
SolidWorx: A Resilient and Trustworthy Transactive Platform for
Smart and Connected Communities

Scott Eisele
Vanderbilt University
Nashville, TN, USA

scott.r.eisele@vanderbilt.edu

Aron Laszka
University of Houston

Houston, TX, USA
alaszka@houston.edu

Anastasia Mavridou
Vanderbilt University
Nashville, TN, USA

anastasia.mavridou@vanderbilt.edu

Abhishek Dubey
Vanderbilt University
Nashville, TN, USA

abhishek.dubey@vanderbilt.edu

Published in the proceedings of the
2018 IEEE International Conference on Blockchain.

Abstract—Internet of Things and data sciences are fueling the
development of innovative solutions for various applications
in Smart and Connected Communities (SCC). These appli-
cations provide participants with the capability to exchange
not only data but also resources, which raises the concerns of
integrity, trust, and above all the need for fair and optimal
solutions to the problem of resource allocation. This exchange
of information and resources leads to a problem where the
stakeholders of the system may have limited trust in each
other. Thus, collaboratively reaching consensus on when, how,
and who should access certain resources becomes problematic.
This paper presents SolidWorx, a blockchain-based platform
that provides key mechanisms required for arbitrating resource
consumption across different SCC applications in a domain-
agnostic manner. For example, it introduces and implements
a hybrid-solver pattern, where complex optimization compu-
tation is handled off-blockchain while solution validation is
performed by a smart contract. To ensure correctness, the
smart contract of SolidWorx is generated and verified using a
model-based approach.

1. Introduction
Smart and connected communities (SCC) as a research

area lies at the intersection of social science, machine
learning, cyber-physical systems, civil infrastructures, and
data sciences. This research area is enabled by the rapid
and transformational changes driven by innovations in smart
sensors, such as cameras and air quality monitors, which are
now embedded in almost every physical device and system
that we use, ranging from watches and smartphones to auto-
mobiles, homes, roads, and workplaces. The effects of these
innovations can be seen in a number of diverse domains,
including transportation, energy, emergency response, and
health care, to name a few.

At its core, a smart and connected community is a
multi-agent system where agents may enter or leave the
system for different reasons. Agents may act on behalf of
service owners, managing access to services and ensuring
that contracts are fulfilled. Agents can also act on behalf
of service consumers, locating services, entering contracts,

as well as receiving and presenting results. For example,
agents may coordinate carpooling services. Another example
of such coordination exists in transactive energy systems [1],
where homeowners in a community exchange excess en-
ergy. Consequently, these agents are required to engage in
interactions, negotiate with each other, enter agreements,
and make proactive run-time decisions—individually and
collectively—while responding to changing circumstances.

This exchange of information and resources leads to a
problem where the stakeholders of the system may have
limited trust in each other. Thus, collaboratively reaching
consensus on when, how, and who should access certain
resources becomes problematic. However, instead of solving
these problems in a domain specific manner, we present
SolidWorx and show how this platform can provide key
design patterns to implement mechanisms for arbitrating
resource consumption across different SCC applications.

Blockchains may form a key component of SCC plat-
forms because they enable participants to reach a consensus
on the value of any state variable in the system, without
relying on a trusted third party or trusting each other.
Distributed consensus not only solves the trust issue, but also
provides fault-tolerance since consensus is always reached
on the correct state as long as the number of faulty nodes
is below a threshold. Further, blockchains can also enable
performing computation in a distributed and trustworthy
manner in the form of smart contracts. However, while the
distributed integrity of a blockchain ledger presents unique
opportunities, it also introduces new assurance challenges
that must be addressed before protocols and implementa-
tions can live up to their potential. For instance, Ethereum
smart contracts deployed in practice are riddled with bugs
and security vulnerabilities. Thus, we use a correct-by-
construction design toolchain, called FSolidM [2], to design
and implement the smart-contract code of SolidWorx.

The outline of this paper is as follows. We formulate a
resource-allocation problem for SCC in Section 2, describ-
ing two concrete applications of the platform in Section 2.2
and presenting extensions to the basic problem formulation
in Section 2.3. We describe our solution architecture in
Section 3, which consists of off-blockchain solvers (Sec-
tion 3.2) and a smart contract (Section 3.3), providing a
brief analysis in Section 3.4. In Section 4, we evaluate

TABLE 1: List of Symbols

Symbol Description
P set of resource providers
C set of resource consumers
T set of resource types
OP set of providing offers
OC set of consumption offers
oP resource provider who posted offer o ∈ OP

oC resource consumer who posted offer o ∈ OC

oQ(t) amount of resources of type t ∈ T provided or requested
by offer o

oV (t) unit reservation price of offer o for resource type t ∈ T

aOP providing offer from which assignment a allocates resources
aOC consuming offer to which assignment a allocates resources
aQ amount of resources allocated by assignment a
aT type of resources allocated by assignment a
aV unit price for the resources allocated by assignment a

SolidWorx using two case studies, a carpooling assignment
(Section 4.1) and an energy trading system (Section 4.2).
Finally, we discuss the architecture of SolidWorx in the
context of related research in Section 5, and we provide
concluding remarks in Section 6.

2. Problem Formulation
We first introduce a base formulation of an abstract

resource allocation problem (Section 2.1), which captures
the core functionality of a transactive platform for SCC.
Then, we describe two examples of applying this formu-
lation to solving practical problems in SCC (Section 2.2).
We conclude the section by introducing various extensions
to the base problem formulation, in the form of alternative
objectives and additional constraints (Section 2.3). A list of
the key symbols used in the resource allocation problem can
be found in Table 1.

2.1. Resource Allocation Problem
In essence, the objective of the transactive platform is

to allocate resources from users who provide resources to
users who consume them. The sets of resource providers and
resource consumers are denoted by P and C, respectively.
Note that a user may act both as a resource provider and as
a resource consumer, in which case the user is a member
of both P and C. Resources that are provided or consumed
belong to a set of resource types, which are denoted by T .
A resource type is an abstract concept, which captures not
only the inherent characteristics of a resource, but all aspects
related to providing or consuming resources. For example, a
resource type could correspond to energy production or con-
sumption in a specific time interval, or it could correspond
to a ride between certain locations at a certain time.

Each provider p ∈ P may post a set of providing offers.
Each providing offer o is a tuple o = 〈oP , oQ, oV 〉, where
oP ∈ P is the provider who posted the offer, oQ ∈ T 7→ N is
the amount of resources offered from each type (i.e., oQ(t)
is the amount of resources offered from type t ∈ T), and
oV ∈ T 7→ N is the unit reservation price asked for each
resource type (i.e., oV (t) is the value asked for providing a

unit resource of type t ∈ T). Each offer o = 〈oP , oQ, oV 〉
defines a set of alternatives: provider op offers to provide
either oQ(t1) resources of type t1 ∈ T or oQ(t2) resources
of type t2 ∈ T , but not at the same time. However, convex
linear combinations, such as providing bα·oQ(t1)c resources
of type t1 ∈ T and b(1 − α) · oQ(t2)c resources of type
t2 ∈ T at the same time (where α ∈ [0, 1]), are allowed.
For example, an offer o providing oQ(t1) units of energy in
time interval t1 or oQ(t2) units of energy in time interval
t2 may provide b0.5 ·oQ(t1)c energy in time interval t1 and
b0.5 ·oQ(t2)c energy in time interval t2. The set of all offers
posted by all the providers is denoted by OP .

Each consumer c ∈ C posts a set of consumption offers.
Each consumption offer o is a tuple o = 〈oC , oQ, oV 〉,
where oC ∈ C is the consumer who posted the offer,
oQ ∈ T 7→ N is the amount of resources requested from
each type (i.e., oQ(t) is the amount of resources requested
from type t ∈ T), and oV ∈ T 7→ N is the unit reservation
price offered for each resource type (i.e., oV (t) is the value
offered for a unit resource of type t ∈ T). Similar to
providing offers, consumption offers also define a set of
alternatives. The set of all offers posted by all the consumers
is denoted by OC.

A resource allocation A is a set of resource assign-
ments. Each resource assignment a ∈ A is a tuple a =
〈aOP , aOC , aQ, aT , aV 〉, where aOP ∈ OP is a providing
offer posted by a provider, aOC ∈ OC is a consumption
offer posted by a consumer, aQ ∈ N and aT ∈ T are the
amount and type of resources allocated from offer aOP to
aOC , and aV ∈ N is the unit price for the assignment.

A resource allocation A is feasible if

∀o ∈ OP :
∑
t∈T

∑
a∈A:

aOP=o∧ aT=t

aQ
oQ(t)

≤ 1 (1)

∀o ∈ OC :
∑
t∈T

∑
a∈A:

aOC=o∧ aT=t

aQ
oQ(t)

≤ 1 (2)

∀a ∈ A : (aOP)V (aT) ≤ aV (3)
∀a ∈ A : (aOC)V (aT) ≥ aV . (4)

In other words, a resource allocation is feasible if the
resources assigned from each providing offer (or consuming
offer) is a convex linear combination of the offered (or
requested) resources, and if the value in each assignment
is higher than (or lower than) the reservation price of the
providing offer (or consuming offer).

The objective of the base formulation of the resource
allocation problem is to maximize the amount of resources
assigned from providers to consumers. We define the base
formulation of the problem as follows.

Definition 1 (Resource Allocation Problem). Given sets
of providing and consumption offers OP and OC, find a
feasible resource allocation A that attains the maximum

max
A:A is feasible

∑
a∈A

aQ. (5)

2

2.2. Example Applications
To illustrate how the Resource Allocation Problem

(RAP) may be applied in smart and connected communi-
ties, we now describe two example problems that can be
expressed using RAP.

2.2.1. Energy Futures Market

We consider a residential energy-futures market in a
transactive microgrid. In this application, resource con-
sumers model residential energy consumers (i.e., house-
holds), while resource providers model the subset of con-
sumers who have energy providing capabilities (e.g., solar
panels, batteries). We divide time into fixed-length intervals
(e.g., 15 minutes), and let each resource type correspond to
providing or consuming a unit amount of power (e.g., 1 W)
in a particular time interval.

Based on their predicted energy supply and demand, res-
idential consumers (or smart homes acting on their behalf)
post offers to provide or consume energy in future time inter-
vals. For instance, a provider may predict that it will be able
to generate a certain amount of power π using its solar panel
during time intervals t1, t2, . . . , tN ∈ T . Then, it will submit
a set of N offers: for each time interval t ∈ {t1, . . . , tN} in
which energy may be produced, it posts an offer specifying

oQ(t) =

{
π if t = t

0 otherwise.
(6)

Alternatively, the provider may have a fully charged battery,
which could be discharged in any of the next N intervals
t1, t2 . . . , tN . Let π denote the amount of power that could
be provided if the battery was fully discharged in a single
time interval. Then, the provider will submit a single offer
specifying

oQ(t) =

{
π if t ∈ {t1, t2, . . . , tN}
0 otherwise.

(7)

The reservation prices of the offers should consider the
energy prices of the utility company (i.e., the alternative to
local trading) and the cost of providing energy (e.g., cost of
battery depreciation due to charging and discharging).

2.2.2. Carpooling Assignment

We consider the problem of assigning carpooling riders
to drivers with empty seats in their cars. In this application,
resource consumers model riders, while resource providers
model drivers. We again divide time into fixed-length inter-
vals, and we divide the space of pick-up locations into a
set of areas (e.g., city blocks). Then, we let a resource type
correspond to a ride from a particular area in a particular
time interval to a particular area. A unit of a resource is a
single seat for a ride.

A provider (i.e., driver) who has π empty seats in its
car will post a providing offer. Let Π ⊆ T denote the set
of combinations of pick-up and drop-off areas and pick-up

times that are feasible for the provider. Then, the provider’s
offer specifies

oQ(t) =

{
π if t ∈ Π

0 otherwise.
(8)

Similarly, a consumer (i.e., rider) who needs 1 seat will post
a consuming offer, specifying

oQ(t) =

{
1 if t ∈ Π

0 otherwise,
(9)

where Π is the set of combinations (i.e., pick-up and drop-
off areas and pick-up times) that are feasible for the rider.

2.3. Problem Formulation Extensions
The Resource Allocation Problem that we introduced in

Section 2.1 can capture a wide range of real-world problems.
However, some problems may not be easily expressed using
the constraints (Equations (1) to (4)) and the objective
(Equation (5)) of the base problem formulation. For this
reason, here we introduce a set of alternative objective for-
mulations and additional constraints for resource allocation.

2.3.1. Objectives

We first introduce alternative objective formulations,
which quantify the utility of a resource allocation based on
alternative goals.

Resource Type Preferences: Equation (5) assumes that
exchanging a unit of any resource type is equally beneficial.
In some practical scenarios, exchanging certain resource
types may be more beneficial than exchanging others. For
each resource type t ∈ T , let βt denote the utility derived
from exchanging a unit of resources of type t. Then, the
utility of a resource allocation A can be expressed as∑

a∈A

β(aT) · aQ. (10)

Provider and Consumer Benefit: The reservation
price oV (t) of a providing offer o means that provider oP
is indifferent to (i.e., derives zero benefit from) exchanging
resources of type t at unit price oV (t). Hence, the unit
benefit derived by the provider from exchanging at a higher
price aV ≥ oV (t) is equal to aV − oV (t). Similarly, the
unit benefit derived by a consumer, who posted an offer o,
from exchanging resources of type t at price aV is equal
to oV (t) − aV . Therefore, the total benefit created by an
assignment a for provider aOP and consumer aOC is

aQ · [aV − (aOP)V (aT)] + aQ · [(aOC)V (aT)− aV]

=aQ · [(aOC)V (aT)− (aOP)V (aT)] , (11)

and the total benefit created by a resource allocation A for
all the providers and consumers is∑

a∈A

aQ · [(aOC)V (aT)− (aOP)V (aT)] . (12)

3

Prosumer
(Python, geth)

Prosumer
(Python, geth)

Directory
(Python, geth)

Solver
(Python, CPLEX, geth)

Blockchain
miner (geth)

Blockchain
miner (geth)

Blockchain
miner (geth)

Smart Contract
(Solidity)Ethereum

Figure 1: Implementation view of the SolidWorx. A private
Ethereum network (used for testing purposes) is the decen-
tralized computation platform running the smart contracts.

2.3.2. Constraints
Next, we introduce additional feasibility constraints that

may be imposed on the resource allocations.
Price Constraints: A regulator (e.g., utility company

in a transactive energy platform) may impose constraints
on the prices at which resources may be exchanged (e.g.,
based on bulk-market prices). If the minimum and maximum
unit prices for resource type t ∈ T are mint and maxt,
respectively, then we can express price constraints as

∀a ∈ A : min(aT) ≤ aV ≤ max(aT). (13)

Pairwise Constraints: Due to physical constraints, ex-
changing resources of certain types between certain pairs
of prosumers may be impossible. If the set of prosumer
pairs that may exchange resources of type t ∈ T is denoted
by Et ⊆ P × C, we can express pairwise constraints as

∀a ∈ A : (aOP , aOC) ∈ E(aT). (14)

Real-Valued Offers and Allocations: Finally, we may
also relax some of the constraints of the base formulation.
In particular, we may allow real-valued quantities in offers
and allocations (i.e., oQ : T 7→ R+ and aQ ∈ R+) as well
as real-valued prices (i.e., oV : T 7→ R+ and aV ∈ R+).

3. SolidWorx: A Decentralized Transaction
Management Platform
Now, we describe the SolidWorx platform, which (1)

allows prosumers1 to post offers and (2) can find a solution
to the resource allocation problem in an efficient and trust-
worthy manner. SolidWorx follows the actor-based archi-
tecture, which was proposed initially in [3], and which has
been accepted as a standard model for building distributed
applications. The key aspect of an actor-based system are in-
terfaces with well defined execution models [4]. The follow-
ing subsections will describe the transaction management
platform in more detail. Here, we provide a brief overview.

Figure 1 shows the key actors of our transaction man-
agement platform, while Figure 2 describes the data flow

1. An actor or an agent that can both provide and consume resources.

Distributed Ledger (e.g., blockhain)

Smart Contract
(check offer and solution correctness, select best solution) Events

Solver

Anonymizing Mixer
(provide privacy)

Prosumer

Directory

anonymous account

close, finalize

offers,
closed

connection addresses

potential
solutionsoffers

resource allocation for offers

Figure 2: Data flow between actors of SolidWorx.

between these actors. A directory actor provides a mecha-
nism to look up connection endpoints, including the address
of a deployed smart contract. In our previous work, we de-
scribed how to create a decentralized directory service using
distributed hash tables [5]. Therefore, we do not describe
the implementation of this service any further in this paper.
Prosumer actors (i.e., resource providers and consumers)
post offers to the platform via functions provided by a
smart contract. These functions check the correctness of
each offer and then store it within the smart contract. An
optional mixer service can be used to obfuscate the identity
of the prosumers [6]. By generating new anonymous ad-
dresses at random periodically, prosumers can prevent other
entities from linking the anonymous addresses to their actual
identities [7], [6], thereby keeping their activities private.
Solver actors, which are pre-configured with constraints and
an objective function, can listen to smart-contract events,
which provide the solvers with information about offers.
Solvers run at a pre-configured intervals, compute a resource
allocation, and submit the solution allocation to the smart
contract. The directory, acting as a service director, can then
finalize a solution by invoking a smart-contract function,
which chooses the best solution from all the allocations that
have been submitted. Once a solution has been finalized, the
prosumers are notified using smart-contract events.

3.1. Scheduling

Once the system is deployed, providers and consumers
will need to use it repeatedly for finding optimal resource
allocations. For example, riders and drivers want to find
optimal carpooling assignments every day, while users in
an energy futures market want to find optimal energy trades
every, e.g., 20 minutes. Consequently, the platform has to
gather offers and solve the resource allocation problem at
regular time intervals. Each one of these cycles is divided
into two phases. First, an offering phase, in which providers
and consumers can post new offers or cancel their existing
offers (e.g., if they wish to change their offer based on
changes in the market). Second, a solving phase, in which
the resource allocation problem is solved for the posted (but
not cancelled) offers. At the end of the second phase, the
assignments between providers and consumers are finalized
based on the solution. Then, a new cycle begins with an
offering phase.

4

3.2. Hybrid Solver Architecture
The Resource Allocation Problem described in Section 2

can be solved by formulating it as an (integer) linear pro-
gram (LP): feasibility constraints (Equations (1) to (4)) and
constraint extensions (Section 2.3.2) can all be formulated
as linear inequalities, while the objective function (Equa-
tion (5)) as well as the alternative objectives (Section 2.3.1)
can be formulated as linear functions. Arguably, we could
set up a solver actor that would receive offers from pro-
sumers, formulate a linear program, and use a state-of-the-
art LP-solver (e.g., CPLEX [8]) to find an optimal solution.
However, a simple N-to-1 architecture with N prosumers
and 1 solver would suffer from the following problems:
• Lack of trust in solver nodes: Prosumers would need to

trust that the solver is acting selflessly and is providing
correct and optimal solutions.

• Vulnerability of the transaction management platform:
A single solver would be a single point of failure. If it
were faulty or compromised, the entire platform would
be faulty or compromised.

• Data storage: For the sake of auditability, information
about past offers and allocations should remain avail-
able even in case of node failures.

A decentralized ledger with distributed information stor-
age and consensus provided by blockchain solutions, such as
Ethereum, is an obvious choice for ensuring the auditabil-
ity of all events and providing distributed trust. However,
computation is relatively expensive on blockchain-based
distributed platforms2, solving the trading problem using
a blockchain-based smart contract would not be scalable
in practice. In light of this, we propose a hybrid imple-
mentation approach, which combines the trustworthiness of
blockchain-based smart contracts with the efficiency of more
traditional computational platforms.

Thus, the key idea of our hybrid approach is to (1) use
a high-performance computer to solve the computationally
expensive linear program off-blockchain and then (2) use a
smart contract to record the solution on the blockchain. To
implement this hybrid approach securely and reliably, we
must address the following issues.
• Computation that is performed off-blockchain does

not satisfy the auditability and security requirements
that smart contracts do. Thus, the results of any off-
blockchain computation must be verified by the smart
contract before recording them on the blockchain.

• Due to network disruptions and other errors (including
deliberate denial-of-service attacks), the off-blockchain
solver might fail to provide the smart contract with a
solution on time (i.e., before assignments are supposed
to be finalized). Thus, the smart contract must not be
strongly coupled to the solver.

• For the sake of reliability, the smart contract should
accept solutions from multiple off-blockchain sources;

2. Further, Solidity, the preferred high-level language for Ethereum,
currently lacks built-in support for certain features that would facilitate
the implementation of an LP solver, such as floating-point arithmetics.

however, these sources might provide different solu-
tions. Thus, the smart contract must be able to choose
from multiple solutions (some of which may come from
a compromised computer).

3.3. Smart Contract
We implement a smart contract that can (1) verify

whether a solution is feasible and (2) compute the value
of the objective function for a feasible solution. Compared
to finding an optimal solution, these operations are com-
putationally inexpensive, and they can easily be performed
on a blockchain-based decentralized platform. Thus, we
implement a smart contract that provides the following
functionality:
• Solutions may be submitted to the contract at any time

during the solving phase. The contract verifies the fea-
sibility of each submitted solution, and if the solution
is feasible (i.e., if it satisfies the constraint Equations
(1) to (4)), then it computes the value of the objective
function (i.e., Equation (5)). The contract always keeps
track of the best feasible solution submitted so far,
which we call the candidate solution.

• At the end of the solving phase, the contract finalizes
resource assignments for the cycle based on the candi-
date solution. If no solution has been submitted to the
contract, then an empty allocation is used as a solution,
which is always feasible but attains zero objective.

This simple functionality achieves a high level of se-
curity and reliability. Firstly, it is clear that an adversary
cannot force the contract to finalize assignments based on
an incorrect (i.e., infeasible) solution since such a solution
would be rejected. Similarly, an adversary cannot force the
contract to choose an inferior solution instead of a superior
one. In sum, the only action available to the adversary is
proposing a superior feasible solution, which would actually
improve the transactive management platform.

To ensure that the smart-contract code is correct-by-
construction [9], we use the formal design environment
FSolidM [2] to design and generate the Solidity code of the
smart contract. FSolidM allows designing Ethereum smart
contracts as Labelled Transition Systems (LTS) with formal
semantics. Each LTS can then be given to the NuSMV
model checker [10] to verify liveness, deadlock-freedom,
and safety properties, which can capture important security
concerns.

In Figure 3, we present the LTS representation of the
transactive-platform smart contract, designed with FSolidM.
The contract has three states:3
• Init, in which the contract has been deployed but not

been initialized. Before the contract can be used, it must
be initialized (i.e., numerical parameters must be set up).

• Receive, which corresponds to the offering phase of a
cycle (see Section 3.1). In this state, prosumers may post
(or cancel) their offers.

3. Generated smart-contract code is not included in the
paper because of space constraints. However, interested readers
can view the code at https://github.com/visor-vu/
transaction-management-platform

5

4/9/2018 VeriSolid

http://127.0.0.1:8888/?project=guest%2BVeriSolid&branch=master&node=%2F9%2F0&visualizer=FSMEditor&tab=0&layout=DefaultLayout&selection= 1/1

setup

createOffer

close

finalize

addAssignment

createSolution

postOffer

updateOffer

cancelOffer

Solve

Init Receive

Figure 3: FSolidM model of the SolidWorx smart contract.

• Solve, which corresponds to the solving phase of a
cycle (see Section 3.1). In this state, solvers may submit
solutions (i.e., resource allocations) based on the posted
(but not cancelled) offers.
In FSolidM, smart-contract functions are modeled as

LTS transitions. Note that by design, each function may
be executed only if the contract is in the origin state of
the corresponding transition. Our smart contract has the
following transitions (after the name of each transition, we
list the function parameters):
• from state Init:
– setup(uint64 numTypes, uint64
precision, uint64 maxQuantity, uint64
lengthReceive, uint64 lengthSolve):
initializes a contract with numerical parameter values,
setting up the number of resource types, the arithmetic
precision for calculations, the maximum quantity that
may be offered, and the time length of the offering and
solving phases; upon execution, the contract transitions
to state Receive.

• from state Receive:
– createOffer(bool providing, uint64
misc)): creates a blank offer (belonging to the
prosumer invoking this transition) within the smart
contract; parameter providing is true for providers
and false for consumers, parameter misc is an arbitrary
value that prosumers may use for their own purposes
(e.g., to distinguish between their own offers); emits an
OfferCreated event.

– updateOffer(uint64 ID, uint64
resourceType, uint64 quantity, uint64
value): sets quantity and value for a resource type
in an existing offer (identified by the ID given in the
OfferCreated event); may be invoked only by the
entity that created the offer, and only if the offer exists
but has not been posted yet; emits an OfferUpdated
event.

– postOffer(uint64 ID): posts an existing offer,
enabling solvers to include this offer in a solution; may
be invoked only by the entity that created the offer; emits
an OfferPosted event.

– cancelOffer(uint64 ID): cancels (i.e., “un-
posts”) an offer, forbidding solvers from including this
offer in a solution; may be invoked only by the entity

that created the offer; emits an OfferCanceled event.
– close(): protected by a guard condition on time,

which prevents the execution of this transition before
the offering phase of the current cycle ends; transitions
to state Solve; emits a Closed event.

• from state Solve:
– createSolution(uint64 misc): creates a new,

empty solution (i.e., resource allocation) within the
smart contract; parameter misc is an arbitrary value
that solvers may use for their own purposes (e.g.,
to distinguish between their own solutions); emits a
SolutionCreated event.

– addAssignment(uint64 ID, uint64
providingOfferID, uint64
consumingOfferID, uint64 resourceType,
uint64 quantity, uint64 value): adds a
resource assignment to an existing solution (identified
by the ID given in the SolutionCreated event);
may be invoked only by the entity that created the
solution; checks a number of constraints ensuring that
the solution remains valid if this assignment is added;
emits an AssignmentAdded event.

– finalize(): selects the best solution and finalizes
it by emitting an AssignmentFinalized event for
each assignment in the solution; protected by a guard
condition on time, which prevents the execution of this
transition before the solving phase of the current cycle
ends; transitions to state Receive.
Notice that posting an offer or submitting a solution

requires at least three or two function calls, respectively. The
reason for dividing these operations into multiple function
calls is to ensure that the computational cost of each function
call is constant:
• createOffer, postOffer, cancelOffer, and
createSolution are obviously constant-cost.

• updateOffer adds a single resource type to an offer.
• addAssignment simply updates the sum amounts on

the left-hand sides of Equations (1) and (2) for a single
providing and a single consuming offer, respectively;
and then it updates the sum in Equation (5).

With variable-cost functions, posting a complex offer or sub-
mitting a complex solution could be infeasible due to large
computational costs, which could exceed the gas limit.4

A typical sequence of function calls and events in Solid-
Worx is shown in Figure 4.

3.4. Analysis
The computational cost of every smart-contract function

is constant (i.e., O(1)) except for finalize, whose cost is
an affine function of the size of the solution (i.e., O(|A|)).
Note that the cost of finalize depends on the size of
the solution A only because it emits an event for every
assignment a ∈ A. These could be omitted for the sake of
maximizing performance since the assignments have already

4. In Ethereum, each transaction is allowed to consume only a limited
amount of gas, which corresponds to the computational and storage cost
of executing the transaction.

6

DirectoryDirectory Prosumer1Prosumer1 Smart ContractSmart Contract SolverSolverProsumer2Prosumer2

AssignmentAdded AssignmentAdded

OfferPosted
OfferPosted

AssignmentAdded

Solve
createSolution

finalize

looploop

Assignment

Finalized

Assignment

Finalized

Assignment

Finalized

loop

Interval

loop

Interval

loop

Interval

loop

Interval

loop

Interval

loop

Interval

addAssignment

query_contract_address

createOffer
updateOffer

postOffer

createOffer
updateOffer

postOffer
OfferPostedOfferPosted

setup

close

SolutionCreated SolutionCreated

Closed Closed

Figure 4: A possible sequence of operations in SolidWorx.
Underlined text denotes events emitted by the smart con-
tract. Some events, such as OfferUpdated, are omitted
for simplicity.

been recorded in the blockchain anyway. The number of
function calls required for posting an offer depends on
the number of resource types with non-zero quantity in
the offer. If there are n such resource types, then n + 2
calls are required (createOffer, n updateOffer, and
postOffer). The number of function calls required for
submitting a solution A is 1 + |A| (createSolution
and |A| addAssignment).

3.4.1. Verification

For the specification of safety and liveness properties,
we use Computation Tree Logic (CTL) [11]. CTL formulas
specify properties of execution trees generated by transitions
systems. The formulas are built from atomic predicates that
represent transitions and statements of the transition system
(i.e., smart contract), using several operators, such as AX,
AF, AG (unary) and, A[· U ·], A[· W ·] (binary). Each operator
consists of a quantifier on the branches of the tree and
a temporal modality, which together define when in the
execution the operand sub-formulas must hold. The intuition
behind the letters is the following: the branch quantifier is A
(for “All”) and the temporal modalities are X (for “neXt”),
F (for “some time in the Future”), G (for “Globally”), U (for
“Until”) and W (for “Weak until”). A property is satisfied
if it holds in the initial state of the transition systems. For
instance, the formula A[p W q] specifies that in all execution
branches the predicate p must hold up to the first state (not
including this latter) where the predicate q holds. Since we
used the weak until operator W, if q never holds, p must hold
forever. As soon as q holds in one state of an execution
branch, p does not need to hold anymore, even if q does
not hold. On the contrary, the formula AG A[p W q] specifies
that the subformula A[p W q] must hold in all branches at all
times. Thus, p must hold whenever q does not hold, i.e.,
AG A[p W q] = AG (p ∨ q).

We verified correctness of behavioral semantics with the
NuSMV model checker [10], by verifying the following
properties:
• deadlock-freedom, which ensures that the contract cannot

enter a state in which progress is impossible;
• “if close happens, then postOffer or
cancelOffer can happen only after finalize”,
translated to CTL as: AG(close) → AX A
[¬(postOffer ∧ cancelOffer) W finalize],
which ensures that prosumers cannot post or cancel their
offers once the solvers have started working;

• “OfferPosted(ID) can happen only if (ID <
offers.length) && !offers[ID].posted
&& (offers[ID].owner == msg.sender)”,
translated to CTL as:
A[¬OfferPosted(ID) W (ID <
offers.length) && !offers[ID].posted
&& (offers[ID].owner == msg.sender)],
which ensures that an offer can be posted only if it has
been created (but not yet posted) and only by its creator;

• “OfferCanceled(ID) can happen only if (ID
< offers.length) && offers[ID].posted
&& (offers[ID].owner == msg.sender)”,
translated to CTL as:
A[¬OfferCanceled(ID) W (ID <
offers.length) && offers[ID].posted
&& (offers[ID].owner == msg.sender)],
which ensures that an offer can be canceled only if it has
been posted and only by the poster;

• “if finalize happens, then createSolution can
happen only after close”, translated to CTL as:
AG(finalize) → AX A [¬createSolution W
close], which ensures that solutions can be posted only
in the solving phase.

4. Case Studies
To evaluate our platform, we present two case studies,

based on the energy trading and carpooling problems (Sec-
tion 2.2), with numerical results. The computational results
for the carpool example were obtained on a virtual machine
configured with 16 GB of RAM and 4 cores of a i7-6700HQ
processor. The energy market example results were obtained
on a virtual machine configured with 8GB of RAM and 2
cores of an i7-6700HQ processor. For these experiments, we
used our private Ethereum blockchain network [12].

4.1. Carpooling Problem
In this section, we describe a simulated carpooling sce-

nario. The problem of carpooling assignment was introduced
earlier in Section 2.2.2. Here, we model a carpool prosumer
as an actor that specifies 1) whether it is providing or
requesting a ride, 2) the number of seats being offered/re-
quested, 3) a residence, 4) a destination, 5) a time interval
during which the ride is available/required, 6) and a radius
specifying how far out of their way they are willing to travel.
To setup the carpooling problem, we need to identify these
parameters and encode them as offers.

7

Figure 5: Green and red dots mark the 75 residences
(anonymized and resampled). Blue dots are destinations on
campus. We used K-Means to identify 20 central locations
(yellow dots) for pickup.

Residences were generated by sampling from real-trip
distribution data of Vanderbilt University. Destinations were
chosen uniformly at random for each prosumer from the 5
garages around Vanderbilt University. Other parameters
were also chosen randomly: number of seats from the
range of 1 to 3, prosumer type from producer or consumer,
time interval from 15-minute intervals between 7:00 and
9:30AM. The “out of the way” metric was chosen to be half
of the distance between the residence and the destination.
For a provider, the center of the pick-up circle is the midway
point between the residence and the destination, and for a
consumer, the center is the residence.

Since each prosumer has a distinct residence, encoding it
as a unique resource type would mean that every prosumer
would need to have the address of every other prosumer
to determine if they are in their pick-up range. Instead,
we specify pick-up points which are public locations were
carpoolers can meet. Each prosumer can determine which
pick-up points are within their out-of-the-way radius and
list those points in their offer. To encode these values, we
assign an ID to each pickup point and destination. Finally,
we encode each 15-minute interval using a timestamp.

An offer consists of a collection of alternative resource
types, each with a quantity and value. We encode a resource
type, which is a combination of a time interval, a pick-up
point, and a destination, as a 64-bit unsigned integer. For
example, if timestamp is 1523621700, pick-up location ID
is 15, and destination ID is 3, then the resource type is
1523621700153. A complete offer may look as follows:

{True, {1523623500173 : 2, 1523623500153 : 2,

1523624400153 : 2, 1523624400173 : 2},
{1523623500173 : 10, 1523623500153 : 10,

1523624400153 : 10, 1523624400173 : 10} }.

In this offer, the prosumer is offering rides (True for
providing), has two pick-up locations in range (17 and 15),
drives to destination 3, is available in two time intervals,
offers 2 seats, and asks for value 10 in exchange for a ride.

Figure 6: Each bar is a 15 minute interval. Each color in a
bar is an offer that is valid during that interval. The height of
each color is the number of seats offered. If the color appears
during another interval that means it could be matched in
any one of them, but no more than one.

Figure 7: 4 production and 4 consumption offers that were
matched. The blue and yellow production offers are matched
with the orange and yellow consumption offers. The height
of each color is the number of seats in that offer that were
matched.

In our experiment, we selected 75 prosumers for the
carpool service simulation. The red and green points in
Figure 5 are the locations of the consumers and producers
randomly sampled from the anonymized distribution data
of employees of Vanderbilt University. The yellow points
were selected as pick up locations using K-Means clustering
choosing 20 clusters. The blue points are 5 garages around
Vanderbilt campus where employees typically park.

Figure 6 shows all the offers posted to the platform.
Figure 7 shows the production and consumption offers that
were matched. The running time of the solver was 23 ms,
while the time between the request for finalization and
emission of AssignmentFinalized events was 29 s.

8

Figure 8: Total energy production capacity (green) and
energy demand (red) for each interval, as well as the total
energy traded in each interval (blue).

Figure 9: A failure scenario with failure at 8:15AM. The
solver can submit new solutions as time progresses; the most
recent solution is the color that is on the top of the stack
for an interval.

4.2. Energy Trading Problem
To show the versatility of our transaction management

platform, we now apply it to the problem of energy trading
within a microgrid, which we introduced in Section 2.2.1. In
this example, a prosumer is modeled as an actor with an en-
ergy generation and consumption profile for the near future.
In practice, the generation profile would be typically derived
from predictions based on the weather, energy generation
capabilities, and the amount of battery storage available. The
consumption profile would be derived from flexible power
loads, like washers and electric vehicles.

To represent future generation or consumption at a cer-
tain time, resource types encode timestamps for 15-minute
intervals, during which the power will be generated or
consumed. As an example, consider a battery that has 500
Wh energy, which could be discharged any time between
9AM and 10AM. This can be represented by an offer having
resource types 900, 915, 930, and 945, specifying a quantity
of 500 Wh for each.

For our simulation, the prosumer energy profiles are load
traces recorded by Siemens during a day from a microgrid
in Germany, containing 102 homes (5 producers and 97

consumers). Since the dataset does not include prices, we
assume reservation prices to be uniform in our experiments,
and focus on studying the amount of energy traded and the
performance of the system.

Figure 8 shows the total production and consumption
across this microgrid, as well as the total energy traded per
interval using our platform. The horizontal axis shows the
starting time for each of the 96 intervals.

In another simulation, we exercise the hybrid solver
architecture by running multiple solvers, and after some
time, cause one to fail. This result is shown in Figure 9.
The narrow vertical red line indicates when solver 1 fails at
8:15AM. Up until that point, solver 1 submitted the green,
yellow, light blue, orange solutions, with the final solution
being red.On the other hand we see that solver 2 continues
to provide solutions for later intervals.

5. Related Research
Online Information Management Platforms: Smart

and connected community systems are designed to collect,
process, transmit, and analyze data. In this context, data
collection usually happens at the edge because that is where
edge devices with sensors are deployed to monitor surround-
ing environments. SolidWorx does not suggest a specific
data collection methodology. Rather, it follows an actor-
driven design pattern where “prosumer” actors can integrate
their own agents into SolidWorx by using the provided
APIs. Another concern of these platforms is the cost of
processing. Traditionally, this problem was solved using
scalable cloud resources in-house [13]. However, SolidWorx
enables a decentralized ecosystem, where components of the
platform can run directly on edge nodes, which is one of the
reasons why we designed it to be asynchronous in nature.

To an extent, the information architecture of SolidWorx
can be compared to dataflow engines [14], [15], [16]. All of
these existing dataflow engines use some form of a compu-
tation graph, comprising computation nodes and dataflow
edges. These engines are designed for batch-processing
and/or stream-processing high volumes of data in resource
intensive nodes, and do not necessarily provide additional
“platform services” like trust management or solver nodes.

Integration with Blockchains: SolidWorx integrates
a blockchain because it enables the digital representation
of resources, such as energy and financial assets, and
their secure transfer from one party to another. Further,
blockchains constitute an immutable, complete, and fully
auditable record of all transactions that have ever occurred
in the system. This is in line with the increased interest and
commercial adoption of blockchains [17], which has yielded
market capitalization surpassing $75 billion USD [18] for
Bitcoin and $36 billion USD for Ethereum [19]. Prior
work has also considered the security and privacy of IoT
and Blockchain integrations [20], [21], [22].

The biggest challenge in these integrated systems comes
from computational-complexity limitations and from the
complexity of the consensus algorithms. In particular, their
transaction-confirmation time is relatively long and variable,
primarily due to the widely-used proof-of-work algorithm.

9

Further, blockchain-based computation is relatively expen-
sive, which is the main reason why we separated finding
a solution and validating the solution into two separate
components in SolidWorx.

Correctness of Smart Contracts: Both verification
and automated vulnerability discovery are considered in the
literature for identifying smart-contract vulnerabilities. For
example, Hirai performs a formal verification of a smart
contract that is used by the Ethereum Name Service [23].
However, this verification proves only one property and
it involves relatively large amount of manual analysis. In
later work, Hirai defines the complete instruction set of
the Ethereum Virtual Machine in Lem, a language that can
be compiled for interactive theorem provers [24]. Using
this definition, certain safety properties can be proven for
existing contracts.

Bhargavan et al. outline a framework for verifying the
safety and correctness of Ethereum smart contracts [25].
The framework is built on tools for translating Solidity and
Ethereum Virtual Machine bytecode contracts into F ∗, a
functional programming language aimed at program verifi-
cation. Using the F ∗ representations, the framework can
verify the correctness of the Solidity-to-bytecode compi-
lation as well as detect certain vulnerable patterns. Luu
et al. provide a tool called OYENTE, which can analyze
smart contracts and detect certain typical security vulnera-
bilities [26]. The main difference between prior work and
the approach that we are using (i.e., verifying FSolidM
models with NuSMV) is that the former can prevent a set
of typical vulnerabilities, but they are not effective against
vulnerabilities that are atypical or belong to types which
have not been identified yet.

6. Conclusion
Smart and connected community applications require

decentralized and scalable platforms due to the large number
of participants and the lack of mutual trust between them. In
this paper, we introduced a transactive platform for resource
allocation, called SolidWorx. We first formulated a general
problem that can be used to represent a variety of resource
allocation problems in smart and connected communities.
Then, we described an efficient and trustworthy platform
based on a hybrid approach, which combines the efficiency
of traditional computing environments with the trustwor-
thiness of blockchain-based smart contracts. Finally, we
demonstrated the applicability of our platform using two
case studies based on real-world data.
Acknowledgement: This work was funded in part by a grant
from Siemens, CT and in part by a grant from NSF under
award number CNS-1647015. The views presented in this
paper are those of the authors and do not reflect the opinion
or endorsement of Siemens, CT and NSF.

References
[1] R. B. Melton, “Gridwise transactive energy framework,” Pacific

Northwest National Laboratory, Tech. Rep., 2013.

[2] A. Mavridou and A. Laszka, “Designing secure Ethereum smart
contracts: A finite state machine based approach,” in Proceedings of
the 22nd International Conference on Financial Cryptography and
Data Security (FC), February 2018.

[3] G. A. Agha, “Actors: A model of concurrent computation in dis-
tributed systems,” Massachusetts Institute of Technology, Artificial
Intelligence Lab, Tech. Rep., 1985.

[4] A. Basu, B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen,
and J. Sifakis, “Rigorous component-based system design using the
bip framework,” IEEE Software, vol. 28, no. 3, pp. 41–48, 2011.

[5] S. Eisele, I. Mardari, A. Dubey, and G. Karsai, “Riaps: Resilient
information architecture platform for decentralized smart systems,” in
2017 IEEE 20th International Symposium on Real-Time Distributed
Computing (ISORC), May 2017, pp. 125–132.

[6] J. Bergquist, A. Laszka, M. Sturm, and A. Dubey, “On the design
of communication and transaction anonymity in blockchain-based
transactive microgrids,” in Proceedings of the 1st Workshop on Scal-
able and Resilient Infrastructures for Distributed Ledgers (SERIAL).
ACM, 2017, pp. 3:1–3:6.

[7] A. Laszka, A. Dubey, M. Walker, and D. Schmidt, “Providing privacy,
safety and security in iot-based transactive energy systems using dis-
tributed ledgers,” in Proceedings of the 7th International Conference
on the Internet of Things, 2017.

[8] IBM ILOG CPLEX, “V12. 1: Users manual for CPLEX,” Interna-
tional Business Machines Corporation, vol. 46, no. 53, p. 157, 2009.

[9] J. Sifakis, “Rigorous system design,” Foundations and Trends in
Electronic Design Automation, vol. 6, no. 4, pp. 293–362, 2013.

[10] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv 2: An opensource
tool for symbolic model checking,” in International Conference on
Computer Aided Verification. Springer, 2002, pp. 359–364.

[11] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of model check-
ing. MIT press, 2008.

[12] H. Diedrich, Ethereum: Blockchains, Digital Assets, Smart Contracts,
Decentralised Autonomous Organisations. CreateSpace Independent
Publishing Platform, 2016. [Online]. Available: https://books.google.
com/books?id=Y2YRvgAACAAJ

[13] D. C. Schmidt, J. White, and C. D. Gill, “Elastic infras-
tructure to support computing clouds for large-scale cyber-
physical systems,” in 2014 IEEE 17th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Comput-
ing (ISORC), 2014, pp. 56–63.

[14] Apache Software Foundation, “Apache Storm,” http://storm.apache.
org/.

[15] ——, “Apache Spark,” http://spark.apache.org/.
[16] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed

stream computing platform,” in Data Mining Workshops (ICDMW),
2010 IEEE International Conference on. IEEE, 2010, pp. 170–177.

[17] M. Iansiti and K. Lakhani, “The truth about blockchain,” https://hbr.
org/2017/01/the-truth-about-blockchain, January 2017, (accessed on
08/30/2017).

[18] CoinMarketCap, “Bitcoin (BTC) price, charts, market cap, and other
metrics,” https://coinmarketcap.com/currencies/bitcoin/, August 2017,
(accessed on 08/30/2017).

[19] ——, “Ethereum (ETH) $381.84 (3.83%),” https://coinmarketcap.
com/currencies/ethereum/, August 2017, (accessed on 08/30/2017).

[20] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain
for iot security and privacy: The case study of a smart home,” in
2017 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), 2017, pp. 618–
623.

[21] A. Ouaddah, A. A. Elkalam, and A. A. Ouahman, “Towards a
novel privacy-preserving access control model based on blockchain
technology in IoT,” in Europe and MENA Cooperation Advances in
Information and Communication Technologies, 2017, pp. 523–533.

[22] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts
for the internet of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[23] Y. Hirai, “Formal verification of deed contract in Ethereum name
service,” https://yoichihirai.com/deed.pdf, November 2016.

[24] ——, “Defining the Ethereum Virtual Machine for interactive theorem
provers,” in 1st Workshop on Trusted Smart Contracts, in conjunction

10

with the 21st International Conference of Financial Cryptography and
Data Security (FC), April 2017.

[25] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, A. Rastogi, T. Sibut-Pinote, N. Swamy,
and S. Zanella-Béguelin, “Short paper: Formal verification of smart
contracts,” in 11th ACM Workshop on Programming Languages and
Analysis for Security (PLAS), in conjunction with ACM CCS 2016,
October 2016, pp. 91–96.

[26] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in 23rd ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2016, pp. 254–269.

11

