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Abstract—While cloud computing is the current standard for
outsourcing computation, it can be prohibitively expensive
for cities and infrastructure operators to deploy services. At
the same time, there are underutilized computing resources
within cities and local edge-computing deployments. Using
these slack resources may enable significantly lower pricing
than comparable cloud computing; such resources would incur
minimal marginal expenditure since their deployment and
operation are mostly sunk costs. However, there are challenges
associated with using these resources. First, they are not
effectively aggregated or provisioned. Second, there is a lack of
trust between customers and suppliers of computing resources,
given that they are distinct stakeholders and behave according
to their own interests. Third, delays in processing inputs may
diminish the value of the applications. To resolve these chal-
lenges, we introduce an architecture combining a distributed
trusted computing mechanism, such as a blockchain, with
an efficient messaging system like Apache Pulsar. Using this
architecture, we design a decentralized computation market
where customers and suppliers make offers to deploy and
host applications. The proposed architecture can be realized
using any trusted computing mechanism that supports smart
contracts, and any messaging framework with the necessary
features. This combination ensures that the market is robust
without incurring the input processing delays that limit other
blockchain based solutions. We evaluate the market protocol
using game-theoretic analysis to show that deviation from the
protocol is discouraged. Finally, we assess the performance
of a prototype implementation based on experiments with a
streaming computer-vision application.

1. Introduction

Edge computing is critical to balance the computing
workloads necessitated by the growing integration of in-
ternet of things and smart city applications [1, 2, 3, 4].
However, the deployment and maintenance of edge com-
puting infrastructure can be costly [5, 6]. Therefore, instead
of relying only on new infrastructure, we consider the
opportunity provided by the available slack computing re-
sources in communities, owned by various stakeholders such
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as businesses, universities, and internet service providers
(ISPs). By “slack” computing resources, we mean comput-
ing resources that remain after their owners’ requirements
are met. It is estimated that there are hundreds of exaFLOPs
of slack compute capacity available [7, 8]. The advantage
of using slack resources is that the expenditure for space,
hardware, and operation is already paid for in supporting
the devices’ primary applications. Prior efforts to access
these resources, such as the Berkeley Open Infrastructure
for Network Computing (BOINC) [9], rely on participants
“volunteering” slack resources. However, participation in
such programs is limited. We hypothesize that a market that
enables resource providers to sell slack computing capability
to customers who want to deploy an application is required
to incentivize participation. In our prior work [10] we began
work on such a market, however the application support was
limited to batch processing with static input data. In this
work the goal is to also support applications with dynamic
inputs, which requires a distinct approach and introduces
additional challenges.

First, the resources are not effectively aggregated or pro-
visioned. Aggregation requires participation, and provision-
ing is difficult because slack capacity is transient and subject
to the demands of the primary application. Therefore, it is
likely that agents who provide slack compute will not be
able to host a service for its entire life cycle. Second, it
is imperative to establish trust between the customers and
suppliers since they may behave selfishly. For example, the
resource providers could claim that they executed a job with-
out actually doing so. Customers, on the other hand, could
provide cleverly crafted jobs that induce failures in resource
providers to avoid payment, even for parts of the input that
were processed correctly. Therefore, some assurance about
the veracity of the results is imperative. The techniques we
used to accomplish this in the batch processing scenario are
not directly applicable to the online or stream processing
use case. Third, the value of the application outputs may
diminish with time. This means that the mechanisms used
to establish trust should not delay the output.

Existing approaches provide partial solutions to these
problems [11, 12, 13, 14]. For example, Mutable [13] and
Aurora [14] aggregate slack compute resources, but only
from trusted entities like ISPs. This constraint sidesteps the
problem of validating results but leaves the bulk of the slack
resources untapped. Teutsch and Reitwießner [12] allow
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mistrusted entities and rely on blockchain-based distributed
ledgers where there is no central trusted entity; instead, trust
is distributed among the participants to provide trusted com-
pute. Recognizing that blockchain-only systems are ineffi-
cient, slow, and have limited throughput, the protocol per-
forms the computation and verification on standard compute
nodes. However, Teutsch and Reitwießner utilize a costly
mediation mechanism that involves storing computation data
on the blockchain.

To address these issues, we develop a decentralized
market to incentivize participation. To handle the volatility
inherent in slack resources, Customers specify a minimum
service time. To address the potential for Suppliers to fail
accidentally, Customers can request that multiple Suppliers
host their service. Similar to our prior work[10] as well as
[11, 12], we choose to rely on blockchain primarily because
it does not require participants to trust a single centralized
entity. In addition, it is robust and has high availability.
Recognizing the limitations, we restrict the use of the
smart contract to recording allocation contracts, providing
a minimal verification service, and transferring funds. All
other functionality is enabled using a durable messaging
framework. These two mechanisms work in parallel and
only synchronize to record and sign the allocation contract
prior to deployment and during the final payout. As a result,
after applications have been deployed they do not incur
delays that would be present if blockchain transactions were
used to transmit inputs.

To retain trust despite the inclusion of the messaging
framework, we deter undesired actions available to the
participants by designing a protocol that is both incentive-
compatible and individually rational. This protocol estab-
lishes a game and includes in the smart contract a mech-
anism that verifies outputs generated by the participants
(who are treated as rational players) to ensure expected
outcomes. Then disputes, if they occur, are resolved by a
Mediator. We show using game-theoretic analysis that this
approach is sufficient to disincentivize deviation from the
protocol. This analysis is an integral part of the system
design since enforceable rewards and penalties are crucial
in a decentralized and trustless setting.

The outline of the paper is as follows. We first explain
the problem, then describe our approach, followed by the
analysis of the protocol. Finally, we describe our prototype
implementation and measure 1) the delay introduced by our
framework on the initial deployment, 2) the resource uti-
lization of platform components, and 3) the monetary costs
of the market operations associated with deploying services
(making offers, allocations, verification, mediation). We do
not include the latency or throughput of a deployed service
because it does not depend on the market but rather on the
resources available to the Supplier. The implementation is
available at [15].

2. Problem Formulation

2.1. Assumptions

We consider that the actors are selfish but non-malicious
entities, i.e., they may try to cheat; however, given options,
they will make choices that optimize their utility. In partic-
ular, we assume that each si, ci (a Supplier or Customer)
has a utility function U , and a set of actions Γ to choose
from. Since the actors are rational, agent i chooses action
χ∗ ∈ X such that γ∗ = argmaxγ∈Γ U . The utility function
takes the general form U =

∑
(benefits)−

∑
(costs). We

define these participants and some key attributes formally
below.
Definition 1 (Suppliers of Computation Resources): A Sup-
plier s is a rational agent that, for some limited duration, has
slack computing resources available. Specifically, it has Rs

MB of memory and Is CPU cycles (in millions) per second
available for a duration defined as ∆s = send−sstart, where
sstart and send denote the start and end clock times of the
availability, respectively. We assume that the Supplier knows
its primary workloads1 and can estimate Is, Rs, and ∆s. To
ensure profitability, the Supplier must require payment in
excess of its operating costs, specifically, the cost of the
electricity consumed to host a service, denoted by πsϵ.
Definition 2 (Customer and Application Service): A Cus-
tomer c is a rational agent that has an application service
(organized as a Docker image) to deploy using our platform.
The application has a data input rate of λ and requires Rc

MB of memory and Ic CPU instructions (in millions) to
process each input. Each deployment lasts for a specific
duration, known as the service lifetime, and is defined as
∆c = cend − cstart, where cstart and cend denote the start
and end clock times of the service, respectively. We assume
that for a specific service, Customers can estimate Ic, Rc,
λ, and ∆c. For every service output, the Customer receives
a benefit b and is willing to pay up to πxmax.

2.2. Requirements

Given a set of offers, the market must enable suppliers
and customers to benefit from participating in the market.
This implies that the market provides an allocation that
assigns a job to a supplier. Further, we need to ensure that
the participants trust the market. Unfortunately, the nature of
the utility function (Section 2.1) encourages the suppliers to
neglect processing service inputs since electricity costs πsϵ

can be saved by reducing processing. Therefore, we face the
challenge of identifying the action space of the participants
and designing a mechanism that makes undesired behavior
expensive for the participating actors.

1. In our definition, we do not include other resources such as disk space,
GPU cycles, and network bandwidth. While these are additional constraints
on the resource allocation algorithm, they do not fundamentally change the
problem under consideration.
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3. Our Approach

Before we introduce our market, we introduce additional
actors that participate in our market protocol and formally
describe offers through which the customers and suppliers
interact with the market.
Definition 3 (Supplier Market Offers): Both Customers and
Suppliers participate in the market by making offers. A
Supplier offer os ∈ Os is a tuple that includes: Asi, a unique
account identifier associated with the Supplier that posted
the offer; Is, the number of slack instructions (in millions)
per second available; Rs, the amount of RAM available;
sstart, when the resource is first available; send, when the
resource availability ends; πxmin, the minimum price the
Supplier is willing to be paid per million instructions; and
[M ], a list of trusted Mediators (we describe mediators
below).
Definition 4 (Customer Market Offers): A Customer offer
oc ∈ Oc is a similar tuple that includes: Aci, a unique
account identifier associated with the Customer that posted
the offer; Ic, CPU instructions (in millions) to process
each input; Rc, the amount of RAM required; cstart; cend
(defn 2); πxmax, the maximum price the Customer is willing
to pay per million instructions; name, the name of the
application service to be deployed; λ, data input rate of the
service; and [M ], the criteria used by the Allocator to select
a Mediator.
Definition 5 (Allocators): An Allocator is an agent that
aggregates participant offers, solves the resource matching
problem, and proposes an allocation. The Allocator need
not be trusted because all relevant parties must accept the
allocation before it becomes an allocation contract(see be-
low). The Allocator functionality could have been included
in a smart contract, but this would have increased the costs
of interacting with the platform. In particular, an allocation
is a tuple which consists of customer, the allocated Cus-
tomer; {suppliers}, a set of allocated Suppliers; astart, the
allocation start time; aend, the allocation end time; name,
the service name; and πx, the service price per million
instructions such that πxmin ≤ πx ≤ πxmax. For the service
price πx, any value between πxmin and πxmax is feasible,
and is determined by the Allocator according to its allocation
algorithm (e.g., double auction, fixed price, etc.).

Effectively, an allocation declares which offers were
matched, the start and end times, and the service price. This
is only possible if

Icλ ≤ Is and Rc ≤ Rs and πxmin ≤ πxmax (1)
[sstart, send] ∩ [cstart, cend] = [astart, aend] (2)

|aend − astart| > ∆min (3)

i.e., the Supplier has sufficient resources to process inputs at
the necessary rate, there exists a price that both Customer
and Supplier would accept, and the length of time where
the offers overlap exceeds the Customer’s minimum viable
service time ∆min.
Definition 6 (Minimum Viable Service Time): To offset
the setup costs πsetup of making and matching offers, a

Customer’s service must run for a minimum amount of time.
We call this the minimum viable service time and denote
it by ∆min. In addition to the start and end times of the
service, the Customer also includes a minimum service time
in the offer. While evaluating the offers, if the Allocator
detects that currenttime + ∆min ≥ cend, then the offer
becomes expired. Similarly if an allocation is created, it
expires when currenttime+∆min ≥ aend.

If an allocation is agreed to by all parties then it becomes
an allocation contract. The duration of the allocation is
defined as ∆ = aend−astart. The total value of an allocation
is πtotal = πsλ∆, where πs is the value of processing a
single service input: πs = Icπx. In our market, a number
of Allocator agents can participate and incorporate various
resource matching and constraint satisfaction algorithms to
come up with their version of feasible allocation. The Allo-
cator receives a payment πA for providing this service. This
cost contributes to the setup costs of consumers (πc setup)
and suppliers (πs setup) .
Definition 7 (Mediators): Mediators are actors that are
trusted to perform mediation in the case of a dispute on
a particular allocation. The process involves recomputing
the contended output and determining fault. Customers and
Suppliers specify in their offers the criteria for selecting
which Mediators they are willing to trust. An allocation is
only feasible if there a trusted Mediator in common. If a
participant chooses to no longer trust a particular Mediator
then it no longer includes it in its offers. An example of a
trusted Mediator may include an AWS service whose code
has been formally verified.

3.1. Understanding Costs

In addition to monetary setup costs, there are costs
associated with the time delay between when an offer is sub-
mitted and when that offer is deployed. This delay depends
on Supplier availability, the time required to construct an
allocation, denoted by δalloc, and the time to set up the ser-
vice, denoted by δsetup. Service setup includes transferring
and starting the service. Assuming that the service inputs
are being generated continuously, the cost of this delay is
at least

πdelay = λ× πs × (δsetup + δalloc). (4)

The Customer must account for this delay when specifying
offer start time, specifically cstart = c∗start−(δalloc+δsetup)
where c∗start is the actual desired service start time. Finally,
if a Supplier hosting a service fails, the cost to the Customer
to recover from the failure is

πrecover = πc setup + πdelay. (5)

3.2. Middleware Components: Smart Contract and
Pulsar

In our market, there are two middleware components
that are critical to its operation. First, we use a smart
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contract (SC) and blockchain2 to enforce allocation contracts
by recording signed allocations, providing a verification
service, and providing registration to the market by ac-
cepting deposits and transferring payments upon successful
completion of the contract. Second, we rely on a distributed
messaging framework like Apache Pulsar [16], which uses
a distributed write-ahead log, to record messages and
transfer data between market participants. The fundamental
properties we need from the messaging framework are fast,
efficient, durable storage of messages that can be routed
and are eventually delivered. Note that both blockchain and
Pulsar record aspects of the market state, however, payments
and contracts are only finalized through smart contracts in
blockchains that provide trust assurances.

4. Market Protocol

We describe the market protocol (Fig. 1a) using numbers
in the text (e.g., 1 ), which denote the events that take place.
We also refer to the state machine shown in Fig. 1b to
describe the protocol, which depicts how the SC tracks the
state of each allocation. In our notation, text in teletype
font represents SC functions and text that is italicized are
state machine states.
1) Making Offers: The protocol begins with the Customers

and Suppliers constructing their offers and sending them
on the offers channel 1 .

2) Creating Allocation: The Allocator reads the offers
channel 2 and executes a matching algorithm to con-
struct an allocation, if one exists. It then sends the
allocation on the allocations channel.

3) Accepting Allocation: The Customers and Suppliers
read the allocations channel and send a message on
the accept channel 3 to specify if they accept the
allocation or not. The Allocator reads the accept chan-
nel and, if all the allocated participants accept, sends
the allocation to the SC and requests that it calls the
createAllocation function 4 . The SC checks the
feasibility and correctness of the allocation, and the state
of the allocation is initiated to Allocated. As part of
submitting the allocation to the SC, the Allocator sends
additional requests (AddSupplier) to add the id of
each Supplier and the hash of its offer to the allocation
stored by the SC. These two function calls incur a cost
of allocation πca. When all Suppliers are added, the state
of the allocation transitions to Signing.
Once the allocation is in the Signing state on the SC,
the participants check the allocation to make sure that it
matches the specific allocation that the Allocator sent
on the allocations channel; if it does, they sign the
allocation on the SC by submitting their security deposits
5 . Additionally, as part of signing the allocation, the

Customer commits n tests, which are inputs that will
be hidden in the data stream going to the service, and
their corresponding outputs. It does this in two steps.

2. We can support different implementations, but we use Ethereum in
the current prototype.

First, by processing the n inputs and hashing the inputs
and outputs incurring a cost nπcg. Second, it sends those
hashed tests to the SC incurring a commitment cost of
πcc. During the service lifetime those inputs are injected
uniformly at random among the workload inputs3. See
Section 4.1.
When all the participants sign the contract, the state
of the allocation is changed to Running. The allocated
Customer, Suppliers, and Mediators also incur a cost
for signing the allocation and paying the Allocator for
its service; we denote these costs, lumped together, as
πa. Once all participants have signed the contract, the
Allocator receives πA as payment for its service.

4) Service Execution: After the service-specific channels
are constructed, the Customer can begin writing to the
service input channel and the Supplier can begin reading
6 , processing inputs and sending outputs on the service

output channel (this process can actually start before
signing is complete). For each correctly processed input
the Customer reads 7 , it receives a benefit b. The
Supplier, on the other hand, incurs electricity cost πsϵ

for processing each input.
5) Verifying Outputs: At the end of the allocation, the

Allocator sends a message on the cleanup channel 8
notifying the participants to end the allocation. The
Customer informs the Supplier which n outputs are to
be verified. The Supplier identifies the corresponding
outputs and sends them to the SC for verification 9 ,
calling postOutput. The Supplier incurs a cost of
πv for performing this operation. The SC compares the
Supplier output against the test data committed by the
Customer when it signed the allocation and stores the
result4. We discuss verification further in Section 4.1.

6) Mediation and Closing the Allocation: If the outputs
match in the previous step, the SC calls ClearMarket
(black 10 ) which transfers payments, with the Supplier
receiving λ∆πs, the Customer paying λ∆πs, and the
Mediator receiving πm for being available. It also causes
the allocation state on the SC to transition to Closed. The
participants receive notification of this change via their
respective SC clients (black 11 ). The allocation is then
finished.
However, if the outputs do not match, the SC records
this outcome and emits a MediationRequested event (red
10 ), which the Mediator receives from its SC client (red
11 ). The Mediator then reads 12 from the input and
output channels and re-processes the n inputs, incurring
a cost of n(πsϵ+πcg). The Mediator then sends the result
to the SC, calling postMediation, which incurs a
cost of πmc.
The SC calls ClearMarket (red 13 ) which compares the
Mediator output against the output of the Suppliers and
Customer to determine which participants are at fault.

3. This assumes that the Supplier cannot distinguish test inputs from
workload inputs.

4. The verification is only capable of detecting errors, not ascertaining
which entities are at fault. To determine fault, we use a Mediator.
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Figure 1: (a) Horizontal lines represent communication channels between participants. Vertical lines represent functions
that write to (filled circle) and/or read from (open circle) channels. For example, the Supplier reads that an allocation was
accepted on the accept channel which causes it to create a reader (denoted by a square) on the input channel, a writer on the
output channel and a reader on the cleanup channel. The functions occur in the numbered sequence. Red numbers signify
the sequence after the outputs checked by the SC deployed on the blockchain do not match. (b) State of an allocation on
SC represented as a state diagram. Our SC functions are described in [15].

If a Customer or Supplier’s output did not match the
Mediator output, they are fined πcd or πsd respectively.
The Mediator is paid n(πs) from the fine. For any
agent whose output does match the Mediator, payment
is transferred as normal, i.e., the Supplier receives λ∆πs

or the Customer pays λ∆πs. The call causes the state
of the allocation to transition to Closed. The participants
receive notification of this via their respective SC clients
(red 14 ). The allocation is then finished.

4.1. Verification

As part of the verification process, we expect the Cus-
tomers to commit to at least n inputs and their corresponding
outputs which we refer to as tests, where n is a platform pa-
rameter as part of an accepted allocation. It is also important
that the Supplier cannot read them; otherwise, the Supplier
can copy the outputs (by reading from the blockchain) and
provide those outputs at the end of allocation and neglect
processing the actual inputs. To prevent such behavior, our
protocol dictates that the Customer uses a hash function
to mask the values it commits in the blockchain. The key
idea behind the verification strategy is to check the hash of
the Supplier output against the hash of the expected output,
without letting the Supplier know which output is being
checked.

We introduce some additional notation to describe the
solution. Let Oc = {o1, o2, . . . on} represent the set of the
Customer’s n tests where oi = (ini, outi) is the ith test for a
particular Customer. Let Os = {os1, os2, . . . osn} represent
the set of all test solutions produced by the Supplier during

an allocation. To mask the input and output values, we use
hash functions that are supported by the chosen blockchain
implementation. We define the following functions for hash-
ing. α hashes all elements of a set K and creates a set
of hashes, γ applies a hash function to a given set and
produces a single hash value, and Γ applies a double hash.
The cardinality of outputs produced by γ and Γ is one,
whereas α produces a set whose size is same as the size
of input elements. That is, α(K) = {hash(ki) : ∀ki ∈ K},
γ(K) = hash(K), and Γ(K) = hash(hash(K)).

During the finalization of an allocation, the Customer
sends α(Oc), a set of hashes to the Supplier. During ex-
ecution, the Supplier records the hash of each input and
output, so upon receiving the set provided by the Customer
it is able to determine the set of test inputs that it must
submit to the SC for verification. Note that this list does
not directly specify the index of the input or output that
must be sent. Rather, it identifies the Ov ⊆ Os, such that
Ov = {oi : hash(oi) ∈ α(Oc) ∩ α(Os)}. This approach en-
sures that the Supplier must have processed the test inputs to
be able to correctly identify them. If the Customer directly
provided the indices, the Supplier could neglect to process
the inputs until it received them and then produce Ov.
Finally, the Supplier sends γ(Ov) to the SC, where the SC
then checks if Γ(Oc) = hash(γ(Ov)). Recall that, during
signing, the Customer committed Oc to the blockchain. In
reality, it sent Γ(Oc). The data is double hashed because
if the Customer had sent γ(Oc), then the verification pro-
cess on the blockchain would have required to hash all
the Supplier’s n outputs, thereby incurring additional costs.
Instead, the Customer sends Γ(Oc), requiring the Supplier

5



Published in the proceedings of the 10th IEEE International Conference on Cloud Engineering (IC2E 2022).

TABLE 1: Key Symbols
Smart Contract (SC)

ρ penalty rate set by the SC
πv cost of Supplier submitting outputs to the SC
πcc cost of Customer committing outputs to the SC
πmc cost of Mediator committing mediation results to the SC

Mediator (M)
πm payout to the Mediator for being available for the du-

ration of the service
πvϵ Mediator’s electricity cost to verify outputs

Customer
ci Customer i
Aci Customer i’s account ID
cstart,end Customer offer start and end times
πxmax amount the Customer is willing to pay per million

instructions
Ic number of instructions (in millions) required to process

a service input
b benefit that the Customer obtains from service output
πcg Customer’s cost of generating test output
ec =

πcg

πs
Customer’s efficiency of processing vs. the price

paid to outsource
λ rate at which data is set to deployed application instance
sc represents when the Customer chooses to provide n

correct tests (true or false)
Supplier

si Supplier i
Asi Supplier i’s account ID
sstart,end Supplier offer start and end times
πxmin payment that the Supplier requires per million instruc-

tions
πsϵ cost to process a service input
πv cost to send output hash to the SC
P (s) probability that the Supplier will process a particular

input
es = πsϵ

πs
: Supplier’s efficiency of processing vs. the price

paid to outsource
Is number of slack instructions (in millions) per second

available
Rs slack RAM available

Allocator
Ω an allocation
πa cost to pay Allocator (πA) and for signing the allocation
πA payout to the Allocator for providing an accepted allo-

cation
∆ = aend − astart: duration of a service allocation
πx market price per million instructions between πxmin and

πxmax (determined by the Allocator)
πs = πx × I: amount to be charged/paid to a Cus-

tomer/Supplier for a processed input
πca cost of SC adding an allocation
n number of outputs that must be provided by the Cus-

tomer for verification
πcd Customer’s security deposit for collateral prior to trans-

action (set to ρπs)
πsd Supplier’s security deposit for collateral prior to trans-

action (set to ρπs)
Other

xstart/end Customer’s service start/end time (x := c), start/end of
Supplier’s resource availability (x := s), start/end of
allocated service time (x := a)

∆min minimum viable service time

to send γ(Ov) to the SC. This makes it so that the SC
only has to hash a single element to compare against the
Customer’s hash.

4.2. Handling Failures

Our protocol ensures that the consequences of failures
are localized to the specific stakeholder that experiences
the failure. If a Customer fails prior to signing, the Allo-

cation is canceled. If the failure occurs after, the Supplier
is unaffected. In the case of a Supplier failure the Customer
submits a new service offer which incurs the cost πrecover

(see Eq. (5)). Since the Supplier is penalized in these cases,
they choose their availability based on estimates of their
reliability to reduce the cost of unintentional failures. Thus,
from a market perspective, as long as more than one agent
sends offers to an Allocator and the agents have a mutually
accepted Mediator, the Market is operational.

4.3. Prototype

In the current prototype, we use the Ethereum
blockchain. The system can also be implemented by using
other ledgers that provide byzantine fault tolerance, such as
Hashgraph [17]. For the messaging framework we use Pul-
sar. Other options include Kafka or even layer 2 blockchain
solutions such as side-chains [18]. We chose Pulsar due to
its unique capabilities: zero data loss, guaranteed message
delivery, infinite scalability, and in particular multi-tenancy
[19]. Multi-tenancy enables the ownership of the market to
be distributed between the participants, who can each control
access to their tenants.

The various actors in the system, i.e., Customers, Suppli-
ers, Allocators, and Mediators were implemented in Python
and packaged as Docker Containers. Further, we use Docker
to pass the application code between Customer and the
Suppliers. The algorithm used in the prototype (given a set
of current offers): 1) finds feasible mapping through brute
force search, 2) utilize the Hopcroft-Karp [20] algorithm to
output a maximum cardinality matching, 3) run a double
auction to determine a fair price, 4) and construct the
final allocation. Each time a new offer is received by the
Allocator, it runs to see if any allocations can be constructed.
In this way it provides a result in the minimum possible
time. Other allocation algorithms can be easily integrated
into the architecture. See the GitHub repository for the
implementation [15].

5. Protocol Analysis

This protocol has been designed to disincentivize devia-
tion from the protocol. We show this by deriving the partic-
ipants’ utility functions, the incentives associated with each
action and model the protocol as a two-player simultaneous
move game. We refer reader to Table 1 for reference.

5.1. Customer Utility

For each input sent, the Customer pays πs, and for each
correct output, the Customer receives a benefit b. Also, for
each allocation the customer incurs a setup cost πc setup

which is

πc setup = nπcg + πcc + πm + πa (6)

where πcg is the cost of generating a test, n is the number
of tests, πcc is the cost of committing the hash of the tests
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to the SC, πm is the payment to the Mediator for being
available, and πa is the payment to the Allocator for the
allocation. The Customer utility then is

UC = λ∆(b− πs)− nπcg − πcc − πm − πa (7)

Based on the utility function, the Customer can improve its
utility if it takes actions that allow it to avoid paying πs to
the Supplier, or reduce the number n of test inputs that must
be provided.

Therefore, we must ensure the customer cannot avoid
paying πs and will commit n test inputs. We can ensure that
the Customer cannot avoid payment by having the Customer
pay λ∆πs at the end of the allocation regardless of the
outcome. This decision avoids complications that appear
with refunding services that fail, as in prior work [10].
This design choice may seem unfair—there is a possibility
that the Customer pays for a service that is not delivered.
However, our justification for using such a mechanism is
that in the game analysis we will show that this loss does
not occur when all participants behave rationally.

To detect when a Customer does not submit n correct
tests, the following measures are taken. During signing,
in addition to the hash of the tests Γ(Oc), the Customer
includes a hash of the list of inputs Γ(Inc). Similarly, when
the Supplier calls postOutput, it includes a hash of the
list of n test inputs γ(Inv). If during the verification process
Γ(Inc) ̸= hash(γ(Inv)), then mediation is requested. To
make sure the Customer commit was honest, the Mediator
re-processes the n test inputs and computes Γ(Oc) and
Γ(Inc) and also recomputes α(Oc) and compares against
the set of hashes α(Oc) the Customer sent to the Supplier
for identifying the tests. This process ensures the proposed
system detects if the Customer does not provide the correct
commitment or data to the Supplier. Since there is no way
for the Customer to avoid paying, the only deviation from
the protocol the Customer can take is to provide an incorrect
commitment of n tests which will be detected and penalized.

5.2. Supplier Utility

Recall λ is the incoming data rate and ∆ is the duration
of the allocation, therefore, λ∆ is the total number of
inputs sent during an allocation. That is, if the supplier
runs an application successfully, it will produce λ∆ ≥ n
outputs, where n is the number of tests used for verification
(Section 4.1).

The supplier incurs a cost of πsϵ processing an input
and z is the number of inputs processed. For each allocation,
the Supplier incurs a setup cost of

πs setup = πv + πm + πa (8)

where πv is the cost of sending a postOutput request to
the SC. The Supplier utility then is

US = λ∆(πs)− zπsϵ − πv − πm − πa (9)

Based on the utility function, the Supplier can improve its
utility if it takes actions that allow it to reduce the number z
of inputs processed, i.e. skip the processing of some inputs.

5.3. Incentives

The goal is to have Customers to provide correct test
data and Suppliers to process all inputs. In order to disin-
centivize deviation from this behavior, the Customers and
Suppliers are required to provide a security deposit πd to
participate. πd is computed as

πd = πsλ∆ρ (10)

where ρ is a penalty rate defined by the market. Therefore,
if the Customer is detected for not providing the correct test
data, or the Supplier is detected for skipping the processing
of inputs, they are fined πd.

5.4. Interaction Between Customer and Supplier

We model the interaction between the Supplier(s) and
the Customer as a game. The Supplier’s actions are to either
process an input (denoted by s) or not (denoted by s).
Similarly, the Customer can choose to provide n correct
tests (sc) or not (sc). The resulting utility for each possible
combination is shown in Table 2, and the resulting game is
shown in Fig. 2.

The Customer’s dominant strategy is to honestly provide
n test inputs as long as the utility of providing the inputs
(sc) is greater than the utility of not providing the inputs
(sc). Formally if[

UC(s, sc) > UC(s, s̄c)
]
∧
[
UC(s̄, sc) > UC(s̄, s̄c)

]
(11)

then Uc(∗, sc) is the Customer’s dominant strategy, where ∗
represents any strategy of the Supplier. To determine the
conditions that make this true we reference the Customer
outcomes in Table 2 and substitute them into Eq. (11) and
simplify. Both inequalities in Eq. (11) result in the same
simplified inequality nπcg < πcd. Recall that πcg = ecπs,
where ec < 1 is the customer’s processing efficiency and
πcd was set to πsλ∆ρ. Substituting these values in and
simplifying the inequality gives

nπcg < πcd

necπs < πsλ∆ρ

nec < n < λ∆ρ

(12)

As shown in Eq. (12), the Customer will always process
n inputs as long as n < λ∆ρ, where ρ is the penalty rate
set by the market. Since we can ensure that the Customer’s
only reasonable strategy is to provide the test inputs, we do
not need to consider (for the Supplier) the case when the
Customer does not provide the inputs.

The Supplier can neglect processing inputs during the
allocated service time. Therefore, processing all inputs
(s, sc) is the dominant strategy for the Supplier as long as
US(s, sc) > US(s, sc), which holds when λ∆(πs − πsϵ) >

7
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TABLE 2: Game outcomes and payments from Fig. 2. For example, o2 is the outcome when the Supplier does not process
all the validation inputs correctly and the customer does provide sufficient validation inputs.

Outcomes
o1 (ssc) o2 (ssc) o3 (ssc) o4 (ssc)

Customer λ∆(b− πs)− nπcg − πcc − πa − πm −λ∆πs − nπcg − πcc − πa − πm λ∆(b− πs)− πcc − πcd − πa − πm −λ∆πs − πcc − πcd − πa − πm

Supplier λ∆(πs − πsϵ)− πv − πa − πm −πv − πsd − πa − πm λ∆(πs − πsϵ)− πv − πa − πm −πv − πsd − πa − πm

Allocator πA πA πA πA

Mediator πm πm − n(πsϵ − πvϵ + πs)− πmc πm − n(πsϵ − πvϵ + πs)− πmc πm − n(πsϵ − πvϵ + πs)− πmc

S

commit to n outputs

C

2

sc

3

sc

S

o1 s o2s

S

o3 s o4s

Figure 2: Extensive-form game produced by our protocol.
Blue nodes indicate Customer moves, red nodes indicate
Supplier moves. The game is sequential, but the decisions
are hidden, so we treat it as a simultaneous move game.
Each outcome has payouts for the agents (Table 2).
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Figure 3: Supplier utility US as a function of the percentage
of inputs processed by the supplier ( z

λ∆ ). Utility is highest
when all inputs are processed, regardless of ρ.

−πsd. This is true unless the Customer severely underesti-
mates the resources required, in which case the Supplier’s
output states that the resources allocated were exceeded, or
the Supplier underestimated its power consumption in its
initial offer.

This presumes that the Supplier processed every input
or none of them. However, it is possible that the Supplier
can risk skipping the processing of some inputs to reduce
its costs. Given that the Customer only checks n inputs, as
long as the Supplier processes those n inputs it will not be
caught. To derive the Supplier’s utility, recall that λ∆ is the
total number of inputs, n is the number of test inputs and
z is the number of inputs processed by the Supplier. In this
case, there are

(
λ∆
z

)
total ways to select which z inputs are

processed by the supplier and
(
λ∆−n
z−n

)
ways for the supplier

to not be detected. Therefore, the probability of the supplier
getting detected is represented by Pd, where Pd is

Pd = 1−
(
λ∆−n
z−n

)(
λ∆
z

) (13)

We can then define the utility of the supplier (US) as

US = λ∆πs(1−Pd)−Pdπsd− zπse−πa−πm−πv (14)

TABLE 3: Experiment Scenarios
Scenario # of Customers # of Suppliers Supplier Type
S1 10 10 ideal
S2 20 10 ideal
S3 20 20 ideal
S4 10 10 dishonest
S5 20 10 dishonest
S6 20 20 dishonest

We plot this utility in Fig. 3, where we see that the Supplier
obtains maximum utility when it processes all of the inputs.

This analysis shows that since the penalty multiplier ρ is
set by the market, the market can ensure that the Customer
will always provide n correct tests. Further, since ρ and n
are market parameters, and λ and ∆ are determined by the
service the market can ensure a minimum value for Pd.

6. Experiments

We have shown analytically that our protocol will deter
deviation from the protocol for rational agents. We now
present the experimental performance. To emulate a large
market, we deployed the actors as Kubernetes Pods using
the Google Kubernetes Engine (GKE). CPU and RAM
utilization were extracted directly from GKE’s monitoring
framework using BigQuery. The blockchain was deployed
on a machine with an 18 core Intel CPU and 64GB of
memory.

The application deployed on this market is a real-world
application from our partner transit agency that processes a
stream of video frames to count the number of passengers
in each vehicle [21, 22]. The data is used for guiding
the planning of decisions that include deploying additional
transit vehicles to an area later in the day. We considered
six scenarios (Table 3), where we varied the number of
Customers and the number and type of Suppliers. The types
of Suppliers are: ideal Suppliers that do not cheat and
process all inputs, and dishonest Suppliers that correctly
process an input with a 50% probability, otherwise they
provide a random output. Each of the Customers posted
one offer to run the occupancy detection application on
600 frames.

6.1. Deployment Overhead

For each scenario, we measured the delay between
submitting an offer and receiving the allocation from the
Allocator. The result in Fig. 4 shows that the median allo-
cation time across scenarios ranged from 9 to 12 seconds
for Customers and 2 to 12 seconds for Suppliers. Additional
delay is incurred if the participants wait until the participants
sign the allocation stored by the SC. The block mean mining
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Figure 4: Time between when a customer (or supplier)
submits an offer and receives an allocation.

time on our private Ethereum network was 12 seconds.
Thus the minimum time to call the createAllocation,
addSupplier and the various sign functions is 45 sec-
onds on average. To verify we measured the time between
calling these functions and the transaction being added to
block and measured 13.6± 6.5, 15.6± 18.5, and 14.4± 9.1
accordingly. The other SC functions (e.g., postOutput,
postMediation) are not in the critical path of deploying
and running the application and so do not delay the appli-
cation deployment.

We also measure the time to start the application once
the allocation has been accepted. This result in Fig. 5 varies
from 3 to 74 seconds. This time includes downloading and
starting to run the application Docker image, and depends
heavily on the size of the image itself. In our case, the
occupancy detection image was 3GB which impacted the
setup time. It is important for Customers to take this into
account when setting the start time of the service. Scenarios
1, 2, 5, and 6 have significantly shorter setup times, this is
due to images persisting on disk between runs eliminating
the time needed to download the image. In the scenarios
with dishonest Suppliers we measure the time spent in
mediation. This result in Fig. 6 shows that the median time
for mediation ranged from 145 to 210 seconds. The duration
of mediation increased as the number of sporadic Suppliers
increased. One way to reduce Mediation time is load balance
the Mediators available in the system.

During the scenarios we recorded the CPU and memory
utilization of the pods. The results in Figs. 7 and 8 show the
average CPU utilization and RAM requirements respectively
for the Customers, Suppliers and Mediator in scenarios S1-
S6. Both CPU and RAM usage was consistent for Customers
and Suppliers between scenarios. Scenarios S4-S6 consisted
of included dishonest Suppliers and thus required mediation
which is reflected an increase in CPU and memory usage
for the Mediator in these cases.

6.2. Monetary Costs

The monetary costs of the system are primarily a conse-
quence of using Ethereum. The gas costs of each function
can be found in table Table 4. The cost to a Customer of
using the market for an ideal iteration of the protocol is
322,222 Gas which includes the cost of signing the alloca-
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Figure 5: Time spent setting up the application for all
Suppliers in scenarios S1-S6.
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Figure 6: Time spent in mediation for scenarios S4-S6 due
to dishonest Suppliers.
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Figure 7: Average CPU utilization per customer, supplier
and mediator for scenarios S1-S6.

tion, plus the amount it pays to the Allocator to create the al-
location. The cost in dollars will depend on which Ethereum
network is used. The cost on the Ethereum MainNet, using
the conversion [23] (On 4/20/22 With cost of 30Gwei/gas),
is $30.22. Alternatively using a Layer 2 scaling solutions
such as the Polygon network [18] results in a cost of $0.0168
[24]. For our implementation we ran a private Ethereum
Network and measured the power consumption. The load
due to running a miner was approximately 15 watts on
the lab machine with Intel Xeon CPU and 64 GB RAM,
which has a base power usage of 145 watts. Thus the cost
of operating the Ethereum miner, using $0.10/kWh for the
cost of electricity, is $0.0015/h. For comparision an AWS
m4.4xlarge (16vCPU and 64GiB memory) spot instance is
$0.0387/h [25].

7. Related Research

Market-driven approaches to outsourced computation
have been studied in the context of residual cloud computing
[26] and batch processing [10]. Cherniack et al. [14] outlined
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TABLE 4: Gas Costs and Delay of Each SC Function Call

Function createAllocation addSupplier customerSign supplierSign mediatorSign postOutput postMediation
Gas 208,404 127,038 113,818 109,931 58,053 88,992 87,944
Response time[s] 13.6 ± 6.5 15.6 ± 18.5 14.4 ± 9.1 12.6 ± 7.1 16 ± 19.3 15.2 ± 11 28.5 ± 18
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Figure 8: Average memory used per customer, supplier and
mediator for scenarios S1-S6.

a federated market from which producers and consumers de-
rive value from streaming data; however, they do not address
trust in their design. TrueBit [12] is a platform designed
to extend the computation capabilities of blockchain-based
consensus computers (such as Ethereum) that provide strong
guarantees that small computations are performed correctly.
Körbel et al. [27] also relies on blockchain for verification,
using zk-SNARKs as the verification mechanism. This has
the advantage that it is able to verify non-deterministic
computations as long as rules can be defined for determining
the validity and quality of a result. However, creating the
verification contract is labor intensive and is required for
each new service. Further, the process of creating the rules
requires a trusted step. Thus, for the system to be open to
any service consumer additional work is required to prevent
consumers from abusing the service creation process. Ad-
ditionally, neither of these platforms are suitable for stream
computing because they incur the latency associated with
sending results to the blockchain before they are released.

Dong et al. [28] determine that for verifying outsourced
computation, the cryptographic approach is not practical and
should instead use repeated executions. The computations,
however, should not be duplicated more than twice. Their
strategy is simple: outsource to two providers and compare
results. However, their approach does not restrict collusion
between suppliers, especially if interaction outside smart
contracts is allowed. Our approach relies on mediation and
using n inputs make collusion unlikely.

Coopedge [11] is an edge computing platform imple-
mented on HyperLedger. Their approach works for co-
operative offloading of cloud computing tasks to edge
servers participating in the network. Their primary trust
mechanism relies on reputation, assuming that the edge
servers have a long history and can gather enough reputation
over time. The incentive mechanism consists of offering
higher rewards for completing a task sooner, and the time
is determined through consensus on the blockchain. This
mechanism is not well suited for stream applications with
potentially high and sporadic data rates. They also do not

address how to ensure that computations are performed
correctly.

8. Conclusion

Our goal in this paper was to develop a framework that
would enable the creation of a decentralized market for
outsourcing of streaming computation. We presented a pro-
tocol and showed that rational participants would follow the
protocol and benefit from participating in the system, while
participants that deviate from the protocol incur fines. While
this does not prevent agents from operating maliciously and
returning erroneous results it does ensure that costs exceed
the benefits within the system in such cases. We do not
handle scenarios when there are benefits exogenous to the
system that make it worthwhile to misbehave; we would
consider such scenarios in future work. Further work is
also required to improve ways to address potential Mediator
corruption, as well as the means used to inject the test inputs
into the data stream as a naive approach could limit the
system to only support stateless applications.
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