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ABSTRACT
Recently, bug-bounty programs have gained popularity and become
a significant part of the security culture of many organizations.
Bug-bounty programs enable organizations to enhance their se-
curity posture by harnessing the diverse expertise of crowds of
external security experts (i.e., bug hunters). Nonetheless, quanti-
fying the benefits of bug-bounty programs remains elusive, which
presents a significant challenge for managing them. Previous stud-
ies focused on measuring their benefits in terms of the number of
vulnerabilities reported or based on the properties of the reported
vulnerabilities, such as severity or exploitability. However, beyond
these inherent properties, the value of a report also depends on
the probability that the vulnerability would be discovered by a
threat actor before an internal expert could discover and patch it.
In this paper, we present a data-driven study of the Chromium
and Firefox vulnerability-reward programs. First, we estimate the
difficulty of discovering a vulnerability using the probability of
rediscovery as a novel metric. Our findings show that vulnerability
discovery and patching provide clear benefits by making it difficult
for threat actors to find vulnerabilities; however, we also identify
opportunities for improvement, such as incentivizing bug hunters
to focus more on development releases. Second, we compare the
types of vulnerabilities that are discovered internally vs. externally
and those that are exploited by threat actors. We observe signif-
icant differences between vulnerabilities found by external bug
hunters, internal security teams, and external threat actors, which
indicates that bug-bounty programs provide an important benefit
by complementing the expertise of internal teams, but also that
external hunters should be incentivized more to focus on the types
of vulnerabilities that are likely to be exploited by threat actors.

CCS CONCEPTS
• Security and privacy → Economics of security and privacy;
Software and application security; • Information systems →
Browsers; World Wide Web.
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1 INTRODUCTION
Despite significant progress in software-engineering practices, the
security of most software products and services remains imperfect

in practice. Traditionally, testing the security of software prod-
ucts and services was the responsibility of internal security teams
and external penetration-testing teams. However, these efforts are
necessarily limited in their size and in the range of expertise ap-
plied. This limitation puts defenders at a disadvantage compared
to attackers since publicly-available products and services may be
targeted by myriads of attackers, who possess diverse expertise
(e.g., different attackers may be familiar with different techniques).

Spearheaded by Netscape as a forerunner in 1995 [13], bug-
bounty programs—which are also known as vulnerability reward
programs—have emerged as a key element of many organizations’
security culture [18, 25, 35]. Bug-bounty programs are a form of
crowdsourced vulnerability discovery, which enables harnessing
the diverse expertise of a large group of external bug hunters [13].
A program gives hackers the permission to test the security of a
software product or service and to report vulnerabilities to the orga-
nization sponsoring the program [20]. By rewarding valid reports
with bounties, the program incentivizes hackers to spend effort on
searching for vulnerabilities and reporting them [1, 36]. In addition
to enabling the sponsoring organization to fix security vulnerabil-
ities before they could be exploited, a bug-bounty program also
publicly signals the organization’s commitment to continuously
improving security.

However, quantifying the benefits of a bug-bounty program re-
mains elusive, which presents a significant challenge for managing
them. A number of prior research efforts have investigated bug-
bounty programs (e.g., Finifter et al. [13], Zhao et al. [35], Laszka et
al. [19, 20], Maillart et al. [22], Luna et al. [21], Elazari [9], Malladi
and Subramanian [23], and Walshe and Simpson [33]). However, a
common limitation of previous studies is that they typically mea-
sure the value provided by a bug-bounty program in terms of the
number of vulnerabilities reported or, in some cases, based on the
inherent properties of the reported vulnerabilities, such as sever-
ity or exploitability. As we discuss below, the number of reported
vulnerabilities and their inherent properties alone cannot quantify
security benefits since they ignore the likelihood of discovery.

While some vulnerability reports provide immense value to or-
ganizations by enabling them to patch vulnerabilities before threat
actors would exploit them, other reports might provide relatively
low value. First, some vulnerabilities might be discovered anyway
by internal security experts before any threat actors could exploit
them. Reports of such vulnerabilities provide low value since or-
ganizations could patch these vulnerabilities before exploitation
without spending funds to reward external bug hunters. Second,
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some vulnerabilities might never be discovered by threat actors. Patch-
ing such vulnerabilities is futile; in fact, it could even be considered
harmful since patches can reveal the existence of vulnerabilities to
threat actors [29]. Finally, even if some vulnerabilities are eventu-
ally discovered by threat actors, discovery might take so long that
the software components become obsolete before the vulnerabili-
ties could be exploited [6, 30]. In contrast, other software projects
may have relatively stable code bases over time, which also domi-
nates the number of discovered vulnerabilities [28]. In light of these
considerations, the value of a vulnerability report hinges not only
on the inherent properties of the vulnerability, such as severity,
but also on the probability that the reported vulnerability would be
exploited by threat actors before another benign actor would report it.

Research Questions. Benefits of vulnerability discovery (RQ1):
To study the issues mentioned above, we consider the probability
of rediscovery, that is, the probability that a previously discovered
vulnerabilities is independently rediscovered by another bug hunter.
The probability of rediscovery should be a key consideration for
bug-bounty and vulnerability management since known vulnera-
bilities have a negative impact only if they are (re-)discovered by
threat actors before they are patched (and before the patches are
applied by users). In fact, some prior works suggested that vulnera-
bilities should not be patched proactively because patching only
brings them to the threat actors’ attention. According to this view,
proactive vulnerability patching and bug bounties would provide
little value [29]. However, this proposition holds only if the proba-
bility of rediscovering a vulnerability is negligible. Schneier [31]
conjectures, in contrast, that when one “person finds a vulnera-
bility, it is likely that another person soon will, or recently has,
found the same vulnerability.” Indeed, based on studying Microsoft
security bulletins, Ozment finds that vulnerability rediscovery is
non-negligible; but this result is based on a small sample (14 re-
discovered vulnerabilities, constituting 7.69% of all vulnerabilities
listed in the bulletins) [27]. In contrast, we characterize rediscov-
ery probabilities based on thousands of vulnerability reports and
thereby respond to Geer’s call to conduct longitudinal research in
this context [15].

• RQ1.1: Are vulnerabilities rediscovered? Are vulnerabilities
more difficult to find, in terms of rediscovery probability,
in stable releases than in development ones?

• RQ1.2: Are vulnerability discoveries and rediscoveries clus-
tered in time, or is rediscovery a “memory-less” process?

Benefits of bug bounties (RQ2): If external bug hunters work
similarly to internal security teams and discover similar vulnera-
bilities, then bug-bounty programs provide relatively low security
benefits, and internalizing vulnerability-discovery efforts might be
more efficient than sponsoring bug-bounty programs. However,
theoretical work by Brady et al. suggests that there are efficiency
benefits to testing software products in parallel by different teams
that likely use different test cases and draw on different types of
expertise [5]. Supporting this view, Votipka et al. report key differ-
ences between internal security testers and external bug hunters
based on a survey of 25 participants, focusing on how each group

finds vulnerabilities, how they develop their skills, and the chal-
lenges that they face [32]. In contrast, we focus on the actual vulner-
abilities reported by these groups to facilitate the quantification of
security benefits from the perspective of a sponsoring organization.

• RQ2: Do external bug hunters report different types of
vulnerabilities than internal discoveries?

Management of vulnerability discovery and bug bounties
(RQ3): The objective of both external and internal vulnerability
discovery is to find and patch vulnerabilities that would be found
by threat actors (since patching vulnerabilities that threat actors
would not find provides a much lower security benefit).1 Hence,
the benefits of running bug-bounty programs hinge on whether
bug hunters find the same set of vulnerabilities that the threat
actors would find. If there is a significant discrepancy, bug-bounty
managers must try to steer bug hunters towards discovering the
right types of vulnerabilities, e.g., using incentives.

• RQ3.1: Do bug hunters report similar types of vulnerabili-
ties than those that are being exploited by threat actors?

• RQ3.2: Which types of vulnerabilities are the most difficult
to discover?

To answer these questions, we collect vulnerability data from
the issue trackers of two major web browsers, Chromium (i.e., the
open-source project that provides the vast majority of code for
Google Chrome) and Firefox. We combine these with other datasets
and apply a thorough data cleaning process to reliably determine
which reports are internal and which are external, which releases
and components are impacted by each issue, which reports are
duplicates (i.e., rediscoveries), which vulnerabilities were exploited,
etc. Our cleaned datasets and our software implementation of the
data collection and cleaning processes are publicly available [4].

Organization. The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of our data collection and
cleaning processes. Section 3 presents an in-depth analysis of the
benefits of vulnerability discovery and bug-bounty programs. Sec-
tion 4 discusses related work on vulnerability discovery and bug
bounties. Finally, Section 5 presents concluding remarks.

2 DATA COLLECTION AND CLEANING
We collect reports of security issues (i.e., vulnerabilities) from the
issue trackers of Chromium and Firefox. An original report of a
vulnerability is a report that does not have duplicate in its Status
field, which has typically—but not always—the earliest report date.
A duplicate report, identified by duplicate in its Status field, is a
report of an issue that had already been reported. If the duplicate
and original reports were submitted by different bug hunters, then
we consider the duplicate to be an independent rediscovery.

We describe the technical details of the data collection and clean-
ing processes in Appendices D and E.

1Note that some bug hunters could be malicious; in this paper, we define bug hunter
as someone who reports a vulnerability, thereby helping the program. At the same
time, they might also try to exploit the vulnerability, which could be reported as the
vulnerability being exploited in the wild. Since we focus on the benefits of vulnerability
discovery, we study both activities strictly from the programs’ perspective.
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2.1 Data Collection
We collect the following five attributes for each vulnerability: im-
pacted release channels (stable and/or development), security sever-
ity (critical, high, moderate, or low), weakness type represented as
broad type of Common Weakness Enumeration (CWE), affected
components, and programming languages (i.e., languages of files
that were modified to patch the issue). Note that for ease of ex-
position, we use the same names for severity levels and impacted
releases for Chromium and Firefox; however, there is no one-to-one
equivalence since there may be differences between the definitions
of the two VRPs. For a duplicate report, we use the attributes of the
original report as the attributes of the duplicate. If an original report
is missing some attributes, we use the attributes of its duplicates.

Chromium: We collect the details of all vulnerability reports
from September 2, 2008 – September 13, 2022 from the Chromium
issue tracker2 using Monorail API version 23. For each report, the
Chromium issue tracker lists affected components, impacted release
channels, comments that include conversations among internal
employees and external parties, as well as a history of changes (i.e.,
amendments) made to the report.

Firefox:We collect data from two main resources, the Bugzilla
Firefox bug tracker4 and the Mozilla website (Known Vulnerabil-
ities5 and Mozilla Foundation Security Advisories (MFSA)6). We
collect security reports from January 24, 2012 – September 15, 2022.
The MFSA lists vulnerabilities for Mozilla products. We scrape advi-
sories for Firefox to be able to identify reports that pertain to stable
releases. We also collect the Reporter field, which some pages in
MFSA have, to identify external vs. internal reporters.

2.2 Data Cleaning
Rediscovery and Duplicate Reports. In both issue trackers, there

is a Status field that indicates whether a report is a duplicate of
a previously reported vulnerability or an original report. In the
Chromium issue tracker, for rediscoveries the Status field is marked
asDuplicate. For each duplicate report, we follow theMergeInto field
to retrieve the referenced original report. If that is also a duplicate,
we again follow the MergeInto field of the referenced report until
we find the original. In the Firefox issue tracker, we can similarly
determine whether a report is a duplicate based on the Status field,
and we can find the original report by following the references
(recursively, if needed). Some vulnerabilities are reported multiple
times by the same hunter; we remove these redundant reports and
keep only the earliest report of each vulnerability for each hunter.
Some vulnerabilities do not have accessible pages in Bugzilla. Since
we cannot identify the earliest report for these vulnerabilities, we
excluded them from our rediscovery analysis. Some Firefox reports
are incomplete with respect to replication and patching. For some of
these, Mozilla opened a new report of the vulnerability, which was
then completed with respect to this information, and the first report
was marked as a duplicate. We also exclude these vulnerabilities
from our analysis since they are not actual rediscoveries.

2https://bugs.chromium.org/p/chromium/issues/
3https://chromium.googlesource.com/infra/infra/+/master/appengine/monorail/api/
4https://bugzilla.mozilla.org/home
5https://www.mozilla.org/en-US/security/known-vulnerabilities/
6https://www.mozilla.org/en-US/security/advisories/

External vs. Internal Reports: Chromium. The Chromium issue
tracker contains reports of vulnerabilities either reported internally
by Google or reported externally by bug hunters. For each report,
we use the reporter’s email address to classify the report as either an
internal or an external report. Note that we cannot always determine
the report’s origin based solely on the email address. For each such
email address, we manually check the associated activities, such
as vulnerabilities reported and comments posted to determine the
reporter’s origin. We are able to identify the email address of the
actual external reporter for 98% of the valid external reports.

External vs. Internal Reports: Firefox. Vulnerabilities in Firefox
VRP are reported either internally by Firefox team members or
by external reporters. We use four steps to separate internal and
external reports. First, we use theWhiteboard and bug-flag fields
in the report information page. If a report has reporter-external
in Whiteboard or sec-bounty in bug-flag, we generally consider
the report to be external; otherwise, we consider it to be internal.
However, there are reports, which do not have the above keywords,
but were reported by external bug hunters. To identify those reports,
in the next step, we leverage a snow-balling technique (on the
report comments) to identify around 650 reports that appear to
be from internal team members of Mozilla on the first glance, but
their actual reporters are external. In the third step, we consider
reporters that appear to have both internal and external reports
(around 50). We manually disambiguate these cases by reading
comments and checking their public websites. In the last step, we
leverage the Reporter field in the MFSA by matching the reporters’
profile names (from Bugzilla) with the names mentioned by the
MFSA. By applying the above steps, we are able to distinguish
internal and external reports in 97% of the cases.

Stable vs. Development Release Channels. Stable releases arewidely
used by end users, while development releases are typically used
only by testers and bug hunters. We use the term release channel to
refer to these different release versions. Note that we distinguish
between reports that affect stable releases and reports that affect
only development releases. In Chromium, there are reports that af-
fect both stable and development releases, which we exclude from
our analysis of stable vs. development. For Firefox, we consider
Bugzilla reports that are listed in the MFSA to be reports that affect
stable releases.

2.3 Other Data Sources
Most vulnerabilities that have been fixed have links to the Google or
Mozilla source-code repositories in their comments, which we use
to identify the files that were changed to fix the vulnerability. For
each vulnerability with a repository link, we collect the program-
ming languages of the files that were changed. We also leverage
CVEDetails7 and MITRE CWE8 to collect information regarding
CVE IDs and weakness types (CWEs), when available.

To identify exploited vulnerabilities, we first collect an initial set
of exploited vulnerabilities from the Known Exploited Vulnerabili-
ties Catalog of CISA9. Then, we extend this set iteratively using a

7https://www.cvedetails.com/
8https://cwe.mitre.org/
9https://www.cisa.gov/known-exploited-vulnerabilities-catalog

https://bugs.chromium.org/p/chromium/issues/
https://chromium.googlesource.com/infra/infra/+/master/appengine/monorail/api/
https://bugzilla.mozilla.org/home
https://www.mozilla.org/en-US/security/known-vulnerabilities/
https://www.mozilla.org/en-US/security/advisories/
https://www.cvedetails.com/
https://cwe.mitre.org/
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
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Table 1: Summary of Datasets

Security Severity Chromium Firefox
Critical 309 1,420
High 8,616 2,332

Moderate 5,598 1,156
Low 2,720 605

Impacted Releases Chromium Firefox
Stable 8,152 3,002

Development 5,325 3,064
Reports Chromium Firefox
Duplicates 3,905 1,262
Originals 21,453 4,804

Reports’ Origins Chromium Firefox
Externals 12,221 1,837
Internals 13,137 4,229

Table 2: Comparison of Stable and Development Releases

Impacted Releases Chromium Firefox
Number of Unique External Reporters

Stable 1,297 413
Development 198 285
Ratio of Rediscovered Vulnerabilities

Stable 8.63% 9.27%
Development 4.26% 12.37%

Mean Patching Time in Days
Stable 80.73 73.62

Development 12.35 103.36

snowballing method by identifying terms in comments related to
exploitation (e.g., exploited in the wild) and gathering vulnerabilities
whose comments include these terms.

2.4 Summary of Datasets
For Chromium, we collected in total 25,358 valid reports of secu-
rity issues. Of these, 12,221 were externally reported, and 13,137
were internally reported. Among reports with information about
impacted releases (13,477 reports in total), 8,152 reports pertain to
stable releases, and 5,325 pertain to development one. Finally, 21,453
are original reports, and 3,905 are duplicate reports. For Firefox,
we collected in total 6,066 valid reports of security issues, of which
4,804 are original reports, and 1,262 are duplicates. There are 3,002
reports of vulnerabilities which pertain to stable releases, and 3,064
reports that pertain to development releases. 1,837 reports were re-
ported externally, and 4,229 were reported internally. Table 1 shows
summary statistics of the two datasets. Table 2 shows the number
of unique external bug hunters (note that 86 external reports were
submitted anonymously for Firefox). For year-over-year temporal
analysis, we provide annual data in Appendix A. We observe that
most key metrics of interest are stable (e.g., fraction of duplicate
reports is around 18.2% for Chromium with 4.9% standard deviation
annually), which suggest that the reward programs’ evolution over
the past years does not significantly impact our findings.

3 RESULTS
3.1 Benefits of Vulnerability Discovery and Bug

Bounty Programs
3.1.1 Probability of Rediscovery (RQ 1.1). We begin our analysis
by investigating whether vulnerabilities are more difficult to find in
stable releases than in development ones. To quantify this, we first
study the probability that a vulnerability is rediscovered. Table 2
shows for each release channel the ratio of vulnerabilities that are
rediscovered at least once. In Firefox, vulnerabilities that impact
development releases are rediscovered more often than those that
impact stable releases; in Chromium, it is vice versa.

Before drawing any conclusions about the difficulty of finding
vulnerabilities, we must also consider the number of unique ex-
ternal reporters working on stable and development releases (see
Table 2). We find that in both Chromium and Firefox, there are
considerably more bug hunters who report vulnerabilities in stable
releases than in development ones. Combined with the rediscovery
probabilities, this suggests that it is more difficult to find vulnera-
bilities in stable releases: although stable releases seem to attract
significantly more attention, differences in rediscovery probabilities
are less pronounced.

However, there is one more factor that can contextualize the
difference in rediscovery probabilities: the amount of time required
to patch a vulnerability. If it takes longer to patch a vulnerability,
bug hunters have more time to rediscover it, which should lead
to a higher rediscovery probability, ceteris paribus. Table 2 shows
the average time between the first report of a vulnerability and
the time when it was patched. We compute the time to patch Δfix
as Δfix = 𝑇fix − 𝑇earliest, where 𝑇fix is the date and time when the
vulnerability was fixed and 𝑇earliest is when the vulnerability was
first reported in the issue tracker. For Chromium, we observe that
vulnerabilities in stable releases are patched much slower than in
development releases, giving bug hunters significantly more time
to rediscover them. For Firefox, the evidence is more nuanced. Here,
we also observe a lower rediscovery probability for stable releases
even though there is a larger workforce; however, hunters have to
work with a slightly shorter average patching time window.

Finding 1. The rediscovery probabilities, number of bug hunters,
and mean patching times in conjunction suggest that vulnerabilities
are easier to find in development releases; vulnerabilities that are easy
to find are likely to be discovered and patched during development,
demonstrating the benefits of vulnerability discovery.

3.1.2 Rediscovery Probability over Time (RQ 1.2). Since the prob-
ability of rediscovery alone cannot quantify the benefit of a vul-
nerability report, we contextualize the rediscovery probabilities of
stable, development, and both releases together with the impact of
patching. For a duplicate report, we define the time until rediscovery
as Δrediscover𝑑 = 𝑇open −𝑇earliest (i.e., difference between the time
of submitting the duplicate report and the submission time of the
earliest report of the vulnerability). We estimate the probability
Pr [𝑅𝑒 (𝑡) | 𝑡 < Δfix] that a vulnerability is rediscovered on the 𝑡-th
day after it is first reported (this event is denoted 𝑅𝑒 (𝑡)) given that
the vulnerability has not been patched by day 𝑡 as follows:��{𝑜𝑑 | 𝑑 ∈ 𝐷,𝑜𝑑 ∈ 𝑂fix,Δrediscover𝑑 = 𝑡

}�� /|𝑂fix | (1)
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Figure 1: Probability that a vulnerability is rediscovered a
certain time after its first report, given that it has not been
patched by that time. F and C denote Firefox and Chromium.
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) in development (solid

lines) and stable releases (dashed lines).

The nominator is the number of original reports (𝑜𝑑 ) that have not
been fixed by day 𝑡 (𝑜𝑑 ∈ 𝑂fix) and are rediscovered on the 𝑡-th day
after they are first reported (Δrediscover𝑑 = 𝑡 ). The denominator is
the number of original reports that have not been fixed by day 𝑡 .

Similarly, we also estimate probability Pr [𝑅𝑒 (𝑤) |𝑤 < Δfix] for
the𝑤-th week as follows:��{𝑜𝑑 | 𝑑 ∈ 𝐷,𝑜𝑑 ∈ 𝑂fix, 7𝑤 − 6 ≤ Δrediscover𝑑 ≤ 7𝑤

}�� /|𝑂fix | (2)

where 𝑂fix ←
{
𝑜 ∈ 𝑂 | Δfix𝑜 > 7𝑤

}
, i.e., not fixed by week𝑤 .
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Figure 3: Probability that a vulnerability is not fixed in the 𝑡
days after it is first reported (Pr
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Figure 4: Probability that a vulnerability is rediscovered on
the 𝑡-th day after it is first reported (Pr[𝑅𝑒 (𝑡)]).

Fig. 1a shows that rediscovery probabilities decrease over time in
both Chromium and Firefox. We fit curves to identify and visualize
important trends; building principled models that fit these trends
is a major task, which we leave for future work. When fitting
curves, we weigh each probability value by its confidence, which we
measure as the number of vulnerabilities based on which the value
is estimated. We also computed the probability that a vulnerability
is not patched in 𝑡 days after it is first reported (see Fig. 3). This
shows that 20% of vulnerabilities are patched within 5 days of first
being reported and that most vulnerabilities are patched quickly.

Interestingly, even if we remove the condition (𝑡 < Δfix) and con-
sider the probability of rediscovery without the impact of patching,
there is still a rapid decline in the first few days in both curves, i.e.,
Firefox and Chromium (see Fig. 4). On the other hand, both curves
have long tails later, which suggests a somewhat memory-less pro-
cess of discovery (i.e., some vulnerabilities that are not discovered
soon may remain hidden for long).

Figs. 1b and 1c show the probability that a vulnerability is re-
discovered in the 𝑤-th week after it is first reported (condition
𝑤 < Δfix) for vulnerabilities in stable and development releases,
respectively. We observe that rediscovery probabilities are lower in
stable releases than in development releases. In particular, this sug-
gests that vulnerabilities in stable releases are more difficult to find
and are non-trivial (see Fig. 1b). Further, the long tail suggests that
vulnerabilities that have not yet been found may remain hidden for
a long time, and discovery is mostly a memory-less process.

However, there is a small peak in both curves in the first few
days, which contradicts the memory-less property of rediscovery
in stable releases, and suggests a clustering of rediscoveries. One
hypothesis is that vendors pay more to external bug hunters for the
discovery of vulnerabilities in stable releases relative to develop-
ment releases. As a result, bug hunters may stockpile vulnerabilities
in development releases to receive higher rewards by reporting
vulnerabilities in stable releases, which increases the likelihood
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Figure 5: Comparison of internal ( ) and external ( ) security
reports in Chromium and Firefox.

of duplicate reports. We tested this hypothesis by checking the
reward policies of these two vendors. However, we did not find
evidence for a higher reward policy for stable releases in either
Chromium or Firefox. Instead, the reward policies are mostly based
on vulnerability severity. Another hypothesis for the small peak
in both curves (specifically for Chromium) is that vulnerabilities
are more likely to be discovered shortly after they are introduced;
exploring this hypothesis would require further technical analysis.

Fig. 1c shows rapid decline in the first few days. This suggests
that most vulnerabilities in development releases are rediscovered
in the first few days after they are introduced.

Finding 2. Vulnerability discoveries are clustered in time, which
suggests that there is a limited pool of easy-and-quick-to-discover
vulnerabilities. Other vulnerabilities may remain hidden for long.

3.1.3 Internal Discoveries and External Bug Hunters (RQ2). Next,
we study the differences between reports of different origins (i.e.,
external versus internal) for Chromium and Firefox. We provide a
detailed comparison considering release channels in Appendix B.

Fig. 5 shows the distributions of internal vs. external reports
with respect to weakness types and impacted components. As for
weakness types (see Fig. 5a), the most common type among internal
Chromium reports is Memory buffer bound error (32.5%), while
the most common type among external reports is Expired pointer
dereference. In contrast, Memory buffer bound error is the most
common type among both internal and external Firefox reports
(Fig. 5c). As for impacted components (see Fig. 5b and Fig. 5d),
the Blink component was most common among both internal and
external Chromium reports; while in Firefox, DOM: Core & HTML is
the most common impacted component among external reports and
JavaScript Engine: JIT is the most common among internal ones.

We also compared internal and external reports in terms of im-
pacted release channels, severity, and programming languages. In
Chromium, stable releases are impacted by a higher percentage of
reports than other releases, for both internal (50.1%) and external
(78.9%) reports. In Firefox, we observe that 57.8% of external reports
pertain to stable releases, while 54.1% of internal reports relate to
development releases. As for severity, a high percentage of both
internal and external reports have a high severity. Further, external
reports are more common than internal reports among vulnerabili-
ties with critical severity. We also find that vulnerabilities in C++
code are most frequently reported both internally and externally
and in both Chromium and Firefox.

Based on Pearson’s chi-squared test, external and internal reports
follow significantly different distributions in terms of impacted re-
lease channels, severity level, weakness type, affected components,
and programming languages for both Chromium and Firefox.

Finding 3. External bug hunters and internal security teams report
different types of vulnerabilities, which indicates that bug-bounty
programs do complement the expertise of internal teams.

3.2 Management of Bug Bounty Programs
3.2.1 Vulnerabilities Reported and Exploited (RQ 3.1). Finally, we
study howmany vulnerabilities have been discovered and exploited
by malicious actors and what the differences are between these ex-
ploited vulnerabilities and other vulnerabilities. Among the 25,358
(Chromium) and 6,066 (Firefox) valid vulnerability reports, we can
identify 37 and 18 vulnerabilities that have been exploited in the
wild for Chromium and Firefox, respectively. We compare these
exploited vulnerabilities to those that are discovered by benevo-
lent external reporters. We also compare these vulnerabilities with
all other vulnerabilities (i.e., vulnerabilities that have not been ex-
ploited) based on release channels, severity, weakness type, compo-
nents, and programming languages (see Appendix C). We perform
chi-squared tests for all these comparisons as well. However, we
acknowledge that the number of exploited vulnerabilities is limited;
therefore, the results of our analysis might not be generalizable.

Comparisonwith Other Externally Reported Issues. Since our focus
is on bug-bounty programs, we study the differences and similari-
ties between vulnerabilities that are exploited by threat actors and
vulnerabilities that are reported by external bug hunters (Fig. 6).



The Benefits of Vulnerability Discovery and Bug Bounty Programs Published in the proceedings of the 2023 ACMWeb Conference (WWW 2023).

0% 20% 40%

Type Confusion
Expired pointer dereference
Improper input validation
Incorrect Authorization

Memory buffer bounds error

Percentage of Vulnerabilities
W
ea
kn

es
sT

yp
e

(a) Chromium Vulnerabilities by Weakness Types
0% 20% 40%

Blink
Internals

Blink>JavaScript
UI

UI>Browser
Internals>Plugins

Internals>Plugins>PDF
Platform

Internals>GPU
Internals>Skia

Co
m
po

ne
nt

(b) Chromium Vulnerabilities by Components

0% 10% 20% 30%

Type Confusion
Expired pointer dereference
Improper input validation
Incorrect Authorization

Memory buffer bounds error

W
ea
kn

es
sT

yp
e

(c) Firefox Vulnerabilities by Weakness Types
0% 5% 10% 15%

JavaScript Engine
DOM: Core & HTML
JavaScript Engine: JIT

Graphics
Layout

Graphics: Text
JavaScript: GC

Networking
Security

XPConnect

Co
m
po

ne
nt

(d) Firefox Vulnerabilities by Components

Figure 6: Comparison of exploited vulnerabilities ( ) and
external security reports ( ) in Chromium and Firefox based
on weakness types and impacted components.

As for release channels, all exploited Chromium vulnerabilities im-
pact stable releases, while only 78.9% of external reports pertain to
stable releases. In Firefox, 88.9% of exploited vulnerabilities impact
stable releases, while only 57.5% of external reports pertain to stable
releases. With respect to severity, 71.4% of exploited Chromium
vulnerabilities are of high severity, whereas only 45.3% of external
report have high severity. In Firefox, 62.5% of exploited vulnerabili-
ties have critical severity, while only 25.8% of external reports have
critical severity. Among both exploited vulnerabilities and external
reports, vulnerabilities in C++ code were the most common.

As for weakness types, Memory buffer bound error is the most
commonly exploited type of vulnerability in both Chromium and
Firefox (Figs. 6a and 6c). Fortunately, this weakness type is also very
common among external reports in both Chromium and Firefox: it
is the most common type in Firefox, and the second most common
type in Chromium (just slightly behind the most common type,

Expired pointer dereference). With respect to impacted components,
the Blink component of Chromium is the most common among
both exploited vulnerabilities and external reports (see Fig. 6b). In
Firefox, the XPConnect component is the most commonly impacted
by exploited vulnerabilities; however, this component is relatively
rare among external reports.

Our exploratory statistical tests show that for Chromium, ex-
ploited vulnerabilities and external reports follow significantly
different distributions in terms of impacted release channels and
security-severity levels; however, this does not hold for affected
programming languages. Similarly, in Firefox, exploited vulnerabil-
ities and external reports follow significantly different distributions
in terms of impacted release channels and security severity.

Finding 4. There are significant differences between the types of
vulnerabilities that are reported by bug hunters and those that are
exploited by threat actors in terms of impacted release channels, and
security-severity levels, which suggests that bug bounties could be
more effective if they incentivized bug hunters to shift their focus.

3.2.2 Difficulty of Discovery (RQ 3.2). We estimate the probability
of rediscovery as a function of the inherent properties of a vulnera-
bility (i.e., security severity, weakness type, impacted components,
and programming languages) to study whether different types of
vulnerabilities are more or less difficult to rediscover (see Fig. 7). As
for security severity, vulnerabilities with critical and high severity
in Firefox and vulnerabilities with critical severity in Chromium are
rediscovered more than vulnerabilities with other severity levels.
This can be partially explained by reward policies, which scale with
the severity of the vulnerabilities. In Chromium, vulnerabilities
with low severity are rediscovered more than vulnerabilities with
high and moderate severity levels. In Firefox, vulnerabilities with
low severity are rediscovered more than vulnerabilities with mod-
erate severity level. This may imply that vulnerabilities with low
severity are not only low-impact, but they are also shallow and
easier to find. With respect to programming languages, vulnera-
bilities related to CSS files in Chromium and Java files in Firefox
have higher probabilities of rediscovery compared to vulnerabilities
related to files in other languages.

As for weakness types in Chromium, vulnerabilities of the type
Permission issues are rediscovered more than vulnerabilities of other
types (Fig. 7a). In Firefox, vulnerabilities of type Incorrect type con-
version or cast are more likely to be rediscovered than vulnerabilities
of other types (Fig. 7c). We also observe that vulnerabilities that im-
pact the UI>Browser component in Chromium and the Networking
component in Firefox are more likely to be rediscovered than vul-
nerabilities that impact other components (Figs. 7b and 7d). We also
performed statistical tests between different types of vulnerabilities.
The results show that there are significant differences between the
rediscovery probabilities of different types of vulnerabilities.

Finding 5. There are significant differences between the rediscov-
ery probabilities of different types of vulnerabilities. Since vulnerabil-
ities that are more severe than others receive higher rewards, and they
are also rediscovered more often than other vulnerabilities, vendors
could include other properties of vulnerabilities in their reward policy
to incentivize external bug hunters.
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Figure 7: Fraction of vulnerabilities that are rediscovered at
least once in Chromium and Firefox.

4 RELATEDWORK
From a technical perspective, vulnerability discovery can be ap-
proached with a variety of static, dynamic, and concolic analysis
methods as well as fuzzing [7, 10]. Taking an analytical and em-
pirical perspective, Massacci and Nguyen [24] evaluated different
mathematical vulnerability discovery models, which can be benefi-
cial for vendors and users in terms of predicting vulnerability trends,
adapting patching and update schedules, and allocating security
investments. Prior works also investigated the empirical facets of
vulnerability discovery in the context of bug bounty programs (e.g.,
[1, 8, 9, 21, 22, 34, 35]) and security bulletins (e.g., [11, 12]); however,
research on rediscovery of vulnerabilities is sparse. Ozment [27]

provided data on rediscovery frequency based on Microsoft’s vul-
nerability bulletins and concluded that rediscovery is not negligible
and should be explicitly considered in discovery models. Finifter
et al. [13] studied VRPs; in one part of their study, they estimated
average rediscovery rates of 4.6% and similar rates for Chromium
and Firefox, respectively. Both studies had to rely on very small
datasets, but can serve as key motivators for our work. Herr et al.
[16] estimated that vulnerability rediscovery occurs more often
than previously reported (1% to 9%) in the literature (e.g., [26])
and discuss patterns of rediscovery over time. Our work relies on
a considerably more sizable dataset, which allows us to consider
inherent patterns of rediscovery such as impacted release channels
or weakness types. As such, our work goes well beyond the mere
estimation of rediscovery rates.

Complementary to our investigation of vulnerability discovery,
Iannone et al. [17] study how, when, and under which circum-
stances vulnerabilities are introduced into software by developers
and how they are removed. While Iannone et al. studied the life-
cycle of vulnerabilities by analyzing source code, Alomar et al. [3]
conducted 53 interviews with security practitioners in technical
and managerial roles to study vulnerability discovery and manage-
ment processes in the wild. In contrast, Akgul et al. [1], Votipka
et al. [32], and Fulton et al. [14] conducted surveys and interviews
with bug hunters. Alexopoulos et al. [2] also studied bug hunters,
but instead of conducting interviews, they collected information
about a large number of bug hunters from public sources.

5 CONCLUSION
Our analysis illustrates that it is more difficult to rediscover vulner-
abilities in stable releases than in development releases, considering
all aspects of the process, including the number of bug hunters
and the time-to-patch. Further, vulnerability discoveries and redis-
coveries tend to be clustered in time after the first discovery, but
seem to exhibit a long tail afterwards. In addition, the rediscovery
probabilities of different types of vulnerabilities vary considerably.
Likewise, our analysis shows that external bug hunters and internal
staff and tools report different types of vulnerabilities, indicating
that bug-bounty programs leverage the diverse expertise of exter-
nal hackers. Furthermore, we discuss initial evidence regarding
the difference between vulnerabilities that are exploited by threat
actors and those found by external bug hunters.

Suggestions for Improving Bug Bounties. Bug-bounty programs
may benefit from incentivizing external hunters to focus more on
development releases since the temporal clustering in stable re-
leases suggest that some vulnerabilities that are relatively easy to
find are not discovered during development. Similarly, programs
may benefit from incentivizing hunters to focus more on the types
of vulnerabilities that are likely to be exploited by threat actors.
Our analysis offers another important facet for the management of
bug-bounty programs. Conducting the work to identify a vulnera-
bility and filing a comprehensive report is a time-consuming matter.
However, duplicate reports are typically not rewarded. As such, our
work may provide guidance regarding how to channel the attention
of bug hunters to avoid collisions or which patch development or
triage efforts to prioritize to avoid hacker frustration.



The Benefits of Vulnerability Discovery and Bug Bounty Programs Published in the proceedings of the 2023 ACMWeb Conference (WWW 2023).

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1850510. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
National Science Foundation. We thank the anonymous reviewers
for their valuable feedback and suggestions.

REFERENCES
[1] Omer Akgul, Taha Eghtesad, Amit Elazari, Omprakash Gnawali, Jens Grossklags,

Michelle Mazurek, Daniel Votipka, and Aron Laszka. 2023. Bug hunters’ perspec-
tives on the challenges and benefits of the bug bounty ecosystem. In 32nd USENIX
Security Symposium (USENIX Security). https://doi.org/10.48550/arXiv.2301.04781

[2] Nikolaos Alexopoulos, Andrew Meneely, Dorian Arnouts, and Max Mühlhäuser.
2021. Who are vulnerability reporters? A large-scale empirical study on FLOSS.
In 15th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). Article 25, 12 pages. https://doi.org/10.1145/3475716.
3475783

[3] Noura Alomar, PrimalWijesekera, Edward Qiu, and Serge Egelman. 2020. “You’ve
got your nice list of bugs, now what?” Vulnerability discovery and management
processes in the wild. In 16th USENIX Conference on Usable Privacy and Security
(SOUPS). 319–339. https://www.usenix.org/conference/soups2020/presentation/
alomar

[4] Soodeh Atefi, Amutheezan Sivagnanam, Afiya Ayman, Jens Grossklags, and
Aron Laszka. 2023. Dataset: The benefits of vulnerability discovery and bug
bounty programs. (February 2023). https://doi.org/10.6084/m9.figshare.22056617

[5] Robert M. Brady, Ross J. Anderson, and Robin C. Ball. 1999. Murphy’s law, the
fitness of evolving species, and the limits of software reliability. Technical Report
UCAM-CL-TR-471. University of Cambridge, Computer Laboratory. https:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-471.pdf

[6] Sandy Clark, Michael Collis, Matt Blaze, and Jonathan M. Smith. 2014. Moving
targets: Security and rapid-release in Firefox. In 21st ACM SIGSAC Conference on
Computer and Communications Security (CCS). 1256–1266. http://dx.doi.org/10.
1145/2660267.2660320

[7] Lei Cui, Jiancong Cui, Zhiyu Hao, Lun Li, Zhenquan Ding, and Yongji Liu. 2022.
An empirical study of vulnerability discovery methods over the past ten years.
Computers & Security 120, Article 102817 (2022), 13 pages. https://doi.org/10.
1016/j.cose.2022.102817

[8] Aaron Yi Ding, Gianluca Limon De Jesus, and Marijn Janssen. 2019. Ethical
hacking for boosting IoT vulnerability management: A first look into bug bounty
programs and responsible disclosure. In 8th International Conference on Telecom-
munications and Remote Sensing (ICTRS). 49–55. https://doi.org/10.1145/3357767.
3357774

[9] Amit Elazari. 2019. Private ordering shaping cybersecurity policy: The case of
bug bounties. In Rewired: Cybersecurity Governance, Ryan Ellis and Vivek Mohan
(Eds.). Wiley. https://ssrn.com/abstract=3161758

[10] Sarah Elder, Nusrat Zahan, Rui Shu, Monica Metro, Valeri Kozarev, Tim Menzies,
and Laurie Williams. 2022. Do I really need all this work to find vulnerabilities?
An empirical case study comparing vulnerability detection techniques on a Java
application. Empirical Software Engineering 27, 6, Article 154 (2022). https:
//doi.org/10.1007/s10664-022-10179-6

[11] Sadegh Farhang,Mehmet Bahadir Kirdan, Aron Laszka, and Jens Grossklags. 2019.
Hey Google, what exactly do your security patches tell us? A large-scale empirical
study on Android patched vulnerabilities. 2019 Workshop on the Economics of
Information Security (WEIS), 24 pages. https://doi.org/10.48550/arXiv.1905.09352

[12] Sadegh Farhang, Mehmet Bahadir Kirdan, Aron Laszka, and Jens Grossklags.
2020. An empirical study of Android security bulletins in different vendors. In
The Web Conference 2020. 3063–3069. https://doi.org/10.1145/3366423.3380078

[13] Matthew Finifter, Devdatta Akhawe, and David Wagner. 2013. An empiri-
cal study of vulnerability rewards programs. In 22nd USENIX Security Sym-
posium (USENIX Security). 273–288. https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/presentation/finifter

[14] Kelsey R. Fulton, Samantha Katcher, Kevin Song, Marshini Chetty, Michelle L.
Mazurek, Daniel Votipka, and Chloé Messdaghi. 2022. Vulnerability discovery for
all: Experiences of marginalization in vulnerability discovery. In 2023 IEEE Sym-
posium on Security and Privacy (S&P). 289–306. https://doi.ieeecomputersociety.
org/10.1109/SP46215.2023.00017

[15] Dan Geer. 2015. For good measure: The undiscovered. ;login: 40, 2 (2015), 50–52.
https://www.usenix.org/publications/login/apr15/geer

[16] Trey Herr, Bruce Schneier, and Christopher Morris. 2017. Taking stock: Estimating
vulnerability rediscovery. White Paper. Belfer Cyber Security Project. https:
//doi.org/10.2139/ssrn.2928758

[17] Emanuele Iannone, Roberta Guadagni, Filomena Ferrucci, Andrea De Lucia, and
Fabio Palomba. 2022. The secret life of software vulnerabilities: A large-scale

empirical study. IEEE Transactions on Software Engineering 49, 1 (2022), 44–63.
https://doi.org/10.1109/TSE.2022.3140868

[18] Andreas Kuehn and Milton Mueller. 2014. Analyzing bug bounty programs: An
institutional perspective on the economics of software vulnerabilities. In 42nd
Research Conference on Communication, Information and Internet Policy (TPRC).
https://doi.org/10.2139/ssrn.2418812

[19] Aron Laszka, Mingyi Zhao, and Jens Grossklags. 2016. Banishing misaligned
incentives for validating reports in bug-bounty platforms. In 21st European
Symposium on Research in Computer Security (ESORICS). 161–178. https://doi.
org/10.1007/978-3-319-45741-3_9

[20] Aron Laszka, Mingyi Zhao, Akash Malbari, and Jens Grossklags. 2018. The
rules of engagement for bug bounty programs. In 22nd International Conference
on Financial Cryptography and Data Security (FC). Springer, 138–159. https:
//doi.org/10.1007/978-3-662-58387-6_8

[21] Donatello Luna, Luca Allodi, and Marco Cremonini. 2019. Productivity and pat-
terns of activity in bug bounty programs: Analysis of HackerOne and Google vul-
nerability research. In 14th International Conference on Availability, Reliability and
Security (ARES). Article 67, 10 pages. https://doi.org/10.1145/3339252.3341495

[22] Thomas Maillart, Mingyi Zhao, Jens Grossklags, and John Chuang. 2017. Given
enough eyeballs, all bugs are shallow? Revisiting Eric Raymond with bug bounty
programs. Journal of Cybersecurity 3, 2 (2017), 81–90. https://doi.org/10.1093/
cybsec/tyx008

[23] Suresh S. Malladi and Hemang C. Subramanian. 2019. Bug bounty programs
for cybersecurity: Practices, issues, and recommendations. IEEE Software 37, 1
(2019), 31–39. https://doi.org/10.1109/MS.2018.2880508

[24] Fabio Massacci and Viet Hung Nguyen. 2014. An empirical methodology to eval-
uate vulnerability discovery models. IEEE Transactions on Software Engineering
40, 12 (2014), 1147–1162. https://doi.org/10.1109/TSE.2014.2354037

[25] David McKinney. 2007. Vulnerability bazaar. IEEE Security & Privacy 5, 6 (2007),
69–73. https://doi.org/10.1109/MSP.2007.180

[26] Katie Moussouris and Michael Siegel. 2015. The wolves of Vuln Street: The 1st
dynamic systems model of the 0day market. In Retrieved from RSA Conference
USA. https://cams.mit.edu/wp-content/uploads/2017/12/The-Wolves-of-Vuln-
Street-The-1st-System-Dynamics-Model-of-the-0day-Market.pdf

[27] Andy Ozment. 2005. The Likelihood of Vulnerability Rediscovery and the Social
Utility of Vulnerability Hunting. In 4th Workshop on the Economics of Information
Security (WEIS). http://infosecon.net/workshop/pdf/10.pdf

[28] Andy Ozment and Stuart Schechter. 2006. Milk or wine: Does software se-
curity improve with age?. In 15th USENIX Security Symposium (USENIX Se-
curity). 93–104. https://www.usenix.org/conference/15th-usenix-security-
symposium/milk-or-wine-does-software-security-improve-age

[29] Eric Rescorla. 2005. Is finding security holes a good idea? IEEE Security & Privacy
3, 1 (2005), 14–19. https://doi.org/10.1109/MSP.2005.17

[30] Shanto Roy, Nazia Sharmin, Jaime C. Acosta, Christopher Kiekintveld, and Aron
Laszka. 2023. Survey and taxonomy of adversarial reconnaissance techniques.
ACM Computing Surveys 55, 6, Article 112 (2023), 38 pages. https://doi.org/10.
1145/3538704

[31] Bruce Schneier. 2014. Should U.S. hackers fix cybersecurity holes or ex-
ploit them? The Atlantic, Available online at https://www.theatlantic.com/
technology/archive/2014/05/should-hackers-fix-cybersecurity-holes-or-
exploit-them/371197/.

[32] Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy Hu, and Michelle Mazurek.
2018. Hackers vs. testers: A comparison of software vulnerability discovery
processes. In 39th IEEE Symposium on Security and Privacy (S&P). 374–391. https:
//doi.org/10.1109/SP.2018.00003

[33] Thomas Walshe and Andrew Simpson. 2020. An empirical study of bug bounty
programs. In 2nd IEEE International Workshop on Intelligent Bug Fixing (IBF).
IEEE, 35–44. https://doi.org/10.1109/IBF50092.2020.9034828

[34] Thomas Walshe and Andrew C. Simpson. 2022. Coordinated vulnerability disclo-
sure programme effectiveness: Issues and recommendations. Computers & Secu-
rity, Article 102936 (2022), 14 pages. https://doi.org/10.1016/j.cose.2022.102936

[35] Mingyi Zhao, Jens Grossklags, and Peng Liu. 2015. An empirical study of web
vulnerability discovery ecosystems. In 22nd ACM SIGSACConference on Computer
and Communications Security (CCS). 1105–1117. https://doi.org/10.1145/2810103.
2813704

[36] Mingyi Zhao, Aron Laszka, and Jens Grossklags. 2017. Devising effective policies
for bug-bounty platforms and security vulnerability discovery. Journal of Infor-
mation Policy 7 (2017), 372–418. https://doi.org/10.5325/jinfopoli.7.2017.0372

https://doi.org/10.48550/arXiv.2301.04781
https://doi.org/10.1145/3475716.3475783
https://doi.org/10.1145/3475716.3475783
https://www.usenix.org/conference/soups2020/presentation/alomar
https://www.usenix.org/conference/soups2020/presentation/alomar
https://doi.org/10.6084/m9.figshare.22056617
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-471.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-471.pdf
http://dx.doi.org/10.1145/2660267.2660320
http://dx.doi.org/10.1145/2660267.2660320
https://doi.org/10.1016/j.cose.2022.102817
https://doi.org/10.1016/j.cose.2022.102817
https://doi.org/10.1145/3357767.3357774
https://doi.org/10.1145/3357767.3357774
https://ssrn.com/abstract=3161758
https://doi.org/10.1007/s10664-022-10179-6
https://doi.org/10.1007/s10664-022-10179-6
https://doi.org/10.48550/arXiv.1905.09352
https://doi.org/10.1145/3366423.3380078
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/finifter
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/finifter
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00017
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00017
https://www.usenix.org/publications/login/apr15/geer
https://doi.org/10.2139/ssrn.2928758
https://doi.org/10.2139/ssrn.2928758
https://doi.org/10.1109/TSE.2022.3140868
https://doi.org/10.2139/ssrn.2418812
https://doi.org/10.1007/978-3-319-45741-3_9
https://doi.org/10.1007/978-3-319-45741-3_9
https://doi.org/10.1007/978-3-662-58387-6_8
https://doi.org/10.1007/978-3-662-58387-6_8
https://doi.org/10.1145/3339252.3341495
https://doi.org/10.1093/cybsec/tyx008
https://doi.org/10.1093/cybsec/tyx008
https://doi.org/10.1109/MS.2018.2880508
https://doi.org/10.1109/TSE.2014.2354037
https://doi.org/10.1109/MSP.2007.180
https://cams.mit.edu/wp-content/uploads/2017/12/The-Wolves-of-Vuln-Street-The-1st-System-Dynamics-Model-of-the-0day-Market.pdf
https://cams.mit.edu/wp-content/uploads/2017/12/The-Wolves-of-Vuln-Street-The-1st-System-Dynamics-Model-of-the-0day-Market.pdf
http://infosecon.net/workshop/pdf/10.pdf
https://www.usenix.org/conference/15th-usenix-security-symposium/milk-or-wine-does-software-security-improve-age
https://www.usenix.org/conference/15th-usenix-security-symposium/milk-or-wine-does-software-security-improve-age
https://doi.org/10.1109/MSP.2005.17
https://doi.org/10.1145/3538704
https://doi.org/10.1145/3538704
https://www.theatlantic.com/technology/archive/2014/05/should-hackers-fix-cybersecurity-holes-or-exploit-them/371197/
https://www.theatlantic.com/technology/archive/2014/05/should-hackers-fix-cybersecurity-holes-or-exploit-them/371197/
https://www.theatlantic.com/technology/archive/2014/05/should-hackers-fix-cybersecurity-holes-or-exploit-them/371197/
https://doi.org/10.1109/SP.2018.00003
https://doi.org/10.1109/SP.2018.00003
https://doi.org/10.1109/IBF50092.2020.9034828
https://doi.org/10.1016/j.cose.2022.102936
https://doi.org/10.1145/2810103.2813704
https://doi.org/10.1145/2810103.2813704
https://doi.org/10.5325/jinfopoli.7.2017.0372


Published in the proceedings of the 2023 ACMWeb Conference (WWW 2023). Soodeh Atefi, Amutheezan Sivagnanam, Afiya Ayman, Jens Grossklags, and Aron Laszka

A ADDITIONAL DATA

Table 3: Number of Reports Per Year Based on Severity
Year Opened Chromium Firefox

Critical High Moderate Low Critical High Moderate Low
2008 3
2009 5 52 33 46
2010 20 285 98 140
2011 54 528 134 133
2012 17 729 278 159 391 123 94 29
2013 20 544 242 154 331 215 92 56
2014 12 661 496 157 217 226 103 55
2015 10 675 282 174 170 263 124 63
2016 17 574 560 208 146 287 125 102
2017 25 855 726 325 106 427 164 82
2018 24 942 772 365 30 236 113 71
2019 45 859 807 355 17 235 112 45
2020 21 732 481 216 9 175 107 40
2021 31 900 547 207 0 128 84 39
2022 8 280 142 78 3 15 32 17

Table 4: Number of Reports Per Year Based on Releases
Year Opened Chromium Firefox

# of Stable Reports # of Development Reports # of Stable Reports # of Development Reports
2008 1
2009 95 1
2010 361 0
2011 524 27
2012 716 103 302 396
2013 551 96 248 514
2014 776 338 270 413
2015 651 401 334 362
2016 637 538 376 331
2017 941 665 515 322
2018 875 794 281 217
2019 860 1066 233 209
2020 685 512 212 147
2021 435 624 177 117
2022 44 160 45 29

Table 5: Number of Original Vs. Duplicate Reports Per Year
Year Opened Chromium Firefox

# of Duplicate Reports # of Original Reports # of Duplicate Reports # of Original Reports
2008 51
2009 17 212
2010 121 770
2011 231 991
2012 330 1278 157 541
2013 218 1253 154 608
2014 275 1509 148 535
2015 320 1243 147 549
2016 310 1642 153 554
2017 458 2156 241 596
2018 423 2292 92 406
2019 407 2742 82 360
2020 313 2064 43 316
2021 373 2422 26 268
2022 109 828 3 71

Table 6: Number of Reports Per Year Based on The Origins
Year Opened Chromium Firefox

# of Internal Reports # of External Reports # of Internal Reports # of External Reports
2008 23 28
2009 146 83
2010 455 436
2011 632 590
2012 867 741 502 196
2013 833 638 549 213
2014 1023 761 510 173
2015 762 801 460 236
2016 915 1037 461 246
2017 1590 1024 555 282
2018 1551 1164 329 169
2019 1908 1241 311 131
2020 1039 1338 275 84
2021 1130 1665 206 88
2022 263 674 57 17

Tables 3 to 6 show annual data.
Table 7 shows how average patching time varies with severity,

weakness type, components, and programming languages.

Table 7: Mean Patching Time in Days
Chromium Security Severity Days Firefox Security Severity Days

Critical 28.46 Critical 23.56
High 38.25 High 55.26

Moderate 47.14 Moderate 133.24
Low 114.09 Low 183.38

ChromiumWeakness Types Days Firefox Weakness Types Days
Race condition 53.27 Race condition 65.90

Expired pointer dereference 30.17 Expired pointer dereference 39.78
Memory buffer bounds error 49.99 Memory buffer bounds error 42.39
Improper input validation 74.31 Improper input validation 100.70

Exposure of sensitive information 79.57 Exposure of sensitive information 107.61
Numeric errors 49.44 Numeric errors 25.45
Permission issues 102.96 Incorrect type conversion or cast 24.75

Null pointer dereference 94.66 7PKSecurity features 143.80
Improper access control 60.67 Permissions-privileges-access controls 91.82

Resource management error 28.64 Resource management error 49.55
Chromium Component Days Firefox Component Days

Internals>Skia 29.32 XPConnect 120.77
Internals>GPU 25.48 Security 164.56

Platform 90.85 Networking 72.86
Internals>Plugins>PDF 46.11 Layout 119.37

Internals>Plugins 56.29 JavaScript: GC 48.91
UI>Browser 88.26 JavaScript Engine: JIT 35.70

UI 82.32 JavaScript Engine 52.88
Blink>JavaScript 13.27 Graphics: Text 56.55

Internals 48.20 Graphics 80.97
Blink 51.58 DOM: Core & HTML 51.11

Chromium Language Days Firefox Language Days
C++ 39.18 C++ 51.21
JS 34.28 JS 66.47

HTML 65.87 HTML 81.90
C 31.25 C 52.99

XML 114.00 XML 110.81
Python 73.71 Python 87.57
Java 76.11 Java 189.70
CSS 69.44 CSS 330.42

Table 8: Chi-Squared Test Results
Chromium Internal vs. External Reports 𝑝-Value Firefox Internal vs. External Reports 𝑝-Value

Impacted Releases < .001 Impacted Releases < .001
Security-Severity < .001 Security-Severity < .001

Component 0.0 Component < .001
Weakness Types < .001 Weakness Types < .001

Language < .001 Language < .001
Chromium Internal vs. External Reports (Only Stable) 𝑝-Value Firefox Internal vs. External Reports (Only Stable) 𝑝-Value

Security-Severity < .001 Security-Severity < .001
Component 0.0 Component < .001

Weakness Types < .001 Weakness Types < .001
Language < .001 Language < .001

Chromium Rediscoveries 𝑝-Value Firefox Rediscoveries 𝑝-Value
Impacted Releases < .001 Impacted Releases 0.006
Security-Severity < .001 Security-Severity < .001

Component 0.0 Component 0.0
Weakness Types 0.0 Weakness Types < .001

Language 0.0 Language 0.0
Chromium Exploited vs. All Other Vulnerabilities 𝑝-Value Firefox Exploited vs. All Other Vulnerabilities 𝑝-Value

Impacted Releases < .001 Impacted Releases 0.001
Security-Severity 0.06 Security-Severity 0.006

Component 0.04 Component < .001
Weakness Types 0.87 Weakness Types 0.99

Language 0.45 Language 0.97
Chromium Exploited vs. All External Vulnerabilities 𝑝-Value Firefox Exploited vs. All External Vulnerabilities 𝑝-Value

Impacted Releases 0.01 Impacted Releases 0.01
Security-Severity 0.01 Security-Severity 0.003

Component Component
Weakness Types Weakness Types

Language 0.21 Language

Table 8 shows the results of chi-squared tests between different
types of vulnerabilities. For some variables, we could not apply
tests due to the 0 values (empty cells).

B INTERNAL AND EXTERNAL REPORTS
IMPACTING STABLE RELEASES

Fig. 8 shows the distribution of weakness types and impacted com-
ponents for internal and external reports in stable releases. As
for weakness types, we find that reports related to Memory buffer
bounds error are the most common among both origins, in both
Chromium and Firefox (Figs. 8a and 8c). In Chromium, the Blink
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Figure 8: Comparison of internal ( ) and external ( ) security
reports in stable releases of Chromium and Firefox.

component is most commonly impacted by both internal and exter-
nal reports (Fig. 8b). In Firefox, Javascript Engine is most common
among internal reports, while Dom: Core & HTML is most common
among external ones (Fig. 8d). We also compared internal and exter-
nal reports in terms of severity and programming languages. Most
internal and external reports have high severity in both Chromium
and Firefox. External reports are more common than internal ones
among vulnerabilities with critical severity in both software prod-
ucts. As for programming languages, we find that most reports are
related to C++, regardless of origins, for both Chromium and Firefox.
Pearson’s chi-squared test shows that external and internal reports
(that impact stable releases) follow significantly different distribu-
tions in terms of severity, weakness type, impacted components,
and programming languages in both Chromium and Firefox.
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Figure 9: Comparison of exploited vulnerabilities ( ) and all
other vulnerabilities ( ) in Chromium and Firefox.

C COMPARISON OF EXPLOITED
VULNERABILITIES

We compare vulnerabilities that are exploited in the wild with all
other vulnerabilities (i.e., vulnerabilities that have not been ex-
ploited). Fig. 9 shows the distributions of weakness types and com-
ponents for exploited vulnerabilities and all other vulnerabilities
for both Chromium and Firefox. Regarding release channel, we ob-
serve that 100% of exploited Chromium vulnerabilities and 88.88%
of exploited Firefox vulnerabilities impacted stable release channel
whereas 49.37% and 60.40% of all other vulnerabilities that have not
been exploited pertain to stable releases in Firefox and Chromium
respectively. As for security-severity 71.42% of exploited Chromium
vulnerabilities were labeled as high severity whereas 49.92% of all
other vulnerabilities have high severity. In Firefox 62.50% of ex-
ploited vulnerabilities have critical severity while 25.65% of all other
vulnerabilities have critical severity assigned to them. Among pro-
gramming languages, C++ has the highest exploited reports among
other languages in both datasets. This also holds for all other vul-
nerabilities that have not been exploited.
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Comparison of exploited vulnerabilities and other vulnerabilities
in terms of weakness type shows that vulnerabilities with Mem-
ory buffer bound error have a higher percentage in both exploited
vulnerabilities and other vulnerabilities in both Chromium and
Firefox datasets (see Fig. 9a and Fig. 9c). For component attribute in
Chromium (see Fig. 9b), vulnerabilities with Blink component have
a higher percentage in both exploited vulnerabilities and other vul-
nerabilities. In Firefox, vulnerabilities with XPConnect component
have been exploited more than vulnerabilities with other compo-
nents. For all other vulnerabilities, vulnerabilities with JavaScript
Engine component has a higher percentage in comparison with
others (see Fig. 9d). The results of Pearson’s chi-squared test show
that exploited vulnerabilities and all other reported vulnerabilities
follow significantly different distributions in terms of impacted
release channels and components in Chromium. Chi-squared tests
for Firefox show that exploited vulnerabilities and all other re-
ported vulnerabilities follow significantly different distributions in
terms of impacted release channels, security severity, and impacted
components (weakness types and languages accepted the null).

D DATA COLLECTION
In this section, we describe the key steps of our data collection
process for both Chromium and Firefox.

D.1 Chromium Issue Tracker
We collected all data from September 2, 2008 to September 13, 2022
from the Chromium issue tracker10 using Monorail API version
211. We use three types of requests from the Monorail API for
data collection: (i) ListIssues, which returns the list of reports that
satisfy the query specified in the request; (ii)GetIssue, which returns
the details of the report corresponding to the report identification
number specified in the request; and (iii) ListComments, which
returns the list of comments posted on the report specified in the
request. For each vulnerability’s report, the Chromium issue tracker
stores a list of comments, which includes conversations among
internal employees and external parties as well as a history of
changes (i.e., amendments) made to the report.

Each report contains the following fields:

• IdentificationNumber : A unique number that identifies the
report.

• Status: Current state of the report (Unconfirmed, Untriaged,
Invalid, Duplicate, Available, Assigned, Started, ExternalDe-
pendency, Fixed, Verified, and Archived).

• Component: Component (or components) of the Chromium
project that are affected by the report.

• Owner: Email address of the person who currently owns
the report (e.g., reporter of the vulnerability or the person
who fixes or closes the vulnerability).
• AllLabels: Labels associatedwith the report. These labels are

used to categorize reports, e.g., to indicate security-severity
levels (critical, high, medium, or low), impacted versions
(stable, beta, or head), reward amount for bug bounty (e.g.,

10https://bugs.chromium.org/p/chromium/issues/
11https://chromium.googlesource.com/infra/infra/+/master/appengine/monorail/
api/README.md

Reward-500 indicates that $500 is awarded to the reporter
of the vulnerability), or CVE ID.

• Summary: Short description of the report.
• ReporterEmail: Email address of the person who reported

the report.
• CCDetails: Email addresses of all users who are part of the

conversation thread of the report.
• OpenedTimestamp: Date and time when the report was

initially reported.
• ClosedTimestamp: Date and timewhen the report was closed.
• BugType: Type of the report (e.g., Bug-Security).
• MergedInto: This is an optional field that applies only to

duplicate reports. This field references the original report.

Each comment posted on a report consists of the following fields:

• CommenterEmail: Email address of the person who posted
the comment.

• Content: Text of the comment, images of the report, videos
of how to reproduce the report, etc.

• SequenceNumber: Order of the comment among all com-
ments posted on the report.

• CommentedTimestamp: Date and time when the comment
was posted on the report.
• Amendments: Updating or removing the values of some

fields of the report (e.g., changing the owner, status, or
priority).

Each amendment added to a comment consists of the following
fields:

• FieldName: Name of the field that the amendment changes.
• OldValue: List of previous values of the field. This an op-

tional field.
• NewOrDeltaValue: List of new and removed values of the

field.
• AmendmentTimestamp: Date and time when the amend-

ment was posted.

Chrome Releases. We also collected all the release notes from
the Chrome Releases blog12, which provides information regarding
both the closed-source Chrome and the open-source Chromium
projects. A release note is a blog post written by Google when
they officially release a new version of Chrome or Chromium. Each
Chromium release note contains a list of vulnerabilities that Google
patches in the Chromium project when releasing the correspond-
ing version. Each entry in this list of vulnerabilities contains the
following fields:

• IdentificationNumber: Unique identification number of a
report. We use this to join the Chromium issue tracker data
with the Chrome Releases dataset.
• ReporterName: List of bug hunters who reported the partic-

ular vulnerability.
• Association: Organization (or organizations) where the re-

porters work.
• ReleaseDate: Release date of Chromium version that in-

cludes the fix for the vulnerability.

12https://chromereleases.googleblog.com/

https://bugs.chromium.org/p/chromium/issues/
https://chromium.googlesource.com/infra/infra/+/master/appengine/monorail/api/README.md
https://chromium.googlesource.com/infra/infra/+/master/appengine/monorail/api/README.md
https://chromereleases.googleblog.com/
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Google Git For Programming Languages Analysis. Another data
resource that we use in our study is the Google Git repository13.
From analyzing comments on vulnerabilities that we collected from
the Chromium issue tracker, we find that most vulnerabilities that
have been fixed have links to the Google Git repository, which we
can use to identify the files that were changed to fix the vulnera-
bility. For each vulnerability with a Google Git repository link, we
collected the programming languages of the files that were changed.

D.2 Mozilla Firefox VRP
We collected data from two main sources, Bugzilla 14 (Firefox bug
tracker) and Known Vulnerabilities from the Mozilla website 15,
which is a list of security advisories based on product and advisories
for older products that all are listed in the Mozilla Foundation
Security Advisories (MFSA) 16. We collected all security issues from
January 24, 2012 to August 25, 2022.

To collect security vulnerabilities, we used security keywords
added to the URL of Bugzilla search and scraped all URLs of reports
that had at least one of the security keywords in the reportKeywords
field. Finally, all of the information related to a report was scraped.
Each report contains several fields, of which the collected ones are
listed below:

• BugID: A unique identifier of the report.
• CVE: CVE Id of the report (does not exist for all of the

reports).
• Opened: Date and time when the report is opened.
• Closed: Date and time when the report is closed.
• Summary: A brief summary of the report.
• Product: Product type which the report is related to (we are

interested in the Core and Firefox).
• Component: Component (or components) of the Firefox that

are affected by the vulnerability.
• Type: This field represents type of the bug. It contains three

types: defect, enhancement, and task.We are only interested
in the defect type.

• Status: This represents current status of the report and what
has happened to the report. It contains UNCONFIRMED,
NEW, ASSIGNED, REOPENED for reports that are open.
For reports that are closed, Status field contain, RESOLVED
and VERIFIED which each have 7 resolutions (resolution
represents the approach applied to reach to the current sta-
tus): FIXED, INVALID, WONTFIX, MOVED, DUPLICATE,
WORKSFORME, and INCOMPLETE.
• Reporter Username of a person who reported the issue.
• Keywords Criticality of the report (critical, high, medium,

low) is mentioned in this field.
• Duplicates ID number of duplicates of the report.
• Whiteboard It contains tags, or information of a report’s

status. reporter-external tag is one of the tags which is used
to identify external versus internal reporter.

• Bug Flags It contains sec-bounty value and it does not exist
for all of the reports.

13https://chromium.googlesource.com/
14https://bugzilla.mozilla.org/home
15https://www.mozilla.org/en-US/security/known-vulnerabilities/
16https://www.mozilla.org/en-US/security/advisories/

• TrackingFlagsStatus It contains vulnerability’s statuses tracked
by developers (does not exist for all of the reports).

• Comments All comments posted on the report.

Fixed Timestamp. Each report that has VERIFIED or RESOLVED
followed by FIXED in its Status field, has an arrow followed by
RESOLVED (→ RESOLVED) and an arrow followed by FIXED (→
FIXED) in one of its last comments (date of that comment which
equals to the close time of the report). We use that date (close time)
as the date the vulnerability is fixed. There are some reports that
are closed because of incomplete fix status and reopened again. In
those cases, we consider the last fixed time as the fix time of that
vulnerability.

Mozilla Foundation Security Advisories (MFSA). MFSA reports
vulnerabilities for Mozilla products. In this paper, we focus on
Firefox. To identify reports pertaining to stable releases, we use
MFSA. For FireFox and its older versions, we scraped advisories
to be able to label reports that pertain to stable releases. We also
collected the Reporter field, which some pages in MFSA have, to
identify external versus internal reporters in our cleaning process.

FirefoxModified Source Files For Programming Languages Analysis.
Most vulnerabilities that have been fixed have links to the Mozilla
source-code repositories in their comments, which we use to iden-
tify the files that were changed to fix the vulnerability. For each
vulnerability with a repository link, we collect the programming
languages of the files that were changed.

Reopened. In Firefox, some reports had incomplete status due to
the lack of information for replication and patching. For some of
them, Mozilla reopened a new report of the vulnerability, which
was then completed with respect to this information, and marked
the first report as a duplicate. These reports can be identified by
searching a right arrow to REOPENED (→ REOPENED) in the com-
ments of that reports. Later in our analysis, we exclude these reports
from rediscovery analysis since they are not actual rediscoveries.

D.3 CVEs and CWEs
CVEDetails. We leverage CVEDetails17 and MITRE CWE18 to

collect information regarding CVE IDs and weakness types (CWEs),
for both Chromium and Firefox when available. One of the fields
associated with a report is AllLabels in Chromium. These labels
may include a categorical parameter Common Vulnerabilities and
Exposures (CVE) Entry, which contains an identification number
called CVE ID. In Firefox, some reports contain CVE ID field which
we collected them for analysis. These identifiers are used by cyber-
security product and service vendors and researchers as one of the
standard methods for identifying publicly known vulnerabilities
and for cross-linking with other repositories that also use CVE IDs.
Using these CVE IDs, we collected CVSS scores, impact metrics,
and weakness types from CVEDetails19. For each report with a CVE
ID, we collected the following details:

• CVSS Score: Common Vulnerability Scoring System (CVSS)
provides a way of capturing the fundamental characteristics

17https://www.cvedetails.com/
18https://cwe.mitre.org/
19https://www.cvedetails.com/

https://chromium.googlesource.com/
https://bugzilla.mozilla.org/home
https://www.mozilla.org/en-US/security/known-vulnerabilities/
https://www.mozilla.org/en-US/security/advisories/
https://www.cvedetails.com/
https://cwe.mitre.org/
https://www.cvedetails.com/
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of a vulnerability. This numerical score reflects the severity
of the vulnerability.

• Confidentiality Impact: Impact of successful exploitation on
information access and disclosure.

• Integrity Impact: Impact of successful exploitation on the
trustworthiness and veracity of information.

• Availability Impact: Impact of successful exploitation on
the accessibility of information resources.

• Access Complexity: Complexity of the attack required to
exploit the vulnerability once an attacker has gained access
to the system.

• CWE ID:CommonWeakness Enumeration (CWE) is a community-
developed list of weakness types. The CWE ID references
the type of software weakness associated with the particu-
lar vulnerability.

Weakness Types (CWE IDs). The CWE IDs associated with the
vulnerabilities represent common types of software weaknesses.
We later use CWE ID collected from cvedetails to collect broad-
type names of CWEs from MITRE for weakness type analyses.
Some of these weakness types have a hierarchical relationship with
other types. For example, CWE 119 denotes the error “Improper
Restriction of Operations within the Bounds of a Memory Buffer.”
This weakness type is also the parent of other CWEs, including
CWE 120 (Classic Buffer Overflow), CWE 125 (Out-of-bounds Read),
and CWE 787 (Out-of-bounds Write). For ease of presentation, we
group the CWE weakness types together based on their parent-
children hierarchy.

E DATA CLEANING
In this section, we describe the key steps of our data cleaning
process for both Chromium and Firefox.

In our analysis, we only consider reports that satisfy at least one
of the following three conditions: (1) the report is an original report,
and it has at least one security label; (2) the report is an original
report, and the value of field BugType is Bug-Security for Chromium
or has one of security labels in Keywords field for Firefox; and (3)
the report is a duplicate report, and its original report satisfies at
least one of the above conditions.

E.1 Duplicate Reports
E.1.1 Chromium. A report in the issue tracker is considered to be
a duplicate if the underlying report has already been reported to
the Chromium issue tracker (i.e., if this is a rediscovery). We can
determine whether a report is a duplicate or not based on the Status
field of the report: if the Status field is marked as Duplicate, the
report is a duplicate.

To facilitate studying vulnerability rediscovery, we find the orig-
inal report of each duplicate report as follows. For each duplicate
report 𝐷 , we follow the MergeInto field to retrieve the report ref-
erenced by it. If that is a duplicate report, we again follow the
MergeInto field of the referenced report. We continue this process
recursively until either one of the following holds:

• We reach a report 𝑂 that is not a duplicate report. In this
case, report 𝑂 is the original report of duplicate report 𝐷 .

• We reach a report 𝑋 that is a duplicate report but does not
have any references in the MergedInto field (or the value of

MergedInto field is malformed). In this case, we say that the
duplicate report 𝐷 does not have an original report.

We include a duplicate report 𝐷 in our rediscovery analysis if
report 𝐷 has an original report 𝑂 and report 𝑂 has at least one
security-related label. In order to retrieve duplicates of a vulnera-
bility, we use Duplicates field which has references to the duplicate
reports. For the cases that references also have a reference to other
duplicates, we recursively retrieve duplicate reports until there is
not any reference to a duplicate report.

E.1.2 Firefox. We can determine whether a vulnerability was re-
ported earlier (i.e., is a duplicate) or not based on the Status field. If
the report is a duplicate, Status field contains the keyword Dupli-
cate and it has reference to the original report. In some cases, the
referenced report, which is supposed to be the original report, has
Duplicate in the status and has reference to another report. In these
cases, we recursively, retrieve the report which is referenced in the
Status field until there is not any reference to a report.

E.2 Valid and Invalid Reports
For both Chromium and Firefox, if the Status field of an original
report is not marked as Invalid, it is considered a valid original
report. If a duplicate report has a valid original report, then the
duplicate report is a valid duplicate report. If a vulnerability belongs
to either valid original reports or valid duplicate reports, then the
vulnerability is considered a valid vulnerability.

If the Status field of an original report is marked as Invalid, it
is considered an invalid original report. If a duplicate report has
an invalid original report, then the duplicate report is an invalid
duplicate report. If a report belongs either to invalid original reports
or invalid duplicate reports, then, the report is considered an invalid
report.

In Firefox, there are other invalid statuses that we do not consider
them as valid statuses for reports. We do not consider duplicate
reports that their original report has INACTIVE, INCOMPLETE,
MOVED, WONTFIX, WORKSFORME, or UNCONFIRMED in its’ Sta-
tus field. However, there is an exception here. By checking some
of the reports with the mentioned statuses, we realized that some
reports that haveWORKSFORME or INCOMPLETE in their Status
field, have fixed word in their TrackingFlags field. Therefore, we
keep duplicate reports that their original has WORKSFORME or
INCOMPLETE in its’ status and it got fixed in a version (according
to the ’fixed’ word in the TrackingFlags field).

E.3 Type and Product
In Bugzilla (Firefox), there is a Type field that contains type of a
vulnerability which can be task, enhancement, or defect. We only
keep duplicate reports that their original report have defect type. As
for Product field, we keep only duplicate reports that their original
report’s product contains Core or Firefox.

E.4 External and Internal Reports
E.4.1 Chromium. The Chromium issue tracker contains reports
either reported internally by Google or reported externally by bug
hunters. For each report, we use the reporter’s email address to clas-
sify the report as either an internal or an external report. However,
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not all email addresses fall into the internal vs. external classifica-
tion; thus, we cannot always determine the reported origin based
on the email address alone. For each such address, we manually
check the activities of the email address, such as vulnerabilities
reported and comments posted by this particular email address. We
determine the reporter’s origin based on the activities associated
with a particular email address.

There are also cases where the email address could be misleading.
First, some external bug hunters submit reports privately to Google,
and internal experts then post these reports on the Chromium issue
tracker. Second, sometimes internal reporters import reports from
other bug-bounty programs (e.g., Firefox, Facebook). In these cases,
we need to identify the actual external reporter for each replicated
report by analyzing the CC email address list of the report. We
further improve the data cleaning process of distinguishing internal
and external reports using the data we collected from Chrome
Releases. The detailed cleaning process can be described using the
following steps.

Step 1: Initial Classification based on ReporterEmail Field
For each report I, we use the email address of the reporter to

classify the report I as either an internal or an external report. Specif-
ically, if the email address is ClusterFuzz or ends with google.com,
chromium.org, or gserviceaccount.com, and does not contain any
label stating external_security_report or label starting reward-to-
external and contains a non google email (i.e., email address without
google.com or chromium.org) then we consider report I to be inter-
nally reported; otherwise, we consider it to be externally reported.

Step 2: Identifying Outlier Email Addresses based on Com-
ments

We found that some of the reporters have email addresses that
do not fit the rules of Step 1. One exception is the gmail address
scarybeast, which belongs to an internal reporter. We identified this
exception by analyzing the comments posted on reports reported by
this email address. Based on the comments, we determined that this
reporter is one of the key persons in announcing the confirmation of
the reward to external reporters. Thus, we consider reports reported
by this email address as internal reports. 20

We also find some other exceptions where the email address
of the reporter skylined or cnardi end with chromium.org. When
we analyze the comments on reports reported by skylined with
chromium.org address, we realized he served as a team member of
the Google Chrome Security Team from 2008 - 2013 and left Google.
After leaving Google, he reported few vulnerabilities as an external
reporter and received rewards. When we analyze the comments on
reports reported by cnardi ends with chromium.org, one comment
mentions “cnardi@chromium.org as an external reporter regard-
less of his email address ends with @chromium.org.” Accordingly,
we classify them as an external reporter. We consider the reports
reported by these two reporters as external reports.

Step 3: Analyzing CCDetails Field and Identifying the Actual
External Reporters

Some reports that are submitted by internal-reporters are replica-
tions of reports privately submitted by external reporters to Google
or reports imported from other bug bounty programs (e.g., Firefox,

20We believe this person was actually a member of the Google Chrome Security Team.

Facebook). Google replicates most of these externally reported re-
ports through the automated tool ClusterFuzz, but sometimes
Google replicates them manually using internal reporters (e.g.,
scarybeasts@gmail.com). For each replicated report, we need to
identify the actual external reporter. We use the following approach
and identify the email address of the external reporter of those re-
ports.

For each report I for which we have to identify the email ad-
dress of the actual external reporter, we first extract the CC email
addresses (CC𝑎𝑙𝑙 ) from the CCDetails field. From CC𝑎𝑙𝑙 , we obtain a
new list CC𝑟𝑒𝑚𝑎𝑖𝑛 by removing the email address where the email
address belongs to an internal reporter at the end of Step 2. For
each email address in the CC𝑟𝑒𝑚𝑎𝑖𝑛 list, we look into comments
of the corresponding report I whether any comment has one of
the following phrases “originally reported by”, “thanks to”, “credits
to”, “thanks”, “credits”, “reward”, “congratulations” immediately
followed by username or email address or full name of the reporter.
If the username of the email address or the reporter’s full name
matches the email address, we add the particular email address to
the possible-reporters list.

We repeat the same process for every email address on the list.
After the process finishes, we check the possible-reporters list of
the report I. If the possible-reporters list is empty, we set the Re-
porterEmail field of the report as empty (there are 50 reports for
which we cannot identify the email address of the actual external
reporter during this data cleaning process). If the possible-reporters
list is not empty, then we set the ReporterEmail field of the report
with the list of email addresses in the potential-reporters list.

Even though there should be only one reporter for each report
(i.e., the length of the potential-reporters list should be one), we
observe some reports where multiple reporters are rewarded. This
may happen when multiple external bug hunters report the same
report to Google (not through the issue tracker). Google replicates
these reports by posting a single report on the tracker via an internal
reporter. In such cases, we let the reporter’s email of the report
be a list instead of a single email address. Note that for some of
these reports with multiple reporters, we perform an additional
verification in Step 4.

Step 4: Cleaning based on Chrome Releases Data
Further, we improve the data cleaning process of internal and

external reports based on data collected from Chrome Releases (Ap-
pendix D.1). During the last step (Step 3), wemark the ReporterEmail
field as empty for the reports where we are unable to determine
the actual external reporter.

For each report I which marked the ReporterEmail field as empty
in the last step (Step 3), we look for a data entry DE with the
IdentificationNumber field same as the Identification Number field
of report I. If a data entry exists in the Chrome Releases dataset,
then we set the Report Email of report I with the Reporter Name
in data entry DE. Accordingly, we are able to identify the actual
external reporter details of 14 reports.

Further, during the last step (Step 3), we have more than one
email address set to the ReporterEmail field for 13 reports. For each
report I in those 13 reports, we look for a data entry DE with
Identification Number field the same as the IdentificationNumber
field of report I. If there exists a data entry (DE) in the Chrome
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Releases dataset, then we check the value in the ReporterName field
ofDE; if it indicates a single person, then we update the ReportEmail
field with the single person.We are able to update 8 out of 13 reports
with multiple reporters to the actual external reporters. At the end
of this step, we were left with 22 reports to go through an additional
cleaning process to identify the original ReporterEmail field of the
report.

For each reporter name RN used as the ReporterEmail field of
the above 22 reports, we list out the reports (𝐿𝑅𝑁 ) reported by the
reporter RN based on the Chrome Releases dataset. For each report
in 𝐿𝑅𝑁 , we look for report I, which has the same Identification
Number and Reporter Email in the email address format. If we
obtain the report I, then we map the reporter name RN with the
ReporterEmail field of report I ; otherwise, we continue the same
process with the next report in the list.

Finally, we repeat Step 1 with the cleaned dataset based on Steps
3 and 4. We identify the email address of the actual external reporter
for 98% of valid external reports.

E.4.2 Firefox. Reports in Firefox VRP are reported either internally
by Firefox internal team members or by external reporters.

We use four steps to separate internal reports from external re-
ports. First, we use Whiteboard and bug-flag fields on the report
information page. If a report has reporter-external in Whiteboard
field or sec-bounty in bug-flag field, we consider that report as an ex-
ternally reported report; otherwise, it is considered as an internally
reported report. However, there are reports that do not have the
above keywords in the mentioned fields, they are reported by exter-
nal reporters. To separate them, we added three more cleaning steps.
In the second step, we leverage the snow-balling technique (on the
comments, such as “security@mozilla.org received the following
report from”) to identify reports (around 650 reports) reported by
internal security members of Mozilla and do not have any bounty
tag, but their original reporters are external. In the third step, we
check reporters with both internal and external reports (around
50). We manually check whether they are internal or external (by
reading comments and checking their social networking websites).
In the last step of the cleaning process, we leverage Reporter field
in MFSA and match the name of reporters in their profile names
(we got each reporter’s profile name from Bugzilla) with the name
of the reporter mentioned in MFSA. By applying the above steps,
we are able to separate internal versus external reports with 97%
accuracy.

E.5 Vulnerability Attributes
For each duplicate report 𝐷 , we clean security-severity, impacted
releases, weakness types, components, and programming language
attributes to make them consistent with its original report 𝑂 . Ac-
cordingly, we perform the following cleaning steps:

• If the duplicate report 𝐷 does not list any value for an
attribute 𝐴 and the original report 𝑂 of duplicate report 𝐷
has a value, then we set the value for attribute𝐴 of duplicate
report 𝐷 to the value of the original report 𝑂

• If all duplicate reports of original report 𝑂 list the same
value and original report 𝑂 does not list any value for an
attribute 𝐴, then we set the value for attribute 𝐴 of original
report 𝑂 to the value of the duplicate reports.

Further explanations for different attributes based on the datasets
are in the following sections.

E.5.1 Security-Severity.

Chromium. There are four severity levels in the Chromium is-
sue tracker, which describe the security severity of a vulnerability:
Critical, High, Medium, and Low. For each original report, we iden-
tify its security-severity level by extracting labels that start with
Security_Severity from the AllLabels field of the report. If a label
in the format of Security_Severity-L is available in the list of la-
bels (where L is one of the four security-severity levels), then the
severity of the report is L. If no labels are available in the format of
Security_Severity-L in the list of labels, then we consider the severity
of the report to be unclassified. For each duplicate report 𝐷 , we use
the security-severity level of the corresponding original report 𝑂
instead of the security-severity level of the duplicate report 𝐷 . We
exclude unclassified vulnerabilities from the security-severity anal-
ysis.

Firefox. There are multiple security related keywords in the Key-
words field of a report. We only include reports in our analysis that
contain one of the 6 following security tags in their Keywords field:
sec-critical, sec-high, sec-medium, sec-low, sec-vector, and sec-other.
If a report has one of the above keywords in its Keywords field,
we consider that report as a security report and include it for our
analysis. There are some reports that have more than one security
keyword. For those reports, we keep them as security reports in the
dataset but exclude them from the analysis parts related to the secu-
rity severity. We also realized that most of the collected reports that
are opened in 2011 and before that year, do not have any security
keywords assigned. Therefore, we only consider reports that are
opened in 2012 and later for our analysis. For each duplicate report
D, we use its corresponding original report’s keyword as the dupli-
cate security-severity field. There are reports with other security
related keywords in their Keywords field which we exclude them
since they are not actually security reports. For instance, reports
which have sec-want which is ’New features or improvement ideas
related to security’ according to Mozilla keywords explanation are
excluded.21

E.5.2 Release Channels.

Chromium. Google categorizes release versions as stable, beta,
and dev. Stable is the release that is available for end-users. Beta
is the release that is available for a limited number of users to test
features before releasing a stable release. Dev (commonly referred
to as head) is the release that is based on the last successful build.
We use the term release channel to refer to these release versions
throughout the paper. Note that the term release version means the
type of the release instead of the version number (e.g., Version 90
and Version 91).

Each security vulnerability I impacts one or more release chan-
nels. To identify which security channel(s) is affected by vulner-
ability I, we check labels in AllLabels field that start with Secu-
rity_Impact. Based on these, we identify three release channels
during this process: stable, beta, and head. We group beta and head
as development release channels and perform our analysis.
21https://bugzilla.mozilla.org/describekeywords.cgi

https://bugzilla.mozilla.org/describekeywords.cgi
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Firefox. We followed the general approach we mentioned at the
beginning of this section (Appendix E.5).

E.5.3 Components.

Chromium. For each report I, we identify the components from
its Component field. Each report I will contain a set of compo-
nents 𝐶𝐼 . For each component c in the 𝐶𝐼 , we extract the set of
the group, which indicates a list of all sub-levels from the top
level to the bottom level of the component hierarchy. For exam-
ple, if report I has a component Internals>Plugins>PDF, we
extract the set of the group as Internals, Internals>Plugins,
Internals>Plugins>PDF.We use𝐺𝐼 to denote the set of all groups
that correspond to all the components of the report I. Some of the
pairs of original report𝑂 and its duplicate report 𝐷 have one of the
following inconsistencies.

• If the Component field of all duplicate reports of original
report 𝑂 are not the same and the Component field of the
original report 𝑂 is empty. Still, all duplicate reports of
the original report 𝑂 contain the same set of groups of
components𝐺𝐷 . We set the Component field of the original
report 𝑂 to the value of the Component field of duplicate
reports.

• If the Component field of all duplicate reports of original
report 𝑂 are not the same and the Component field of the
original report 𝑂 is not empty, then each pair of original
report 𝑂 and duplicate report 𝐷 , we check whether it satis-
fies at least one of the conditions. If it is satisfied, then we
set the Component field of duplicate report 𝐷 to the value
of the Component field of original report 𝑂
– All the components of duplicate report 𝐷 (𝐶𝐷 ) in the

set (𝐶𝑂 ) or the set (𝐺𝑂 ).
– All the groups of the components of duplicate report𝐷
(𝐺𝐷 ) present either in the set (𝐶𝑂 ) or the set (𝐺𝑂 ).

Firefox. We followed the general approach we mentioned at the
beginning of this section (Appendix E.5).

E.6 Earliest Report and Fixed Timestamps
First reported Timestamp (𝑇𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 ): the date and time of the first re-
port of a vulnerability. For each valid original report𝑂 , we compute
𝑇𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 based on either one of the conditions:

• If the valid original report𝑂 reported before all of its dupli-
cate reports, then we set 𝑇𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 to the value of Opened-
Timestamp field of the valid original report 𝑂 .

• If the valid original report𝑂 is reported after one or more of
its duplicates, we list all the timestamps from the Opened-
Timestamp field of all the duplicate reports of the valid
original report 𝑂 , then set 𝑇𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 to the minimum times-
tamp from the list of all timestamps.

Fixed Timestamps In Firefox. In the collected data, there are two
vulnerabilities that both original and its duplicate has fixed time.
We excluded those reports from our analysis related to fix. For some
reports withWORKSFORME status in Firefox, there are not specific
fixed time. If that report has TrackingFlags in its information page
and it shows that the report got fixed in a version, we consider this

report in our dataset as valid report, but we do not consider its fixed
time.

E.7 Rediscovery
There are some vulnerabilities that are reported by the same origin
reporter multiple times in both Chromium and Firefox. In the redis-
covery analysis, we remove redundant reported reports and keep
only the earliest report from the same origin. There are also reports
that do not have accessible pages in Bugzilla. Since for those reports
we cannot identify which report is the earliest one, we excluded
them from the rediscovery analysis. In Firefox, some reports are
incomplete with respect to replication and patching. For some of
them, Mozilla opened a new report of the vulnerability, which was
then completed with respect to this information, and marked the
first report as a duplicate. We also exclude these vulnerabilities
from our analysis since they are not actual rediscoveries.

E.8 Exploited Vulnerabilities
To identify exploited vulnerabilities, we first collect an initial set
of exploited vulnerabilities from the Known Exploited Vulnerabili-
ties Catalog of CISA22. Then, we extend this set iteratively using
a snowballing method by identifying terms in comments related
to exploitation (e.g., exploited in the wild) and gathering vulnera-
bilities whose comments include these terms. We manually verify
the descriptions of these vulnerabilities to find false positives. Fi-
nally, we restrict the set to valid original security vulnerabilities,
resulting in a set of 18 and 37 exploited vulnerabilities for Firefox
and Chromium respectively.

22https://www.cisa.gov/known-exploited-vulnerabilities-catalog

https://www.cisa.gov/known-exploited-vulnerabilities-catalog
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