrusion detection in wireless sensor networks. Computers & Mathematics
with Applications 62(6):2404–2416

30. Tambe M (ed) (2011) Security and Game Theory: Algorithms, Deployed
Systems, Lessons Learned. Cambridge University Press

31. Urbina DI, et al (2016) Limiting the impact of stealthy attacks on indus-
trial control systems. In: Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, ACM, pp 1092–1105

32. Van Dijk M, et al (2013) Flipit: The game of stealthy takeover. Journal of
Cryptology 26(4):655–713

33. Verdier G, et al (2008) Adaptive threshold computation for CUSUM-type
procedures in change detection and isolation problems. Computational
Statistics & Data Analysis 52(9):4161–4174

A Supplementary Material

A.1 Proof of Theorem 1

Proof Given an instance of the Stackelberg game, let η be optimal thresholds that do not
necessarily satisfy the constraint of the lemma. Then, construct thresholds η∗ that satisfy
the constraint by replacing each ηk with η∗k = maxη : δ(η,λ)≤ δ(ηk,λ) η. For any attack (ka, λ),
the detection delay and hence the expected damage are the same for η and η∗. Consequently,
the damage caused by best-response attacks must also be the same for η and η∗. Further,
the defender’s costs for η are greater than or equal to those for η∗ since 1) for every k,

28 Amin Ghafouri et al.

ηk ≤ η∗k and FP is decreasing, and 2) the number of threshold changes in η is greater than
or equal to that in η∗. Therefore, η∗ is optimal, which concludes our proof.

A.2 Proof of Lemma 1

Proof We assume that we are given a damage bound P , and we have to find thresholds that
minimize the total cost of false positives and threshold changes, subject to the constraint
that any attack against these thresholds will result in at most P damage. In order to solve
this problem, we use a dynamic-programming algorithm. We will first discuss the algorithm
without a cost for changing thresholds, and then show how to extend it to consider costly
threshold changes.

We let ∆|Λ| denote the Cartesian power ∆×∆× . . .×∆︸ ︷︷ ︸
|Λ|

of the set ∆. For any two

variables n ∈ {1, . . . , T} and m ∈ ∆|Λ| such that ∀λ ∈ Λ : 0 ≤ mλ < n, we define
Cost(n,m) to be the minimum cost of false positives from n to T subject to the damage
bound P , given that attacks of type λ can start at ka ∈ {n−mλ, . . . , T} and they are not
detected prior to n. Formally, we can define Cost(n,m) as

min
(ηn,...,ηT)

T∑
k=n

Cf · FP (ηk) (16)

subject to

∀λ ∈ Λ,ka ∈ {n−mλ, . . . , T} : (17)

min
i : i≥n∧ δ(ηi,λ)≤i−ka

i∑
k=ka

D(k, λ) ≤ P.

If there are no thresholds that satisfy the damage bound P under these conditions, we let
Cost(n,m) be ∞.5

We can recursively compute Cost(n,m) as follows. Firstly, for any n and m, if there
exists an attack type λ such that

∑n
k=n−mλ D(k, λ) > P , then an attack of type λ starting

at time n−mλ will cause greater than P damage, regardless of the thresholds ηn, . . . , ηT .
Consequently, in this case, we can immediately set Cost(n,m) to ∞.

Otherwise, we iterate over all possible threshold values η ∈ E, and choose the one that
minimizes the cost Cost(n,m). For any threshold η, we can compute the resulting cost
as follows. If δ(η, λ) > mλ, then no attack of type λ would be detected at time n, so we
would have to increase mλ for the next timestep n+ 1. On the other hand, if δ(η, λ) ≤ mλ,
then attacks starting at time n − δ(η, λ) or earlier would be detected at time n, so we
would have to decrease mλ to δ(η, λ) for the next timestep n + 1. Hence, if we selected
threshold η for timestep n, then we would have to update m to 〈min{δ(η, λ),mλ + 1}〉λ∈Λ
for the next timestep. Therefore, if we selected threshold η for timestep n, then the attained
cost would be the sum of the cost Cf · FP (η) for timestep n and the best possible cost
Cost(n + 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ) for the remaining timesteps. By combining this
formula with the rule for assigning infinite cost, we can compute Cost(n,m) as

Cost(n,m) =

∞ if

∨
λ∈Λ

∑n
k=n−mλ D(k, λ) > P,

minη Cost(n+ 1, 〈min{δ(η, λ),

mλ + 1}〉λ∈Λ) + Cf · FP (η)
otherwise.

(18)

Note that in the equation above, Cost(n,m) does not depend on η1, . . . , ηn−1, it de-
pends only on the feasible thresholds for the subsequent timesteps. Therefore, starting from

5 Note that in practice, ∞ can be represented by a sufficiently high natural number.

Time-Dependent Thresholds for Anomaly Detection 29

the last timestep T and iterating backwards, we are able to compute Cost(n,m) for all
timesteps n and all values m. Finally, for n = T and any m, computing Cost(T,m) is
straightforward: if the damage from m does not exceed the threshold P for any attack type
λ, then Cost(T,m) = minη∈E Cf · FP (η); otherwise, Cost(T,m) =∞.

Having found Cost(n,m) for all n and m, by definition, Cost(1, 〈0, . . . , 0〉) is the mini-
mum cost of false positives subject to the damage bound P . The minimizing threshold values
can be recovered by iterating forward from n = 1 to T and again using Equation (18). That
is, for every n, we select the threshold value η∗n that attains the minimum cost Cost(n,m),
where m can easily be computed from the preceding threshold values η∗1 , . . . , η

∗
n−1.6

Costly Threshold Changes. Now, we show how to extend the computation of
Cost to consider the cost Cd of changing the threshold. Let Cost(n,m, ηprev) be the min-
imum cost for timesteps starting from n subject to the same constraints as before but
also given that the threshold value in timestep n − 1 (i.e., the previous timestep) is ηprev.
Then, Cost(n,m, ηprev) can be computed similarly to Cost(n,m): for any n < T , iter-
ate over all possible threshold values η, and choose the one that results in the lowest cost
Cost(n,m, ηprev). If ηprev = η or if n = 1, then the cost is computed the same way as in
the previous case (i.e., similar to Equation (18)). Otherwise, the cost also has to include the
cost Cd of changing the threshold. Consequently, we first define

S(n,m,ηprev, η) ={
Cost(n+ 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ) + Cf · FP (η) if η ∈ {ηprev, 1},
Cost(n+ 1, 〈min{δ(η, λ),mλ + 1}〉λ∈Λ) + Cf · FP (η) + Cd otherwise.

(19)

Then, similar to Equation (18), we can express the optimal cost as

Cost(n,m, ηprev) =

{
∞ if

∨
λ∈Λ

∑n
k=n−mλ D(k, λ) > P,

minη S(n,m, ηprev, η) otherwise.

Note that for n = 1, we do not add the cost Cd of changing the threshold. Similarly to
the previous case, Cost(1, 0, arbitrary) is the minimum cost subject to the damage bound P ,
and the minimizing thresholds can be recovered by iterating forward.

A.3 Proof of Theorem 2

Proof For any damage bound P , using the algorithm MinimumCostThresholds (Algo-
rithm 1), we can find thresholds that minimize the total cost of false positives and threshold
changes, which we will denote by TC(P), subject to the constraint that an attack can cause
at most P damage. Since the defender’s loss is the sum of its total cost and the damage
resulting from a best-response attack, we can find optimal thresholds by solving

min
P

TC(P) + P (20)

and computing the optimal thresholds η∗ for the minimizing P ∗ using our dynamic-program-
ming algorithm.

To show that this formulation does indeed solve the problem of finding optimal thresh-
olds, we use indirect proof. For the sake of contradiction, suppose that there exist thresh-
olds η′ for which the defender’s loss L′ is lower than the loss L∗ for the solution η∗ of
the above formulation. Let P ′ be the damage resulting from the attacker’s best-response

6 Note that in Algorithm 1, we store the minimizing values η∗(n,m) for every n and m
when iterating backwards, thereby decreasing running time and simplifying the presentation
of our algorithm.

30 Amin Ghafouri et al.

against η′, and let TC′ be the defender’s total cost for η′. Since the best-response at-
tack against η′ achieves at most P ′ damage, we have from the definition of TC(P) that
TC′ ≥ TC(P ′). It also follows from the definition of TC(P) that L∗ ≤ TC(P ∗) + P ∗.
Combining the above with our supposition L∗ > L′, we get

TC(P ∗) + P ∗ ≥ L∗ > L′ = TC′ + P ′ ≥ TC(P ′) + P ′.

However, this is a contradiction since P ∗ minimizes TC(P) + P by definition. Therefore,
thresholds η∗ must be optimal.

It remains to show that Algorithm 2 finds an optimal damage bound P ∗. To this end,
we show that P ∗ can be found using an exhaustive search over a set, whose cardinality is
polynomial in the size of the problem instance. Consider the set of damage values resulting
from all possible attack scenarios ka ∈ T , δ ∈ ∆, λ ∈ Λ, that is, the set

ka+δ∑
k=ka

D(λ, k)

∣∣∣∣∣∣∃ ka ∈ {1, . . . , T}, δ ∈ ∆, λ ∈ Λ
 . (21)

Let the elements of this set be denoted by P1, P2, . . . in increasing order. It is easy to see
that for any i, the set of thresholds that satisfy the damage constraint is the same for
every damage value P ∈ [Pi, Pi+1). Hence, for any i, the cost TC(P) is the same for every
P ∈ [Pi, Pi+1). Therefore, the optimal P ∗ must be a damage value Pi from the above set,
which we can find by simply iterating over the set.

A.4 Proof of Proposition 1

Proof In the dynamic-programming algorithm (Algorithm 1), we first compute Cost(n,m,
δn−1) for every n ∈ {1, . . . , T}, m ∈ ∆|Λ|, and ηprev ∈ E, and each computation takes
O(|E| · |Λ|) time. Then, we recover the optimal detection delay for all timesteps {1, . . . , T},
and the computation for each timestep takes a constant time. Consequently, the running
time of the dynamic-programming algorithm is O(T · |∆||Λ|+1 · |Λ| · |E|).

In the exhaustive search, we first enumerate all possible damage values by iterating
over all possible attacks (ka, δ, λ), where ka ∈ {1, . . . , T}, δ ∈ ∆, and λ ∈ Λ. Then, for
each possible damage value, we execute the dynamic-programming algorithm, which takes
O(T · |∆||Λ|+1 · |Λ| · |E|) time. Consequently, the running time of Algorithm 2 is O(T 2 ·
|∆||Λ|+2 · |Λ|2 · |E|).

A.5 Algorithm 3 and Proof of Proposition 2

Proof The obtained threshold is optimal since the algorithm evaluates all possible solutions
through exhaustive search. Given a tuple (η, ka, λ), when computing the attacker’s payoff
P(η, ka, λ), we use the payoff computed in previous iteration, which takes constant time. We
repeat these steps for each attack type λ ∈ Λ. Therefore, the running time of the algorithm
is O(T · |E| · |Λ|).

Time-Dependent Thresholds for Anomaly Detection 31

Algorithm 3 Optimal Fixed Threshold

Input: D(k, λ), T , Cf
Initialize: L∗ ←∞

1: for all η ∈ E do
2: P ′ ← 0
3: for all λ ∈ Λ do
4: for all ka ∈ {1, . . . , T} do
5: P (η, ka, λ)←

∑ka+δ(η,λ)
ka

D(k, λ)

6: if P(η, ka, λ) > P ′ then
7: P ′ ← P(η, ka, λ)
8: L′ ← P ′ + Cf · FP (η) · T
9: if L′ < L∗ then

10: L∗ ← L′

11: η∗ ← η

