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Abstract

Due to their low deployment costs, wireless sensor networks (WSN) may act as a key en-
abling technology for a variety of spatially-distributed cyber-physical system (CPS) applications,
ranging from intelligent traffic control to smart grids. However, besides providing tremendous
benefits in terms of deployment costs, they also open up new possibilities for malicious attackers,
who aim to cause financial losses or physical damage. Since perfectly securing these spatially-
distributed systems is either impossible or financially unattainable, we need to design them to
be resilient to attacks: even if some parts of the system are compromised or unavailable due to
the actions of an attacker, the system as a whole must continue to operate with minimal losses.
In a CPS, control decisions affecting the physical process depend on the observed data from
the sensor network. Any malicious activity in the sensor network can therefore severely impact
the physical process, and consequently the overall CPS operations. These factors necessitate a
deeper probe into the domain of resilient WSN for CPS. In this chapter, we provide an overview
of various dimensions in this field, including objectives of WSN in CPS, attack scenarios and
vulnerabilities, notion of attack-resilience in WSN for CPS, and solution approaches towards
attaining resilience. We also highlight major challenges, recent developments, and future direc-
tions in this area.

1 Introduction

A wireless sensor network is a collection of sensor devices organized into a wireless network. Tra-
ditionally, wireless sensor networks have been used as cost-effective means of monitoring spatially-
distributed processes and phenomena. Their potential applications include military applications,
such as battlefield surveillance and chemical attack detection, environmental applications, such as
forest-fire detection and precision agriculture, and health applications, such as monitoring human
physiological data [1].

A cyber-physical system is an integrated system of computational elements and physical pro-
cesses, in which the physical processes are controlled by the computational elements [2]. Since the
computational elements must have reliable information about the evolving state of the physical pro-
cesses in order to control them, every practical cyber-physical system has to include sensor devices.
These sensor devices monitor the physical processes, providing the computational elements with
information that can be used for various tasks, such as state estimation and fault identification.
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Finally, the output of the computational elements is fed into actuator devices that can influence
the physical processes in the desired way, which closes the loop between the physical and cyber
parts of the system.

In the case of spatially-distributed physical processes, however, the sensing task can prove to
be challenging, as the sensor devices may need to be deployed over a larger area. For example, in
order to provide intelligent traffic control for a whole city, we must have reliable information about
the current traffic situation in various parts of the city. In order to have such information, we must
deploy a large number of traffic sensors over vast area. With wired sensors, the cost of deployment
could be prohibitively high and in some cases, it may even be physically or legally impossible.
Consequently, wireless sensor networks, whose deployment is much simpler and more cost-effective,
may act as a key enabling technology for spatially-distributed cyber-physical systems.

The rest of the chapter is organized as follows: In the remainder of this section, we illustrate the
role of WSN in the context of CPS along with information-security goals in CPS. In Section 2, var-
ious applications of WSN for CPS are stated along with examples. An overview of different attack
scenarios and vulnerabilities in WSN along with instances of such attacks in practical networks is
provided in Section 3. In Section 4, the notion of attack-resilience in WSN is discussed along with
the modeling issues and related challenges. Different approaches towards making WSN resilient
against attacks, as well as a couple of detailed examples, are presented in Section 5. Finally, some
future directions in this field are outlined in Section 6.

1.1 Cyber-Physical Systems and Sensor Networks
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physical domain cyber domain

Figure 1: Wireless sensor networks for monitoring and surveillance applications.

Monitoring and Surveillance Applications Traditional sensor network applications focus on
acquiring, transmitting, and fusing data. In these applications, the physical and cyber parts do
not form a closed loop, or in some cases, form a closed loop which includes human element. See
Figure 1 for a simple illustration of the system architecture of such applications.

For example, in a typical habitat-monitoring application [3], sensors measure environmental
properties, such as light, temperature, humidity, and barometric pressure, and transmit their data
through the sensor network to a gateway. Then, the gateway transmits the data through a tran-
sit network to a base station, which provides WAN connectivity. Finally, the processed data is
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displayed on a user-friendly interface to scientists. As another example, in a forest-fire surveil-
lance application [4], sensors collect temperature, humidity, and illumination data and transmit it
through the sensor network to a gateway node. The gateway node then forwards the data to a
middleware, which stores the measurements in a database server and calculates forest-fire risk-levels
from real-time and historical data. Finally, the results are displayed in a web application and if a
forest fire is detected, alarms are automatically sent to fire stations or nearby residents.

Sensor networkPhysical process Controller

Actuators
Human

physical domain cyber domain

Figure 2: Wireless sensor networks for cyber-physical systems.

Cyber-Physical Systems In cyber-physical systems, on the other hand, physical processes and
computational elements are tightly integrated: physical processes, sensors, controllers, and ac-
tuators form a closed loop. Note that cyber-physical systems can still be supervised by human
operators; however, there is a closed, real-time control loop which does not contain a human el-
ement. See Figure 2 for a simple illustration of the architecture of cyber-physical systems using
wireless sensor networks.

Since sensor networks in cyber-physical systems are part of closed, real-time control loops,
ensuring their security is more critical than in traditional sensor-network applications. In a CPS,
malicious sensor data will result in incorrect control decisions, which are immediately executed
by the actuators. Consequently, an attacker who has compromised a sensor network has some
level of control over the physical process and may cause physical damage or financial losses using
malicious control. For example, in a smart electric grid, an attacker who can tamper with real-time
power-consumption data may be able to cause physical damage by simulating a rapid increase in
consumption.

Therefore, security is a crucial issue for wireless sensor networks in cyber-physical systems. In
the following subsection, we summarize the traditional goals of information security and how they
can be applied to cyber-physical systems. For a general overview of WSN in CPS, we refer readers
to the other book chapters and a survey of Wu et al. [5].

1.2 Information-Security Goals and Cyber-Physical Systems

Traditionally, the three key goals of information security are confidentiality, integrity, and availabil-
ity (CIA). For cyber-physical systems, however, these properties are often listed in reverse order
to emphasize that in many CPS, availability and integrity requirements have priority over the
confidentiality objective [6, 7].
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