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Abstract—In many cooperative networks, individuals participate actively as long as they recognize a sufficient value in participation,
which depends not only on the number, but also on the attributes of other participating members. In this paper, we present a
generalized model of individuals’ participation in such networks, and a strategy to maximize the number of participating individuals. Our
model incorporates both the network structure and the heterogeneity of individuals in terms of their attributes and resources. We
consider that each individual possesses a subset of available resources (attributes), which it shares with neighbors as long as
neighbors reciprocate and provide the missing resources to the individual. However, individual leaves the network if it cannot find all the
resources in its neighborhood. To model this phenomenon, we introduce the graph-theoretic notion of (r, s)-core, which is the
sub-network consisting of only those individuals who can access all the resources by collaborating with their neighbors. Since
disengagement of an individual could initiate a cascading withdrawal of more individuals from the network, one of our main goals is to
prevent this unraveling and maximize the number of participating individuals. For this purpose, we utilize the notion of anchors –
individuals that continue to participate (due to incentives) even if they cannot find all of the resources in their neighborhood. By
introducing only a few anchors, we can significantly increase the number of participating individuals, which in our model corresponds to
increasing the size of the (r, s)-core. We formulate and thoroughly analyze the anchors’ selection problem by classifying the cases in
which the problem is polynomial-time solvable, NP-complete, and inapproximable. Further, we provide greedy and metaheuristic
search algorithms to compute a set of anchors and evaluate our results on various networks. Our results are applicable to a large
number of cooperative networking applications, including participatory sensing in which users develop an elaborate knowledge of their
environment through sharing measurements.
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1 INTRODUCTION

In the broad domain of cooperative networks, it is crucial
to understand how and when individuals cooperate with
each other and actively participate in a network activity. At
what point individuals decide to disengage themselves from
the network, and how can we maximize the participation
of individuals? It turns out that mutual benefit is a key to
sustainable coordination among individuals in cooperative
networks. Studies in social networks, behavioral economics,
and sociobiology also reveal that individuals are more likely
to share (their resources, information, etc.) with others in a
society if others reciprocate (e.g., see [2], [3], [4], [5], [6]). This
sharing induces a positive network effect and allows indi-
viduals to utilize a broad spectrum of resources available
within the network. On the other hand, individuals are more
likely to disengage from the network if they do not find
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a sufficient value in participation, or if they fail to receive
the desired resources or information from the network.
This behavior describes a group participation mechanism,
in which individuals collaborate and contribute in a group
as long as they receive a sufficient reward in terms of access
to the overall group resources.

As an example, consider the phenomenon of participa-
tory sensing, that enables users to share measurements of
their environment [7], [8], [9], such as traffic and parking
situations [10], [11], waiting times at businesses, weather
information, or disaster scenarios [12]. The goal is to allow
users to develop a knowledge of their environment through
sharing. This knowledge is significantly more elaborate
than what individuals could develop on their own, relying
only on their limited sensing capabilities. A key feature of
participatory sensing is that an individual’s benefit from
the application depends strongly on what measurements
are shared by other users. Consequently, an individual’s
eagerness to participate depends on the group of users
already participating, which results in a cascading effect: as
the size of the user base grows, other individuals become
more eager to join. Since the success of a participatory-
sensing application is very often measured in terms of the
number of its users, finding innovative ways to maximize
the number of individuals joining the application is crucial.

In this paper, we model the participation of individuals
in a network, each of which has a certain type of resources
(capabilities, information, attributes), as a graph-theoretic
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problem. An individual shares (personal) resources with
friends in a network, and in return expects them to re-
ciprocate by providing the resources not possessed by the
individual. If friends in the network fail to cater the missing
resources, the individual disengages from the network, thus
reducing the size of the overall network. As a result of a
disassociation of the individual from the network, one of
the friends that might be depending on the individual for a
particular resource might also leave the network due to the
unavailability of the desired resources. This phenomenon
could lead to a cascading effect involving a subsequent
disengagement of many more individuals. At the end, we
are left with a smaller network in which every individual,
as a result of collaboration with friends, has an access to
all types of resources available within the network. We
introduce the notion of (r, s)-core of the network to model
this participation strategy. If r is the total number of various
resources available in the network, and each individual pos-
sesses at most s of them, then the (r, s)-core represents the
sub-network in which every individual finds all r resources
between himself and friends (neighbors).

As we observe in participatory sensing, it is desired to
maximize the number of active users. In other words, we
need to modify or design the network so as to maximize
the size of its (r, s)-core. A key factor here is to prevent
the unraveling of the network by averting the cascading
removal of individuals. To achieve this objective, we utilize
the notion of anchor nodes inspired by the work of Bhawalkar
et al. [13]. In our work, anchors are the individuals that
continue to participate even if they do not find the desired
resources in their neighborhood, i.e., whose participation in
the network does not depend on the attributes of their peers.
A small subset of individuals in a network can be made
anchors by incentivizing them, for example, by providing
them with rewards for their participation. We show that by
incentivizing a small but strategically selected set of individ-
uals can lead to a very large number of users following them
and joining the network, thus, resulting in a significantly
larger (r, s)-core. Finding such a small set of anchors that
maximize the (r, s)-core of the network is a computationally
challenging problem. We analyze the complexity of this
problem in detail, and present heuristics to find anchors
that significantly increase the size of the (r, s)-core of the
network.

We summarize our main contributions below:
• We introduce the notion of (r, s)-core to model the

participation of individuals in a network. Our model
is general in the sense that it incorporates the partic-
ipation mechanism in which individual’s decision to
participate in the network depends not only on the
number of friends (neighbors), but also on their types
and attributes (resources, capabilities).

• To maximize the number of participants in a network
and increase the size of (r, s)-core, we propose to
incentivize few individuals called anchors. We show
that the size of (r, s)-core is significantly increased by
having few anchors that are strategically selected. We
formulate the problem of finding a given number of
anchors that maximize the size of the (r, s)-core, and
provide an integer linear program (ILP) for the anchor
selection problem.

• We analyze the complexity of the anchors selection
problem in detail. We show that in arbitrary graphs the
problem can be solved in polynomial time in the special
case of r = s+ 1 (Theorem 5.1). For any other value of
r, the problem is NP-complete (Theorem 5.2). In fact,
we show strong inapproximability results for general
graphs and r ≥ s + 4 (Theorem 5.3). This detailed
complexity analysis of the anchors selection problem
is one of the main highlights of this work.

• We propose a greedy heuristic and a metaheuristic
search algorithm based on simulated annealing to find
a given number of anchors to increase the size of the
(r, s)-core of the network.

• Finally, we evaluate our results numerically on a num-
ber of networks, and use simulations to demonstrate
the efficacy of our approach.

We presented the preliminary ideas in a brief note in [1].
The current paper provides a detailed technical description
of the problem along with a literature review, which is
not available in [1]. In fact, majority of the results here
are new, including ILP formulation of the anchors selection
problem, and the main results such as Theorems 5.1 and 5.3
(that classify the cases in which the anchors selection prob-
lem is polynomial time solvable, and is inapproximable).
Moreover, simulated annealing based heuristic along with
detailed numerical evaluation of the results are also new. We
also discuss a number of extensions and further directions
here.

The rest of the paper is organized as follows: Section 2
gives an overview of the related work. Section 3 introduces
the network model, and formally defines the (r, s)-core
of the network. Section 4 presents the idea of anchors to
maximize the size of the core. It presents the anchor selec-
tion problem, and also provides an ILP formulation of the
problem. Section 5 analyzes the complexity of the anchors
selection problem in detail, showing that the problem is
computationally challenging in general. Section 6 proposes
heuristics to select a given number of anchors to maximize
the core, and Section 7 provides a generalization of the
(r, s)-core. Section 8 presents a numerical evaluation of our
approach. Section 9 provides various directions to further
extend this work.

2 RELATED WORK

To describe the norms and mechanisms that explain coordi-
nation in societies, prosocial behaviors, and reciprocity for
the mutual benefit of the network members, various theories
and ideas have been put forward in the social sciences, be-
havioral sciences and psychology literature. A good account
of the dilemmas of social cooperation and an overview of
the human cooperation mechanisms is presented in [4], [14].
It is reported that reciprocity plays a key role in defining
human cooperation. Based on various aspects including
when and with whom to cooperate, different notions of
reciprocity have been specified, such as direct reciprocity
[15], [16], indirect reciprocity [2], and generalized reciprocity
[3], [17]. Individuals help others in a social set up as long
as they also receive help from the other members of the
society. Another related phenomenon is of social cohesion
[18], in which individual’s decision to participate in a group
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and retain its membership, has a significant impact on the
overall cohesiveness of the group.

Various mathematical models, for instance as in [13],
[19], [20], [21], [22], characterize the processes by which
groups get together, grow by engaging new members, or
diminish as a result of defection of members. In a recent
paper, a mathematical model of the evolution of a social
network based on the notion of social capital is presented in
[23]. Threshold models of collective behavior (e.g., [24], [25])
hold a central position in this domain. The basic premise is
that individual’s behavior and decision to stay or leave a
network depends on a certain number of other individuals
(threshold) engaged in a similar behavior. The k-core of the
network, introduced in [26], is one such widely studied
and applied model. It asserts that an individual continues
to participate in a network if at least k of the individual’s
friends are also participating. In graph-theoretic terms, it
means that a node with degree less thank k is removed from
the graph, and k-core is the maximal subgraph in which
each node has degree at least k. k-core and its extensions,
including defining a distinct threshold k for each node [27],
[28], k-core in weighted graphs [29], directed graphs [30],
and various others have been extensively studied in the
context of social networks (e.g., [31], [32], [33]), as well as
other networks (e.g., see [34] and the references therein).

Disengagement of one member from the network could
initiate a cascaded withdrawal of others. To prevent this
unraveling in social networks, the idea of anchor nodes has
been presented in [13] in the context of k-core. The authors
showed that the size of the k-core can be increased through
anchors – nodes that remain engaged even if they have less
than k friends. Our work is related to [13] in this direction,
as we also utilize the notion of anchors to maximize the
size of (r, s)-core. However, a limitation of the k-core based
participation model is that it assumes participation to be
determined solely by the network structure, ignoring the
heterogeneity of users and their attributes. In many realistic
scenarios, such as in participatory sensing, the heterogeneity
of users plays a key role. For example, users may take
measurements at different geographical locations, and they
may have devices with different sensing capabilities. To
develop a more complete knowledge of the environment,
these heterogeneous measurements must be combined. As
a consequence, a users’ benefit from a participatory-sensing
application depends not only on the number of participating
peers, but also on the heterogeneous nature of the mea-
surements shared by them. To account for heterogeneity, we
introduce the concept of (r, s)- core, which incorporates the
attributes (resources, capabilities, information) of users also.

Finally, the anchors selection problem is closely related
to finding the most influential nodes in social networks that
could instigate the cascading removal of nodes as studied in
[35]. Based on a particular network model, there are many
variants and extensions of the problem (e.g., [36], [37], [38],
[39]) along with detailed complexity results [40], [41], [42],
[43]. We note that similar to the notion of anchors, the idea of
having some ‘special nodes’ that are more resilient to struc-
tural changes in the network, have been used previously
in other contexts, for instance to increase the connectivity
and structural robustness of the network [44], [45]. In this
paper, we study the anchors selection problem to maximize

the (r, s)-core of the network, which is an elaborate model of
users participation in a network of individuals with assorted
resources and attributes.

3 NETWORK MODEL AND (r, s)-CORE

We model the network by a simple, undirected graph
G(V, E), in which the node set V represents the set of indi-
viduals, and the edge set E represents connections between
them. Any two nodes x, y ∈ V are adjacent in G if an
edge exists between them, for instance, if the corresponding
individuals share measurements with each other. A set of
nodes adjacent to x ∈ V is called the neighborhood of x, and is
denoted byN(x). Similarly, we define the closed neighborhood
of x as N [x] = N (x) ∪ {x}. Each node of the graph has
attributes, which model the specific set of resources, sensing
capabilities, measurements, or information contained by the
corresponding individual. A node shares its attributes and
make them accessible to its neighbors. We model these
attributes by a label set containing r distinct labels, that is
R = {0, 1, 2, · · · , r − 1}, and assign a subset of s ≤ r labels
to each node in G, depending on the attributes of the node.
As a result, we have a (node) labeled graph that captures
the sharing phenomenon between individuals with different
attributes. We denote labels assigned to node x by `(x),

` : V −→ [R]s. (1)

Here, [R]s is the set of all subsets of R having exactly s
elements.
Node participation rule – A node (individual) participates
in the network on the reciprocity principle, that is, it shares
its resources with neighbors in the network, and in return
expects to receive the missing set of resources from the
neighbors. In particular, a node participates (or engages) in
the network as long as its neighbors provide all the labels
that are missing from the node’s own label set. Formally, a
node x participates in the network as long as the following
condition is satisfied: ⋃

y∈N [x]

`(y) = R. (2)

This engagement rule models networking phenomena
in which a node continues to participate in the network and
shares its information as long as it acquires all the missing
information from the neighbors. If the condition in (2) is
not satisfied for a node, then the node simply leaves the
network. We note here that there could be other variants
and extensions of the above participation rule depending
on the networking applications. We further discuss these
variations and generalizations in Section 7 and 9.

3.1 (r, s)-Core of the Network

Consider a network in which each node has a subset of s
labels from the set of r labels, and nodes participate as per
engagement rule (2). In such a setup, a node leaving the
network can have a cascading effect as it may further cause
its neighbors to depart. For instance, consider a node x with
a label a ∈ `(x), and let y ∈ N (x) be such that x is the
only node in N [y] with the label a. Then, node x leaving
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Fig. 1: (a) Example network. (b) (5, 2)-core of the example network. (c) (5, 2)-core with an anchor node (marked green).

the network will also result in node y leaving. Thus, the
removal of a node from a network may cause a cascading
effect, or unraveling, due to which nodes that initially satisfy
the condition (2) may also get removed from the network. In
the end, we are left with a subnetwork consisting of nodes
all of which satisfy the participation rule (2). We call this
remaining network as the (r, s)-core of the original network.
More precisely, we define (r, s)-core as follows:

(r, s)-Core Given a graph G(V, E), a set of r labels, denoted
by R, and an assignment ` : V → [R]s (that is, assigning
s labels from R to each node v ∈ V), the (r, s)-core of G,
denoted by G̃(Ṽ, Ẽ), is the maximal subgraph in which every
node satisfies ⋃

y∈(N [x]∩Ṽ)

`(y) = R, ∀x ∈ Ṽ. (3)

Note that it follows from the definition readily that every
labeled graph has a unique (r, s)-core.
Example – As an example, consider the network shown in
Figure 1(a). This network has ten nodes, each of which has
s = 2 labels from the set R = {0, 1, 2, 3, 4}. Initially, there
are two nodes x and y that do not satisfy the condition
(2). As a result, they leave the network, which leads to
further node removals. In the end, only three nodes remain,
as shown in Figure 1(b). Each of these nodes have all five
labels between itself and its neighbors; thus, constituting the
(5, 2)-core of the network.

4 ANCHORED (r, s)-CORE PROBLEM

The (r, s)-core represents individuals that actively partici-
pate in the networking application, for instance, individuals
in a participatory-sensing application that share measure-
ments with their peers. To increase the participation of
individuals, we desire to increase the (r, s)-core size. Thus,
from a design perspective, the following question arises.

For a given network G, label set R, and a positive integer s,
how can we modify or design our network so as to maximize the
size of its (r, s)-core?

One way to achieve this objective is to find an optimal
assignment of labels to nodes, that is, a labeling ` defined
in (1) that maximizes the size of the (r, s)-core. However,
in some situations, the labeling ` is fixed, that is, the la-
bels assigned to nodes are given and cannot be changed.
For example, in participatory sensing, users can have de-
vices with fixed sensing capabilities that cannot be easily
changed. A new approach is needed in these situations to
increase participation. In this paper, we explore the idea of

significantly increasing participation by incentivizing a few
selected individuals to participate regardless of their peers’
attributes.

The departure of a node from the network may lead to
the departure of its neighbors, thereby causing a cascading
phenomenon. The size of the (r, s)-core of the network can
be larger if we can prevent this cascading effect. By ensuring
the participation of few individuals, even if they do not
satisfy the participation rule, we can prevent the unraveling
of the network. We call such individuals as anchors.

Anchors Anchors are the nodes that never leave the net-
work and participate irrespective of the labels assigned to
them or to their neighbors. In other words, they continue to
participate even if they do not satisfy the rule in (2).

Individuals can be made anchors by offering them re-
wards for their participation. We now define the (r, s)-core
with anchors as follows:

(r, s)-Core with Anchors Given a graph G(V, E), a set of
r labels, denoted by R, an assignment ` : V → [R]s that
assigns s labels from R to each node v ∈ V , and a set
of anchor nodes A ⊆ V , the (r, s)-core with anchors A is
the maximal subgraph G̃A(ṼA, ẼA) consisting of all anchor
nodes as well as non-anchor nodes satisfying⋃

y∈N [x]∩ṼA

`(y) = R, ∀x ∈ ṼA \ A. (4)

Note that it follows from the definition readily that for
every labeled graph and anchor set, the anchored (r, s)-core
anchors exists uniquely. An example of (r, s)-core with an
anchor node is shown in Figure 1(c). Without any anchor
node, size of the (5, 2)-core is three, as shown in Figure
1(b). However, (5, 2)-core with a single anchor consists of
eight nodes (Figure 1(c)), that is, we obtain a subgraph
consisting of eight nodes in which each non-anchor node
has a complete set of five labels between itself and its
neighbors. Thus, we see a significant improvement in terms
of users participation even with a single anchor.

Next, we study the problem of maximizing the size of
(r, s)-core by selecting an appropriate set of anchor nodes
A. Formally, we state the problem as:

Anchored (r, s)-Core Maximization Problem (ACMP)
Given a node labeled graph G(V, E), in which each node
is assigned a subset of s labels from a set of r labels, and
a budget b, then the Anchored (r, s)-Core Maximization
Problem is to find a subset A ⊆ V such that the number of
nodes in the anchored (r, s)-core is maximized over all sets
A ⊆ V of size |A| ≤ b.
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In Section 5, we analyze the complexity of this problem
in detail. First, we outline an integer linear program (ILP) to
solve the ACMP.

4.1 An ILP for the Anchored (r, s)-Core Maximization
Problem
An ILP formulation of the ACMP is as follows:

maximize
∑
u∈V

xu,

subject to
∑
u∈V

zu ≤ b;∑
v∈N [u]

xv ∗ w(v, c) + zu ≥ xu; ∀u ∈ V, c ∈ R

xu, zu ∈ {0, 1}; ∀u ∈ V
w(c, v) ∈ {0, 1};∀v ∈ V, c ∈ R.

The variable zu represents whether the node u is an-
chored or not, and the variable xu represents whether the
node u is included in the (r, s)-core or not. The goal is
maximize the number of nodes in the core. The first con-
straint shows that the number of anchors is bounded by the
budget b. The second constraint makes sure that for each
node u ∈ V and for each label c ∈ R, if xu = 1 (that is u is
in the core), then u is either an anchor node, or u must have
c in its closed neighborhood. Here, w(v, c) is an indicator
variable for whether the label c is in the label set of node v,
that is w(v, c) = 1 if c ∈ `(v) and 0 otherwise. Note that if
node u is anchor (zu = 1), then the corresponding xu = 1
and u is included in the core.

5 COMPLEXITY RESULTS

In this section, we discuss in detail the complexity of the
anchored (r, s)-core maximization problem. In particular,
we show that for any positive integer s, the problem can
be solved in polynomial time for a special case of r = s+ 1
(Theorem 5.1). For all other r > s + 1, the problem is NP-
complete (Theorem 5.2). In fact, for r ≥ s + 4, we prove
a strong inapproximability result (Theorem 5.3). The main
results of this section are stated below.
Theorem 5.1. For any positive integer s, the anchored (s +

1, s)-core maximization problem can be solved inO(N+
sE), where N and E are the number of nodes and edges
in G(V, E) respectively.

Theorem 5.2. Given a graph G(V, E), a positive integer s, a
set of r = s+j labels where j > 1, a labeling `, a number
of anchor nodes b, and a threshold core size δ, determin-
ing if there exists a set A of at most b anchor nodes that
results in an anchored (r, s)-core whose cardinality is at
least δ is an NP-complete problem.

Theorem 5.3. For any positive integer s and j ≥ 4, it is
NP-complete to approximate the anchored (s+ j, s)-core
maximization problem within any factor O(N1−ε) for
ε > 0, where N is the number of nodes in the graph
G(V, E).

We prove the above results in Sections 5.1, 5.2, and 5.3
respectively.

5.1 Maximization of the Anchored (s + 1, s)-Core

Whenever the total number of labels is only one more than
the number of labels assigned to each node, then every node
misses at most one label in its closed neighborhood. An
important observation in this special case is outlined below.

Lemma 5.4. For any positive integer s and a graph G(V, E),
let Ṽ be the set of nodes in the (s+1, s)-core of G with no
anchors, and ṼA be the set of nodes in the (s+ 1, s)-core
of G with one anchor node A = {x}, where x ∈ V \ Ṽ ,
then ṼA = Ṽ ∪ {x}.

Proof – For the sake of contradiction, we assume that
by making x an anchor node, another node y ∈ V \ Ṽ is
included in ṼA. It implies that y ∈ N (x), and `(x) ∩ `(y) 6=
`(y), where `(x) and `(y) are the labels assigned to x and
y respectively. This is only possible when there exists a
label i ∈ `(x) such that i /∈ `(y), and a label j ∈ `(y)
such that j /∈ `(x). Since both x and y already have s
labels each, and miss only a single label, their labels must
complement each others, that is, {0, 1, · · · , s} \ `(x) ∈ `(y),
and {0, 1, · · · , s} \ `(y) ∈ `(x). It means that both x and
y have (s + 1) labels in their closed neighborhoods and are
included in Ṽ which constitutes the (s + 1, s)-core with no
anchors, which is a contradiction. �

5.1.1 Proof of Theorem 5.1

From Lemma 5.4, we get that the size of the (s + 1, s)-core
with anchors A is simply |Ṽ ∪ A|, where Ṽ is the set of
nodes in the (s+1, s)-core (with no anchors). Thus, to prove
Theorem 5.1, all we need to show is that (s + 1, s)-core of
a labeled graph can be computed in O(N + sE), which is
indeed the case using the algorithm outlined below.

Let (u, v) be a monochromatic edge, that is an edge
between u and v such that `(u) = `(v). Then we ob-
serve that

⋃
i∈N [v] `(i) =

⋃
i∈(N [v]\{u}) `(i), and similarly⋃

i∈N [u] `(i) =
⋃
i∈(N [u]\{v}) `(i). Hence, removing edge

(u, v) doesn’t affect the (s + 1, s)-core of given G. Once we
have removed all monochromatic edges, all vertices with at
least one neighbor will be included in the (s + 1, s)-core.
Checking whether an edge is monochromatic or not takes
s.E time, while enumerating all vertices with at least one
neighbor can be achieved in N time. This completes the
proof of the theorem. �

5.2 Hardness of Anchored (s + j, s)-Core for j > 1

The membership in NP is obvious because the size of the
anchored (s+ j, s)-core can be verified in polynomial time.
In the following, we show that for any j > 1, the anchored
(s + j, s)-core maximization problem is computationally
hard using a reduction from a well-known NP-hard prob-
lem, the Set Cover Problem.

Set Cover Problem (SCP) Given a base set U =
{1, 2, · · · ,m}, a collection F = {S1, S2, · · · , Sn : Si ⊆ U}
where

⋃
Si∈F = U , and a number σ; determine if there

exists a subcollection F ′ ⊆ F of at most σ subsets such that
every element of U is contained by at least one subset in F ′.
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Proof of Theorem 5.2
Given an instance of the Set Cover Problem, we construct
an instance of the anchored (s+ j, s)-core problem for j > 1
as follows:
• R = {0, 1, · · · , s, s+ 1, · · · , s+ j − 1}, and b = σ;
• for every Si ∈ F , there is a node wi with labels
{0, 1, · · · , s− 1};

• for every u ∈ U , there is a node vu with a set of s labels
{1, 2, · · · , s};

• there exists a clique of |R| = s + j nodes, denoted by
Ks+j , where each node oi ∈ Ks+j is assigned a set of
labels `(oi) = {i−1}∪Qi, where Qi is a subset of s−1
arbitrarily picked labels from the set R \ {i− 1}.

• for every u ∈ U and Si ∈ F , the corresponding nodes
vu and wi are adjacent if and only if u ∈ Si;

• every vu is adjacent to all the clique nodes in the set
{os+2, os+3, · · · , os+j}. Note that as a result of these
connections, each vu has a set of labels {1, 2, · · · , s} ∪
{s + 1, s + 2, · · · , s + j − 1} available in its closed
neighborhood.

• δ = b+ |U|+ |R|.
The above reduction can be clearly carried out in time that
is polynomial in the size of the SCP instance. Hence, it
remains to show that the SCP has a solution if and only
if the anchored (s+ j, s)-core problem does.

Firstly, if there exists a set cover F ′ containing σ subsets
of U , then the anchor set A consisting of nodes correspond-
ing to those subsets in F ′ is a solution to the anchored
(s+ j, s)-core problem. To see this, consider that every node
vu (corresponding to u ∈ U ) is adjacent to at least one
node in wi ∈ A, which provides label 0 to each vu in its
neighborhood. Moreover, we note that `(vu) = {1, · · · , s},
∀vu, and labels in {s+ 1, · · · , s+ j − 1} are available in the
closed neighborhood of each vu by its connections with the
nodes of in Ks+j . Thus, the anchored (s+j, s)-core includes
all vu, ∀u ∈ U . Since all nodes in the clique Ks+j have all
R labels in their closed neighborhoods, they are also in the
anchored (s + j, s)-core, which implies that the size of the
anchored (s + j, s)-core is b + |U| + |R| (after including b
anchor nodes in A).

Secondly, the other direction (that is, proving that any
solution A to the anchored (s + j, s)-core problem is also a
set cover) follows from a similar argument. �

5.3 Inapproximability of the Anchored (s + j, s)-Core
for j ≥ 4

To prove Theorem 5.3, first we show that it is NP-hard
to approximate the problem of maximizing the anchored
(5, 1)-core. Then, using this result, we show that it is always
possible to get an instance of maximizing the anchored
(s + j, s)-core for j ≥ 4 from an instance of maximizing
the anchored (5, 1)-core, thus, implying Theorem 5.3.

Proof of Theorem 5.3
The membership in NP is trivial as given a subsetA, we can
always confirm the size of the anchored (s + j, s)-core by
iteratively removing the nodes that are not in the anchored
(s+ j, s)-core in polynomial time. Next, we state and prove
an important result required to prove Theorem 5.3.

Theorem 5.5. It is NP-Hard to approximate the anchored
(5, 1)-core maximization problem within any factor
O(N1−ε) for ε > 0.

Proof – We show this by providing a gap-based reduc-
tion from the Set Cover Problem. An instance of the set
cover problem consists of a set U = {1, 2, 3, . . . ,m} and
a family of sets F = {S1, S2, . . . , Sn : Si ⊆ U} such that⋃
Si∈F Si = U . The problem is to decide whether there

exists a subfamily F ′ ⊆ F of b sets such that
⋃
Si∈F ′ Si = U .

In the following, we describe a construction of a graph Γ as
an instance of the anchored (5, 1)-core problem given a set
U , a family F , and set cover budget b. We assume that m
is a multiple of 5 – otherwise, we can add upto four extra
elements to U and to all of Si without any consequence. The
graph Γ will have three main parts:
• a grid with m×M nodes where M >> m,
• n complete tertiary (3-ary) trees, and
• a sink.
These parts will be connected with some auxiliary edges

as detailed below. For an ease of presentation, we assume
that the five labels are {0, 1, 2, 3, 4}.
The grid:

For each i ∈ U construct a path vi,1, vi,2, . . . vi,M where
M should be thought of a ‘large’ integer to be fixed later.
Add edges between nodes vi,j , vi+1,j for all 1 ≤ i ≤ m − 1
and 1 ≤ j ≤ M . Also add edges between nodes v1,j , vm,j
for 1 ≤ j ≤ M . We assign label 0 to the node v1,1, and
then recursively label the rest of the grid according to the
following rule: if a node vi,j is labeled with the label k then
vi,j+1 is labeled with k + 1 mod 5, and vi+1,j is labeled with
k+2 mod 5. It is easy to see that as a result of this labeling,
each node (except the nodes at the boundary of the grid, that
is vi,j where i ∈ {1, · · · ,m} and j ∈ {1,M}) has all five
labels in its closed neighborhood since {k, k − 1, k − 2, k +
1, k + 2} mod 5 = {0, 1, 2, 3, 4}. Note that we constructed
and labeled the nodes in the grid in such a way that
• if nodes in the first row v1,1, v2,1 . . . , vm,1 and the last

row v1,M , v2,M . . . , vm,M are ensured to be in the core
then all the nodes in the grid vi,j , ∀1 ≤ i ≤ m, 1 ≤ j ≤
M are also in the core.

• Moreover, if there exists a node vi,j in the grid that is
not in the core of Γ, then none of the nodes in the grid
is in the core.

The tree:
For each set Si, we construct a tertiary (3-ary) tree Ti

with height dlog3 |Si|e - that is minimum height required
so that the number of leaf nodes is at least the size of
the set Si. Let wi be the root node of the tree Ti. Let
Si = {a1, a2, . . . ak}, then chose k arbitrary leaves of Ti
and call them wi,a1 , wi,a2 , . . . , wi,ak . The remaining leaves
of Ti (if there are any) are of no interest to this reduction
but we will make sure that they are in the core by linking
them to the sink (to be discussed). We label each root wi with
the label 0 and its children with labels 1, 2, 3 in an arbitrary
order. Rest of the tree is recursively labeled according to the
following rule: if a node is labeled with the label x and its parent
node is labeled y, then label the three children of x with the labels
{0, 1, 2, 3, 4} \ {x, y} in arbitrary order. We observe that this
labeling ensures the following:
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Observation 1.
• The end nodes of every edge have different labels.
• If the root and the leaf nodes of a tree Tj are in the core

then all the nodes in the tree Tj are in the core.
• Further, if there exists a node x ∈ Tj that is not in the

core then none of the nodes in the tree are in the core
(unless Tj contains anchored nodes).

An illustration is given in Figure 2.

Connecting the grid and trees:
For each member i ∈ Sj , we add a path of length 1 or

3 between the leaf node wj,i in the tree Tj , and vi,1 in the
first row of the grid. The length of the path is determined
by the labels of the two nodes. Note that in the grid, vi,1 has
three uniquely labeled neighbors and it has all labels in its
closed neighborhood except some label x. If wj,i is labeled
x then we simply add an edge between the two nodes.
Otherwise we will add two intermediary nodes making a
path of length 3. The neighbor of vi,1 on this path is labeled
x, and the neighbor of wj,i is labeled with a label y such that
y 6= x and is different from the labels of both wj,i and vi,1.
We illustrate this construction in an example in Figure 2.

The sink:
The sink of this construction is a clique of size 5, denoted

byK5. All nodes in this clique are labeled with unique labels
to make sure that all of them are in the core. Each node u
that either

(i) lies on the bottom row of the grid, that is vi,M ,∀i ∈
{1, · · · ,m}, or

(ii) is a leaf node of a tree Tj , or
(iii) is an intermediary node on a path from a leaf node of a

Tj to the grid node vi,1,
may not see some of the labels in its closed neighborhood,
and thus may not be included in the core. To make sure that
any such u is in the core if all its neighbors are in the core,
we add edges between u and nodes in the sink such that u
has all five labels in its closed neighborhood. While doing
this we also make sure that every such u finds each label in
its closed neighborhood exactly once.

A detailed illustration of such a construction and Γ is
given in Figure 3. Next, we use this construction to present
the following results.

Claim 5.6. If the set cover instance is a YES instance then the
size of the (5, 1)-core of the graph Γ with b anchors is at
least m×M .

Proof – Observe that the degree of every node vi,j in the
grid, where j 6= 1, is exactly four. Moreover, four neighbors
of each such vi,j are uniquely labeled with labels different
from the label of vi,j . Similarly all tree nodes, except the root
nodes, have degrees exactly four and have all five labels in
their respective closed neighborhoods. Thus, we have only
two types of nodes that may have degree not equal to four.
They include,

(i) the root node wj of tree Tj , where j ∈ {1, · · · , n}, and
(ii) node vi,1 in the first row of the grid, where i ∈
{1, · · · ,m}.

Since root nodes of all trees have exactly three neighbors,
they are not in the (5, 1)-core of Γ. However, since for every
i ∈ U there exists some Sk ∈ F such that i ∈ Sk in the

set cover instance, we note that vi,1, ∀i ∈ {1, · · · ,m}, has
a degree at least four in Γ and is included in the (5, 1)-
core of Γ. As the set cover instance is a yes instance, we
have F ′ ⊂ F , consisting of b subsets of U such that their
union is U . Let F \ F ′ = {Sj1 , Sj2 , · · · , Sjn−b}, and the
corresponding trees in Γ are {Tj1 , Tj2 , · · · , Tjn−b}. Next, we
obtain a graph Γ′ from Γ by removing all the nodes in trees
{Tj1 , Tj2 , · · · , Tjn−b}. Now, in Γ′, we have b trees and we
can ensure that their roots are included in the anchored
(5, 1)-core by making them the anchor nodes. It is clear that
all the non-anchor nodes in Γ′ have all five labels in their
closed neighborhoods, and are thus in the anchored (5, 1)-
core. Γ′ contains a grid of m × M nodes in the anchored
(5, 1)-core, and as Γ′ is a subgraph of Γ, the anchored (5, 1)-
core of Γ has at least the prescribed size. This is true because
the core of a graph is a superset of the core of any of its
subgraphs.

Claim 5.7. If the set cover instance is a NO instance then the
size of the (5, 1)-core of Γ with b anchors is at most 7m2.

Proof – In this case, there are at least n − b trees that do
not have any anchor node, implying that there is at least one
node in each such tree that is not in the anchored (5, 1)-core.
Due to Observation 1, all of the nodes in the corresponding
trees are also not included in the anchored (5, 1)-core. Since
the set cover instance is a NO instance, the set U can’t be
covered with b sets, and we have at most b trees in the
anchored (5, 1)-core. Also at least one node in the first row
of the grid in Γ is not in the anchored (5, 1)-core as b < m
without loss of generality. Using an earlier fact that if there
exists a node in the grid that is not in the core, then none
of the nodes in the grid is in the core, we conclude that the
anchored (5, 1)-core of Γ does not include any node in the
grid except any anchored nodes. Since there are at most 6m
nodes in each tree, we can’t have more than 6m2 nodes in
the trees that are in the anchored (5, 1)-core. Furthermore,
with a budget of b anchors, we can ensure at most b2 nodes
from the grid to be in the anchored (5, 1)-core. Hence, the
size of the anchored (5, 1)-core is bounded1 from above by
7m2.

We can now set M appropriately to prove the Theorem
5.5. For examples if we set M = m3/ε logm 7c then we can’t
distinguish between an instance with the core size at least
N and an instance with the core size at most N

ε

c where N is
the number of nodes in Γ. Moreover size of the graph Γ is
polynomial in the size of the set cover instance. Therefore,
this reduction rules out the existence of a polynomial time
algorithm that can approximate the anchored (5, 1)-core
problem to within a factor of c.N1−ε unless P = NP . �

Now for j ≥ 4, we can always get an instance of
anchored (s + j, s)-core problem from an instance of the
anchored (5, 1)-core as follows:
• From the labeled graph Γ (used in the Proof of Theorem

5.5), we obtain a new labeled graph Γ′ by keeping
the nodes in trees and grid exactly the same. If `(x)Γ

and `(x)Γ′ are the labels assigned to x in Γ and Γ′

1. Although this bound is good enough for our purpose here, with a
more careful analysis, readers may obtain a tighter bound of cm2 with
c < 1.
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Fig. 2: An illustration of tree and its connection with the
grid. Consider a set cover instance with U = {1, 2, · · · , 10},
and Sj ⊂ F , where Sj = {4, 7, 8, 9}. In Γ, we have a tree Tj
corresponding to Sj with a root nodewj . The four leaf nodes
{wj,a1 , wj,a2 , wj,a3 , wj,a4 , } (arbitrarily picked) correspond
to four elements of Sj . Numbers inside circles represent
labels assigned to the corresponding nodes.

respectively, then `(x)Γ′ = `(x)Γ ∪ {5, 6, · · · , s + 3},
for every node x in the grid and trees.

• In Γ′, we replace the sink with a clique of (s+ j) nodes,
denoted by Ks+j . Each node oi in the clique is assigned
a label set `(oi)Γ′ = {i − 1} ∪Qi, where Qi is a subset
of s− 1 arbitrarily picked labels from the set R \ ({i−
1} ∪ {0, 1, 2, 3, 4}).

• In Γ′, for every node x in trees and the gird, we add an
edge between x and clique node ou, ∀u ∈ {s + 5, s +
6, · · · , s+ j}. Note that as a result of these edges, each
x gets a set of labels {s+ 4, s+ 5, · · · , s+ j − 1} in its
neighborhood.

• Note that as a result of this construction, a (tree or
grid) node in Γ′ has all (s + j) labels in its closed
neighborhood if and only if the corresponding node
in Γ has all 5 labels, that is {0, 1, 2, 3, 4}, in its closed
neighborhood.

It is easy to see that Claims 5.6 and 5.7 hold for our
construction Γ′ as well. We conclude that an O(N1−ε)
approximation algorithm for the anchored (s + j, s)-core
problem for j ≥ 4 would imply a polynomial time algo-
rithm for the Set Cover problem. This is a contradiction
unless P = NP .

�

6 HEURISTICS FOR THE ANCHORED (r, s)-CORE
MAXIMIZATION PROBLEM

Since the problem of finding anchors maximizing the (r, s)-
core is computationally hard, in fact, is inapproximable in
most cases, we present two heuristic algorithms: first based

on a simple greedy heuristic, and second using a local search
based strategy using simulated annealing.

First, we note that for a given labeled G(V, E), r, s, and
anchor nodes A, the anchored (r, s)-core is unique, and we
can compute it by iteratively removing non-anchor nodes
from G(V, E) that do not satisfy the condition (2). We repeat
this until we are left with the subgraph G̃A(ṼA, ẼA), which
is the (r, s)-core with anchors A. We denote this simple
scheme by:

G̃A(ṼA, ẼA) ← rs_core_A(G, `,A, r, s) (5)

6.1 Greedy Heuristic
Let G(V, E) be a labeled graph withR being the set of labels,
s be the number of labels assigned to each node, and b be
the number of anchors that need to be selected to maximize
the anchored (r, s)-core. In a greedy approach, as outlined
in Algorithm 1, we begin with an empty set of anchors
A, compute (r, s)-core with no anchor, and then iteratively
add nodes to A one-by-one. In each iteration, we include
a node v′ ∈ (V \ ṼA) in A that maximizes the size of the
resulting (r, s)-core with A. Here, ṼA is the set of nodes in
the anchored (r, s)-core with A. We repeat this step until
|A| = b.

Algorithm 1 Greedy selection of anchors

1: Given: G(V, E), `,R, s, b
2: Initialization: A = ∅.
3: G̃A(ṼA, ẼA) ← rs_core_A(G, `,A, r, s)
4: while |A| ≤ b do
5: for all v ∈ (V \ ṼA) do
6: G̃A(ṼA, ẼA) ← rs_core_A(G, `,A ∪ {v}, r, s)
7: f(v)← |ṼA|
8: end for
9: v′ ← argmaxv∈(V\ṼA)f(v)

10: A ← A∪ {v′}
11: G̃A(ṼA, ẼA) ← rs_core_A(G, `,A, r, s)
12: end while
13: Return: A

Note that if a node is in the (r, s)-core with anchors
A, then it is also in the (r, s)-core with anchors A′ ⊃ A.
Thus, when we add v to A in each iteration, for an effi-
cient implementation, we only need to check the nodes in
V \

(
ṼA ∪ {v}

)
, instead of V , for the inclusion in the (r, s)-

core with anchors. The greedy algorithm takes O(bρ|V|)
time, where b is the number of anchors and ρ is the time
complexity of computing (r, s)-core for a fixed set of an-
chors. For our implementation ρ is on the order of |E|2, but
this cost can be reduced to O(|E| log r|V|) by a clever use of
appropriate data structure. However, we observe that this
does not lead to any significant improvement in running
time on practical instances. A numerical evaluation of the
algorithm for various networks is given in Section 8.1.

6.2 Metaheuristic Search Algorithm
Next, we present an algorithm based on a metaheuristic
approach, in particular simulated annealing, to select a given
number of anchors to maximize the size of the anchored
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Fig. 3: An illustration of the construction of Γ. Labels assigned to nodes are represented inside the corresponding circles.
(∗) means that appropriate labels (as defined in the construction) are assigned to such nodes.

(r, s)-core. We first compute the (r, s)-core with no anchor,
and then randomly select a subset of b nodes that are not
in the core as anchors (line 5). In each iteration, we perturb
our solution A, that is compute a new set of anchors A′
by replacing a small number of randomly selected nodes
from the current solution A with a randomly selected nodes
in V \ ṼA (line 9). If the size of the (r, s)-core with A′ is
improved as compared to the anchors inA, thenA′ becomes
our current solution. In case, the perturbed solution A′ is
inferior to A, we replace A with A′ only with a small

probability that is a function of the difference between the
sizes of (r, s)-cores with A and A′, as well as a temperature
parameter that decreases exponentially with the number of
iterations. Note that these occasional replacements, in which
anchors resulting in a smaller sized cores become current
solutions, prevent the search from getting stuck at local
minima. The scheme is outlined in Algorithm 2, and takes
O(kρ) time, where k is the number of iterations and ρ is
the time complexity of computing (r, s)-core for a fixed set
of anchors. Unlike the greedy algorithm, the running time
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here does not depend on the anchors’ budget b.

Algorithm 2 Simulated annealing for anchor selection

1: Input: G(V, E), `, r, s, b, iterations.
2: Output: A, G̃A(ṼA, ẼA)
3: Initialize: c← 1, T0, β
4: G̃A(ṼA, ẼA) ← rs_core_A(G, `, ∅, r, s)
5: A ← Random Selection(V \ ṼA, b)
6: G̃A(ṼA, ẼA) ← rs_core_A(G, `,A, r, s)
7: P ← |ṼA|
8: while c ≤ iterations do
9: A′ ← Perturb(A,V \ ṼA)

10: G̃A′(ṼA′ , Ẽ ′A) ← rs_core_A(G, `,A′, r, s)
11: P ′ ← |ṼA′ |
12: p← e−(P−P′)/T

13: if (P ′ > P) ∨ (rand(0, 1) ≤ p) then
14: A ← A′, P ← P ′
15: ṼA ← ṼA′
16: end if
17: T ← T0 · e−βc
18: c← c+ 1
19: end while
20: return: A, G̃A(ṼA, ẼA)

7 GENERALIZED (R,S)-CORE

So far, in the context of (r, s)-core, we have assumed that
each node is assigned a subset of s labels and would remain
to be a part of the network as long as it has an access to all
r labels in its closed neighborhood. We can easily generalize
this framework by allowing nodes to have different num-
ber of labels, that is resources/attributes. Thus, instead of
having the same number of labels s by two nodes u and v,
we can have a different number of labels assigned to nodes
u and v. Similarly, it is also possible that a node u does not
need to see all r labels in its closed neighborhood to continue
participating in the network. In fact, u participates in the
network as long as a subset of labels Ru ⊆ R is available
in its closed neighborhood. Thus, each node has its own
specific condition, in terms of the subset of labels that need
to be available in its closed neighborhood, to participate in
the network. We can model this by the notion of generalized
(R,S)-core.

Generalized (R,S)-Core Let G(V, E be a graph andR be a
set of r labels. Each node u ∈ V is assigned a subset of labels
Su ⊆ R, and u needs to have Ru ⊆ R labels in its closed
neighborhood. Then, the generalized (R,S)-core, denoted
by Ḡ(V̄, Ē) is the maximal subgraph in which every node
satisfies ⋃

v∈(N [u]∩V̄)

Sv = Ru, ∀u ∈ V̄. (6)

Here, R = {Ru} and S = {Su}. An example of
generalized (R,S)-core is shown in Figure 4.

As with the (r, s)-core, anchor nodes can significantly
improve the size of generalized (R,S)-core (as illustrated
in Figure 4(c)). We note that the greedy and simulated an-
nealing based heuristics in Section 6 are directly applicable
in selecting anchors to maximize the size of generalized
(R,S)-core, as we demonstrate in Section 8.4.

8 NUMERICAL EVALUATION

In this section, we evaluate our results on various types
of networks including Erdös-Rényi (ER) networks, Barabási-
Albert (BA) networks, and a real-world social network of
Facebook (FB) users [46], [47].

8.1 Networks and Related Parameters
ER networks are generated by creating an edge between
any two nodes with a specified probability p. BA networks
are generated using a preferential attachment mechanism,
in which nodes are added to an existing network one-by-
one. Each new node is connected to m existing nodes which
are chosen with probabilities proportional to the degrees
of nodes (i.e., number of their neighbors). The details of
networks used are given below.2

- [ER–1000] An ER graph with 1000 nodes and p = 0.006.
Average degree of a node is 6.

- [ER–3000] An ER graph with 3000 nodes, p = 0.0027,
and average node degree of 8.

- [BA–1000] A Barabási-Albert graph with with 1000
nodes and m = 3. The average node degree is 6.

- [BA–3000] A Barabási-Albert graph with with 3000
nodes and m = 3. The average node degree is 6.

- [FB–4039] A real-world social network of 4,039 Face-
book users, 88,234 edges, and average node degree of
43. More details about the network are in [46], [47].

8.2 (r, s)-Cores With and Without Anchors
First, for a given r, we illustrate the size of (r, s)-core (with
no anchor nodes) as a function of s in Figure 5. As expected,
the size of (r, s)-core increases as the number of labels
assigned to each node increases. To compute the (r, s)-core,
we randomly assign s labels (using a uniform distribution)
from a set of r-labels to each node. Every point in the plots in
Figure 5 is an average of 25 randomly generated instances.

Second, we illustrate the significance of anchor nodes in
improving the size of the (r, s)-core. We also compare the
selection of anchor nodes computed by solving ILP, greedy
approach as in Algorithm 1, and simulated annealing as in
Algorithm 2. For each of the above network, we plot the size
of the anchored (r, s)-core as a function of the number of
anchors. In particular, we select anchors in the network ER–
1000 to maximize the anchored (5, 2)-core and the anchored
(6, 2)-core (Figures 6 (a)–(b)); and in ER-3000 to maximize
the anchored (6, 2)-core and the anchored (7, 2)-core (Fig-
ures 6 (c)–(d)). Similarly, in the case of BA–1000 network, we
compute and compare the anchors’ selection in terms of the
sizes of the anchored (5, 2)-core and the anchored (6, 2)-core
(Figures 7 (a)–(b)); and in the case of BA–3000, the anchored
(7, 3)-core and the anchored (8, 3)-core (Figures 7 (c)–(d)).

From the plots in Figures 6 and 7, we observe that the
sizes of the (r, s)-cores are significantly increased by having
a small number of anchors, as compared to the baseline
cases, in which there are no anchors. For instance, in the
case of ER-3000 network, with no anchors the (6, 2)-core
and (7, 2)-core contains 47% and 0% of the overall nodes
respectively. However, by selecting only 6% of the nodes

2. The adjacency matrices of all the graphs and the assignment of
labels used in various instances are available in [48].
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Fig. 4: An example of generalized (R,S)-core. (a) For each node u, Su is shown. The corresponding Ru’s are: R1 =
{1, 3, 5}, R2 = {0, 1, 4, 5}, R3 = {1, 2, 3, 4}, R4 = {1, 4, 5}, R5 = {0, 1, 2, 3, 4, 5}, R6 = {0, 1, 2, 3, 4}, R7 = {0, 3, 5},
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nodes. (c) The generalized (R,S)-core with node 5 as anchor consists of seven nodes.
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Fig. 5: Size of the anchored (r, s)-core as a function of s for
various values of r.

as anchors, the anchored (6, 2)- and the anchored (7, 2)-
cores contain about 80% and 47% of the overall nodes
respectively, which is a significant improvement. Similarly,
in the case of BA-3000 network, the (7, 3)-core and the (8, 3)-
core (with no anchors) contain about 48% and 14% of the
overall nodes respectively. However, by selecting only 6% of
the nodes as anchors, the anchored (7, 3)- and the anchored
(8, 3)-cores contain about 67% and 48% of the overall nodes,
which is again a significant improvement in the cores’ sizes.

Moreover, from the plots in Figures 6 and 7, we observe
that simulated annealing gives a solution that is close to ILP
solution. In fact, if we perform a large number of iterations,
solution by simulated annealing heuristic is very close to
the optimal. For our simulations, we use ten, twenty, and
thirty thousand iterations, (as mentioned in the plots), and
choose T0 = 0.5 and β = 20

iterations . Furthermore, in the
perturbation step (line 9 of Algorithm 2), we replace 10%
of the nodes (randomly selected) in the current anchor set.
On the other hand greedy, also performs well and gives
solutions that are not far from optimal solutions. We note
that for all the instances, we initially assign s unique labels
to nodes randomly (using a uniform distribution) from a set
of r labels.

In Figure 8, we illustrate similar results for the FB-
4039 network. Figure 8(a) shows the size of (r, s)-core as
a function of s for various values of r. In Figure 8(b), we
plot the size of (15, 1)-core with anchors as a function of
number of anchors selected by solving ILP, greedy heuristic

and simulated annealing. With no anchors, the (15, 1)-core
has 719 nodes, that is about 18% of the overall nodes. By
having only 4% of nodes as anchors (using ILP), the size of
the (15, 1)-core with anchors is 1376 nodes, which is about
34% of the overall nodes, and is a significant improvement
with a small number of anchors. Moreover, we observe
that simulated annealing performed with 20,000 iterations
outperforms the greedy heuristic.

Finally, in Figure 9, we plot the the sizes of (r, s)-cores
with anchors as a function of number of iterations in the
simulated annealing heuristic. In particular, for the ER-
3000 network, we plot the size of anchored (6, 2)-core as
a function of iterations in Figure 9(a), and for the BA-
3000 network, we plot the size of anchored (8, 3)-core as
a function of the number of iterations in Figure 9(b). For
various values of |A|, we see a rapid increase in the size
of cores initially, and then the plots begin to flatten after
about 10,000 iterations suggesting the computation of a
near-optimal solution.

8.3 (r, s)-Core With and Without Anchors for Varying r

Figure 10 illustrates the role of anchors in improving the
size of (r, s)-core with varying r values. We fix s = 2,
and first plot the sizes of (r, s)-cores without anchors as
a function of r. Then we select 50 anchors in ER-1000 and
BA-1000 networks, and 300 anchors in each of the ER-3000
and BA-3000 networks, and plot the sizes of (r, s)-cores as
a function of r. We observe that the difference in the sizes
of cores with and without anchors is small whenever r and
s are either too close or too far from each other. When r
and s are almost the same, it means nodes have almost all
the labels by themselves and do not exceedingly depend
on neighbors to access all the desired labels. On the other
hand, if r and s are too far off, it means that nodes depend
on neighbors excessively for the desired labels. In such a
situation, if there is not a sufficient number of neighbors and
labels in the neighborhood of a node, it will drop out unless
it is an anchor. In the worst case, only the anchors continue
to participate as we also note this behavior in plots in Figure
10. Thus, maximum benefit of anchors in improving the size
of (r, s)-core is noted for certain values of r/s depending on
the underlying network topology. In our plots, anchors are
maximally beneficial for r/s = 3 in the cases of ER-1000,
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Fig. 6: Nodes in anchored (r, s)-core as a function of the number of anchors selected by solving ILP, greedy, and simulated
annealing heuristics. The baseline case indicates the size of (r, s)-core with no anchor nodes. For ER–1000, we plot the sizes
of (5, 2)- and (6, 2)-cores with anchors, whereas, for ER–3000, we plot the sizes of (6, 2)- and (7, 2)-cores with anchors.
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Fig. 7: For BA–1000 and BA–3000 networks, the plots of nodes in (r, s)-core with anchors as a function of the number of
anchors selected through an ILP solution, greedy and simulated annealing heuristics. The baseline case indicates the size
of (r, s)-core with no anchors.
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ER-3000, and BA-3000 networks, and r/s = 2.5 in the case
of BA-1000 network.

8.4 Generalized (r, s)-core
In Figure 11, we illustrate the significance of anchors in
improving the sizes of generalized (R,S)-cores. For each
of the ER-1000, ER-3000, BA-1000, and BA-3000 networks,
we randomly assign two to four labels to each node from a
set of ten labels, that is 2 ≤ |Si| ≤ 4,∀i. Moreover, each node
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Fig. 9: For ER–3000 and BA–3000 networks, sizes of the
anchored (r, s)-cores as functions of the number of iterations
in simulated annealing for various values of |A|.

requires a set of four to eight labels (4 ≤ |Ri| ≤ 8), again
selected randomly, in its closed neighborhood to continue
participating in the network. The exact S and R that we
use in Figure 11 are available in [48]. However, a summary
of S and R used are given in Tables 1 – 4., in which the
(|Si|, |Ri|)th entry indicates the number of nodes that are
assigned |Si| labels and that require |Ri| labels in their
closed neighborhoods. For instance, in Table 1, the number
of nodes that are assigned |Si| = 2 labels, and which
require |Ri| = 8 labels in their closed neighborhoods for
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Fig. 10: Nodes in (r, 2)-core as a function of r with and without anchors. The subplot within each plot illustrate the
difference in the sizes of (r, 2)-cores with and without anchors as a function of r.
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Fig. 11: Nodes in generalized (R,S)-core with anchors as a function of the number of anchors selected using greedy and
simulated annealing. The baseline indicates nodes in generalized (R,S)-core without anchors.

TABLE 1: ER-1000

|Ri| = 4 |Ri| = 5 |Ri| = 6 |Ri| = 7 |Ri| = 8
|Si| = 2 69 63 73 68 61
|Si| = 3 62 76 63 63 70
|Si| = 4 69 61 64 69 69

TABLE 2: ER-3000

|Ri| = 4 |Ri| = 5 |Ri| = 6 |Ri| = 7 |Ri| = 8
|Si| = 2 193 216 197 199 195
|Si| = 3 212 200 206 189 193
|Si| = 4 195 184 197 212 212

participating in the network is 61. All the plots in Figure
11 illustrate that anchors (selected by either greedy or sim-
ulated annealing) clearly improve the sizes of generalized
(R,S)-cores as compared to the baseline cases, in which
there are no anchors. Next, we give a numerical evaluation
of the running times of heuristics.

TABLE 3: BA-1000

|Ri| = 4 |Ri| = 5 |Ri| = 6 |Ri| = 7 |Ri| = 8
|Si| = 2 68 77 63 60 66
|Si| = 3 63 62 71 78 60
|Si| = 4 69 61 66 62 74

TABLE 4: BA-3000

|Ri| = 4 |Ri| = 5 |Ri| = 6 |Ri| = 7 r = 8
|Si| = 2 201 194 192 195 218
|Si| = 3 194 216 197 189 204
|Si| = 4 205 190 211 216 178

8.5 Running Timing Plots
In Figure 12, we plot the running times3 of greedy and
simulated annealing heuristics as a function of the number
of anchors in the case of anchored (5, 2)-core in ER-1000,
anchored (6, 2)-core in ER-3000, anchored (6, 2)-core in BA-
1000, and anchored (7, 3)-core in BA-3000 networks. We
observe in all the plots that the running time of greedy
increases as the number of anchors increases. However, for
a fixed number of iterations, the running time of simulated
annealing remains almost constant and does not change
with the number of anchors. In fact, the running time in-
creases only if the number of iterations increases. Moreover,
as compared to greedy, simulated annealing scales well with
an increase in the network size. It not only takes significantly
lesser time than greedy, but also produces comparable re-
sults in terms of the sizes of the anchored (r, s)-cores.

9 FURTHER DIRECTIONS AND CONCLUSIONS

The notion of (r, s)-core and the anchors based maximiza-
tion of (r, s)-core can be extended in many different direc-
tions. Some of the further directions are described below.

3. We performed simulations on an Intel Core i7 machine with a 3.6
GHz processor, and 16 GB of RAM.



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 14

10 20 30 40 50 60 70 80

No. of anchors in anchored (5,2)-core

1

2

3

4

5

6

7

8

9

T
im

e
 (

m
in

s
.)

greedy

SA (20K)

SA (10K)

(a) ER-1000

60 120 180 240 300 360

No. of anchors in anchored (6,2)-core

100

200

300

400

500

600

700

T
im

e
 (

m
in

s
.)

greedy

SA (30K)

SA (20K)

(b) ER-3000

10 20 30 40 50 60 70 80

No. of anchors in anchored (6,2)-core

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
im

e
 (

m
in

s
.)

greedy

SA (20K)

SA (10K)

(c) BA-1000

30 90 150 210 270 330

No. of anchors in anchored (7,3)-core

0

60

120

180

240

300

360

420

T
im

e
 (

m
in

s
.)

greedy

SA (30K)

SA (20K)

(d) BA-3000

Fig. 12: Computation time of greedy and simulated anneal-
ing (using ten and twenty thousand iterations) as a function
of the number of anchors.

Node Relabeling to Maximize (r, s)-Core

The size of the (r, s)-core depends on both the structure of
the network and the assignment ` of labels to nodes. So far,
we have seen the significance of anchor nodes to increase
the sizes of (r, s)-cores, while assuming that nodes’ labels
are fixed. However, if we are allowed to change the labels of
nodes, we get an alternate way – node relabeling approach
– to further increase the size of (r, s)-core. In practice,
re-assignment of labels can be achieved by incentivizing
users to change their attributes (e.g., sensing capabilities,
resources). An example of this node relabeling approach is
presented in Figure 13. With the initial labels, the (6, 2)-
core is an empty graph. However, if we change the labels
of nodes appropriately, the (6, 2)-core is the whole graph.
Thus, the problem is to find an optimal assignment of labels, that
is `, to maximize the (r, s)-core. For instance, using a result
(Theorem 1) in [49], we establish that for any positive integer
s, we can always find a labeling of a graph G such that its(
b 5s

2 c, s
)
-core is the graph G itself as long as the following

conditions are satisfied.
• the minimum degree of G is at least two,

• a star graph with six leaf nodes ( ), denoted by K1,6

is not an induced subgraph of G, and
• G 6= { , , , , , , , }.
Along these lines, another interesting direction is to

determine the (structural) conditions on the network for
a given r and s, which if satisfied would guarantee the
existence of labeling ` through which the (r, s)-core of the
network consists of the whole network. Moreover, in case
the node labels are pre-defined, and changing the labels of
all (or most) of the nodes is not feasible, we can formulate a
budgeted node relabeling problem, in which a fixed number
labels can be changed with the objective of maximizing the
size of the (r, s)-core.

Connectivity Augmentation to Maximize (r, s)-Core
Another way to improve the size of (r, s)-core is by the
strategic addition of edges. For instance, one can ask about
the minimum number of edges that should be added to the
labeled network such that the resulting (r, s)-core consists of
the whole network. The problem is related to the connectivity
augmentation problem (e.g., [50]), in which the goal is to
determine the minimum edge set which if added to the
existing graph induces the desired connectivity or structural
robustness. In Figure 14, we illustrate the effect of strategi-
cally adding more edges in improving the size of (r, s)-core,
in which the size of original (5, 2)-core is three. However,
by adding four extra edges (as highlighted in Figure 14(c)),
the (5, 2)-core consists of the whole network. In fact, we
can also employ a combination of approaches simultaneously,
for instance, the anchors and and extra edges. We illustrate
this synergistic approach in Figure 14(d), in which we have
one anchor and two extra edges resulting in the (5, 2)-core
consisting of the whole network.

Further Generalizations of (r, s)-Core
We discussed a generalization of (r, s)-core in Section

7, in which nodes contain different number of resources
(labels). Moreover, nodes have their own personalized re-
quirements in terms of labels that need to be available in
their neighborhoods for continuous participation. However,
we assumed that a node shares its resources uniformly with
all of its neighbors. Furthermore, neighbors on which a node
depends for resources and neighbors with whom it shares
its resources are identical. By considering directed graphs, we
can distinguish between two types of neighbors. The out-
neighbors of a node u in a directed graph can represent the
set of nodes with whom u shares its resources, whereas,
the in-neighbor can correspond to the individuals that share
their resources with u. Now, u continues to participate and
share resources with out-neighbors as along as it receives
a desired set of resources from its in-neighbors. As in the
case of undirected networks, we can introduce anchors to
maximize the number of participating individuals.

As an example, consider a directed network of ten nodes
in Figure 15, in which each node is assigned two distinct
labels (s = 2) from a set of five labels R = {1, 2, 3, 4, 5}.
A node continues to be a part of the network if it finds
all five labels in R between itself and its in-neighbors,
otherwise, it drops out from the network. At the end, the
sub-network that remains is the (r, s)-core, where r = 5
and s = 2. We observe that the (5, 2)-core is empty (Figure
15(b)). However, if we make three nodes (highlighted) as
anchors, (5, 2)-core consists of all ten nodes, as each non-
anchor node finds a complete set of five labels between itself
and its in-neighbors.
9.1 Conclusions
In cooperative networks, reciprocity and mutual benefit are
significant in attaining sustainable cooperation among its
members. Individuals participate in a network as long as
they recognize a sufficient value in such a participation,
which depends both on the number and types of peers also
participating. To model such an engagement among hetero-
geneous nodes within a network, we introduced the notion
of (r, s)-core. We considered that each node had a subset
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Fig. 15: (a) A directed network with ten nodes. (b) An empty (5, 2)-core. (c) Anchored (5, 2)-core consisting of all ten nodes.

of resources that are available within the overall network.
A node shared its resources with neighbors as long as it
acquired the missing resources from them also. (r, s)-core of
the network was the sub-network in which each node had
access to all the resources available within the network. We
observed that (r, s)-core of the network could be small due
to the cascading withdrawal of individuals. To maximize
the size of the (r, s)-core, we utilized the idea of anchors –
individuals that continued to participate irrespective of the
attributes of their neighbors. We showed that by introducing
few anchors that are placed strategically within the network,
the size of the (r, s)-core can be significantly increased. We
analyzed the complexity of the anchors selection problem
in detail showing that it is a computationally challenging
problem. In fact, we classified the cases in which the prob-
lem is polynomial-time solvable, NP-complete, and inap-
proximable. We also presented heuristics to select anchors,
and showed that the anchors selected using the proposed
heuristics significantly improved the sizes of the (r, s)-cores
with anchors.
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