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ABSTRACT
In order to be resilient to attacks, a cyber-physical system
(CPS) must be able to detect attacks before they can cause
significant damage. To achieve this, intrusion detection sys-
tems (IDS) may be deployed, which can detect attacks and
alert human operators, who can then intervene. However,
the resource-constrained nature of many CPS poses a chal-
lenge, since reliable IDS can be computationally expensive.
Consequently, computational nodes may not be able to per-
form intrusion detection continuously, which means that we
have to devise a schedule for performing intrusion detec-
tion. While a uniformly random schedule may be optimal
in a purely cyber system, an optimal schedule for protecting
CPS must also take into account the physical properties of
the system, since the set of adversarial actions and their con-
sequences depend on the physical systems. Here, in the con-
text of water distribution networks, we study IDS scheduling
problems in two settings and under the constraints on the
available battery supplies. In the first problem, the objec-
tive is to design, for a given duration of time T , scheduling
schemes for IDS so that the probability of detecting an at-
tack is maximized within that duration. We propose efficient
heuristic algorithms for this general problem and evaluate
them on various networks. In the second problem, our ob-
jective is to design scheduling schemes for IDS so that the
overall lifetime of the network is maximized while ensuring
that an intruder attack is always detected. Various strate-
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gies to deal with this problem are presented and evaluated
for various networks.
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1. INTRODUCTION
Traditionally, cyber-security research has focused primar-

ily on preventing attacks from successfully penetrating sen-
sitive systems. However, as recent examples have shown,
motivated and resourceful attackers may be able to compro-
mise even highly secure and secluded systems. Consider, for
example, the Stuxnet worm, which was able to penetrate nu-
clear facilities [15, 17], or the successful attack against RSA,
a leading security company [23]. In light of these examples,
we must focus not only on the “first lines” of defense but also
on mitigating the effects of successful compromises, thereby
increasing our system’s resilience to attacks.

Mitigating the effects of successful compromises is possible
only if attackers are not able to inflict substantial damage
immediately after compromising the system, but only af-
ter some delay. This delay allows us to implement counter-
measures and prevent the system from sustaining significant
losses, which is the key to increasing resilience. Due to the
unalterable physical attributes of CPS, many attacks against
CPS are inherently limited in how quickly they can cause
substantial damage. For example, in the Maroochy Shire
water-services incident, the attack lasted multiple months [3];
as another example, the Stuxnet worm drastically reduced
the lifetime of nuclear centrifuges, eventually destroying one-
fifth of Iran’s centrifuges [16]. Consequently, it is imperative
that we are able to detect and react to attacks against our
systems.



To this end, we can deploy intrusion detection systems
(IDS), which may detect attacks and alarm human opera-
tors, who can then intervene. These systems try to detect at-
tacks by looking for signatures of known attacks (e.g., known
exploits) or for anomalies (i.e., suspicious activities). Since
attackers may try to stay covert until they inflict damage,
detection is a challenging task, and operating an IDS can re-
quire substantial resources. However, many cyber-physical
systems consist of resource-constrained nodes, which limits
the applicability of IDS, as the nodes may not be able to
run an IDS continuously. For example, many cyber-physical
systems build on wireless sensors, which use batteries as
power sources. Since conserving battery power is crucial
to prolonging the lifetime of a system, a computationally
demanding IDS cannot be operated continuously. As an-
other example, consider devices with limited computational
power, which is not sufficient for running an IDS and serving
the devices’ primary function at the same time. Therefore,
in CPS based on resource-constrained devices, we may be
able to operate IDS only at a fraction of time.

Hence, we face the problem of determining the sched-
ule of running IDS, that is, determining when each node
should be running IDS. This scheduling problem has many
unique challenging aspects. Firstly, if we used a determin-
istic schedule, the attacker might be able to predict which
nodes are running IDS at the time of the attack. This in-
formation would allow the attacker to target nodes that are
unprotected, thereby circumventing the IDS. Consequently,
we must use a non-deterministic schedule if we want to se-
cure our system. Secondly, the optimal schedule of running
IDS must take into account characteristics of the physical
part of the system, since these characteristics also deter-
mine actions of the attacker. For example, if a given subset
of sensors measure some physical property of the system
and the attacker’s goal is to fake this property, then at least
one of these sensors should be running IDS at any given
time. Finally, following Kerckhoffs’s principle, we should ex-
pect an attacker who knows everything about the algorithm
that we use for scheduling (except for the randomization).
Hence, we must optimize our schedule for a worst-case ratio-
nal attacker, which can be modeled as a Stackelberg security
game.

Since schedules must take into account physical aspects
of the system, the optimal solutions have to be tailored
for specific systems to some extent. In this paper, we con-
sider the problem of scheduling host-based IDS on resource-
constrained devices for water-distribution networks. In these
networks, sensors such as pressure sensors are placed to ob-
serve events such as pipe leakages or bursts that result in
pressure changes detected by the sensors. An attacker might
compromise a subset of sensors altering their true observa-
tions. As a result, failure events might go undetected result-
ing in physical or monetary losses, or in the other case, false
alarms might be generated causing the wastage of useful re-
sources.

To this end, scheduling problems in IDS with limitations
on the battery supplies, can be studied in two different set-
tings. First, for a given duration of time, design a schedul-
ing scheme for IDS with the objective of maximizing the
probability of detecting an intruder attack during that time
period. Second, design a scheduling scheme to maximize the
lifetime of the network while imposing the condition that an
intruder attack should always be detected. In other words,

Table 1: List of Symbols

Symbol Description

V junctions

E links

S sensors

D detection distance

T time horizon

B battery power

U defender’s utility

for how long can we operate the network with limited battery
supplies and under the constraint that an attack is always
detected? Both of these problems, though related, are of
practical significance, and we study them in detail here.

The remainder of this paper is organized as follows. In
Section 2, we introduce our model of scheduling intrusion
detection systems for water-network monitoring. Then, we
formulate the first problem in which the objective is to de-
sign, for a given duration of time T , scheduling schemes for
IDS so that the probability of detecting an attacker is max-
imized within that duration. In Section 3, we propose and
compare various scheduling algorithms to achieve this ob-
jective. The numerical results for three different types of
networks are presented in Section 4. In Sections 5 and 6, we
study the second scheduling problem in which complete cov-
erage of the network is required. Complete coverage means
that any edge failure should be detected by some active sen-
sor, and every active sensor should have an active IDS to
ensure that any attack on an active sensor is detected. The
objective there is to design a scheduling scheme to maximize
the lifetime of the network while ensuring complete cover-
age. We formulate and present solutions to the problem in
Section 5, and deal with the computational aspects of the
solution in Section 6 along with various simulation results.
Finally, we present our conclusions in Section 7.

2. MODEL
In this section, we introduce our game-theoretic model of

IDS for water-distribution networks. For a list of symbols
used in this paper, see Table 1. We will also use the following
notation:

1condition =

{
1 if condition is holds,

0 otherwise.
(1)

We model the water-distribution network as a graphG(V,E),
where V is the set of nodes corresponding to the junctions
of pipes (i.e., links), and E is the set of links. Some of the
nodes have pressure sensors for detecting leakages; hence,
the set of sensors S is a subset of V . A leakage (i.e., fail-
ure) at pipe ` ∈ E is detected by a sensor whenever the
distance between the sensor and the leakage is smaller than
or equal to a certain threshold D. This distance threshold
based model has been used in water networks in the context
of sensor placement problems (e.g., [10]). We define the dis-
tance between a node and link in a natural way: if the link
is connected to the node, their distance is 1; otherwise, their



distance is 1 plus the length of the shortest path to the node
from the end of link which is closer to the node.

We assume that time is divided into T timeslots, which are
denoted 1, . . . , T . Each sensor device is capable of running
IDS; however, this consumes battery power, which is limited.
Formally, we assume that each sensor can run IDS for at
most B timeslots.

2.1 Strategies
We model the security problem as a two-player Stackel-

berg security game between a defender and an attacker. The
defender’s strategic choice is to select a schedule, which we
represent as T subsets of S, denoted by S1, S2, and ST .
Since the schedule must be randomized, in practice the sub-
sets are rearranged into a random order, and in each times-
lot, those nodes will be running IDS that are members of
the subset corresponding to the timeslot. Consequently, we
can express the battery constraint as

∀s ∈ S :

T∑
t=1

1s∈St ≤ B. (2)

The attacker selects a subset of sensors A ⊆ S, compro-
mises them, and changes the leak report. We can assume
that the attacker selects only subsets which lead to a fake
leakage report. Due to the randomization, the attacker does
not know which subset St is running IDS at the time of the
attack. Consequently, the attacker does not have to choose
the time of the attack, and the probability of the attack
including a sensor that is running IDS is

T∑
t=1

1

T
1A∩St 6=∅. (3)

Note that, following Kerckhoffs’s principle, we assume that
the attacker knows the schedule (S1, . . . , ST ), only their or-
der is unknown.

2.2 Payoff
We define the player’s payoffs in a natural way: the de-

fender’s utility is the probability of detecting an attack,
while the attacker’s utility is the probability of not being de-
tected. We assume that an attack is detected iff it includes
a sensor that is running IDS. Thus, the the defender’s utility
is

U(S1, S2, . . . , ST ) = min
A⊆S:

A can fake leakage

Pr[attack A is detected] (4)

= min
A⊆S:

A can fake leakage

T∑
t=1

1

T
1A∩St 6=∅. (5)

Finally, we can formulate the problem of finding the opti-
mal schedule as the following optimization problem:

max
(S1,...,ST ):

∀s∈S:
∑T
t=1 1s∈St≤B

 min
A⊆S:

A can fake leakage

T∑
t=1

1

T
1A∩St 6=∅

 . (6)

3. ANALYSIS
In this section, we study the problem of finding an optimal

schedule in general.

3.1 Attacker’s Best Response
First, observe that we can represent the attacker’s strategy

space simply by E: once the attacker has decided the link `
whose failure he is going to fake, the subset of sensors A(`)
to be compromised is given by the influence matrix M .

Consequently, the attacker’s best response is simply to
pick the link ` that leads to the lowest probability of getting
caught. For a given schedule (S1, . . . , ST ), we can compute
this easily:

∀` : Pr[` not detected] = 1−
T∑
t=1

1

T
1A(`)∩St 6=∅ . (7)

3.2 Defender’s Optimal Schedule
First, we show that finding an optimal schedule for the de-

fender is computationally hard. We formulate the defender’s
problem as a decision problem as follows.

Definition 1. Secure Schedule Problem: Given a graph
G = (V,E), a set of sensors S ⊆ V , a detection distance D,
a time horizon T , a battery power B, and a threshold util-
ity U∗, determine if there exists schedule (S1, S2, . . . , ST )
such that the defender’s utility U is at least U∗.

Theorem 1. The Secure Schedule problem is NP-hard,
even in the special case D = 2, B = 1, T = 2, and U∗ = 1.

We show that the Secure Schedule problem is NP-hard
by reducing a known NP-hard problem, the 2-Disjoint Set
Covers problem [9] to the schedule problem. The 2-Disjoint
Set Covers problem is defined as follows.

Definition 2. 2-Disjoint Set Covers Problem Given a
set U and a collection C of subsets of U , determine whether C
can be partitioned into two disjoint set covers or not.

Proof. Given an instance of the 2-Disjoint Set Covers
problem (i.e., a base set U and a collection C of subsets),
we construct an instance of the Secure Schedule problem as
follows:

• for every u ∈ U , create two nodes, denoted node u1

and node u2, and connect them with a link;

• for every C ∈ C, create a node, denoted node C, and
connect it to every node u1 such that u ∈ C;

• create two additional nodes, denoted node a1 and node
a2, and connect both of them every node C ∈ C;

• let the set of sensors S be the union of {a1, a2} and
the set of nodes corresponding to the elements of C;

• let the detection distance be D = 2;

• let the time horizon be T = 2;

• let the battery power be B = 1;

• and let the threshold utility be U∗ = 1.

It is obvious that the above reduction can be carried out in
time that is polynomial in the size of the input. Therefore, it
remains to show that the Secure Schedule (SS) problem has
a solution if and only if the 2-Disjoint Set Covers (2-DSC)
problem does.



First, assume that 2-DSC has a solution, that is, there
exists a partition (C1, C2) such that both C1 and C2 cover
the base set U . Then, let the defender’s schedule be (S1 =
C1 ∪ {a1}, S2 = C2 ∪ {a2}). Since (C1, C2) is a partition, this
schedule clearly abides the battery constraint, as each sen-
sor is activated only in single timeslot. It remains to show
that the defender’s utility U is U∗ = 1, that is, we have to
show that an attack against any link will be detected with
certainty in both timeslots. Consider an arbitrary timeslot t
and link ` ∈ E. First, if ` is a link between some node C ∈ C
and another node, then the distance between this link and
either a1 or a2 is at most two, since every C is connected
to both a1 and a2. Consequently, as node at is active in
timeslot t, an attack targeting link ` is detected with cer-
tainty. Second, suppose that link ` is a link between some
pair of nodes u1 and u2. Since Ct is a set cover, there exists
a node C ∈ Ct ⊂ St that is connected to u1. Consequently,
the distance between link ` and a sensor (i.e., node C) is
at most two. Therefore, the schedule (S1, S2) attains utility
U∗ = 1, which means that SS has a solution.

Second, assume that the SS has a solution, that is, there
exists a schedule (S1, S2) such that any attack will be de-
tected. Then, we show that (C1 = S1 ∩ C, C2 = S2 ∩ C) is
a solution to 2-DSC. First, it is obvious that (C1, C2) is a
partition, since every sensor is a member of at most one St
due to the battery constraint. It remains to show that every
Ct is a set cover. For the sake of contradiction, suppose that
this is not true, i.e., there exist a Ct and an element u such
that u is not an element of any C ∈ Ct. This implies that St
does not contain any node that is connected to u1; hence,
the distance between the link (u1, u2) and any sensor is at
least three. However, this contradicts our initial assumption
that the schedule (S1, S2) attains utility U∗ = 1, since an at-
tack against link ` is detected with probability 0.5 (or less).
Therefore, the original claim must hold, that is, partition
(C1, C2) is a solution to 2-DSC.

3.3 Algorithms for Finding a Schedule
Since the problem of finding an optimal schedule is com-

putationally hard, in practice, we have to use either heuris-
tic algorithms that are not guaranteed to find an optimal
solutions, or specific algorithms for special cases. Here, we
introduce and discuss three heuristic algorithms, which we
will evaluate numerically in the following section.

3.3.1 Simple Greedy
The scheduling problem resembles the set covering prob-

lem closely, since we have to “cover” the set of links using a
set of sensors, each of which can cover a given subset of the
links. Since the straightforward greedy algorithm is known
to be an approximation algorithm for the set covering prob-
lem, we can expect it to perform well for the scheduling
problem as well. Hence, we formulate a greedy algorithm for
the scheduling problem as follows (see Algorithm 1): start
with an empty schedule (S1 = ∅, . . . , ST = ∅), and itera-
tively add assign the sensors to the sets St, always picking
a feasible combination (s, t) of a sensor and a timeslot that
increases the defender’s utility the most.

3.3.2 Overlap Minimization
The greedy algorithm works well for the set covering prob-

lem because the set-covering objective function is submod-
ular. Unfortunately, the defender’s utility in the schedul-

Algorithm 1 Simple Greedy

1: for all t = 1, . . . , T do
2: St ← ∅
3: end for
4: S′ ← S
5: while S′ 6= ∅ do
6: (s, t) ← argmax(σ∈S′,τ∈{1,...,T}) U(S1, . . . , Sτ ∪
{σ}, . . . , ST )

7: At ← At ∪ s
8: S′ ← {s ∈ S | s has been assigned to less than B

time slots}
9: end while

ing problem is not submodular. Moreover, in most steps of
the algorithm, there is no combination (s, t) that could in-
crease the defender’s utility. For example, if we start with
an empty schedule, the utility remains zero until we reach
complete coverage, that is, until every single link is covered
by some node in at least one timeslot. This poses a problem
for the greedy algorithm, since it makes an arbitrary choice
if no combination can increase the objective function.

To evade the problems caused by the behavior of the origi-
nal objective function, we introduce an alternative objective
function. First, recall that the original objective function is
based on the minimum “covered” link, that is, the link that
is detected in the least number of timeslots. After all the
sensors have been assigned to B timeslots, the number of
timeslots in which a link ` is detected can be computed as
the total number of sensors that can detect ` minus the to-
tal number of overlaps, where an overlap is a pair of sensors
that can both detect ` and run IDS in the same timeslot.
Formally, given that every sensor has been assigned to B
timeslots, we have

T∑
t=1

1

T
1A(`)∩St 6=∅

=
# of sensors covering `−# of overlaps on `

T
. (8)

Now, observe that the first term is constant, since it is de-
termined by the structure of the network. Hence, in order
to maximize the minimal coverage, we have to minize the
number of overlaps.

Based on the above observation, we introduce a greedy
overlap minimization algorithm, which is defined as follows
(see Algorithm 2, where C(s) denotes the set of links whose
failures node s can detect): start with an empty schedule
(S1 = ∅, . . . , ST = ∅), and proceed in B iterations; in each
iteration, assign each sensor to a timeslot in which it overlaps
with the minimum number of other sensors. As we will see in
the numerical results, this approach for minimizing “wasted”
sensing leads to very good results in practice.

3.3.3 Repeated Set Cover
An alternative approach for finding a good schedule is to

break down the problem into T subproblems: instead of try-
ing to find a good schedule for T timeslots, we try to find
a covering set for each individual timeslot. More formally,
given an algorithm for set covering, we can find a good sched-
ule as follows (see Algorithm 3): iterate over the timeslots,
and find a covering set for each timeslot using the sensors
that have not been assigned to B timeslots; if no complete



Algorithm 2 Overlap Minimization

1: for all t = 1, . . . , T do
2: St ← ∅
3: end for
4: for all b = 1, . . . , B do
5: for all s ∈ S do

6: t← argminτ

∣∣∣C(s) ∩
⋃
σ∈Sτ C(σ)

∣∣∣
7: At ← At ∪ s
8: end for
9: end for

cover exists, use all available to achieve maximal coverage.
The rationale behind this algorithm is that – with a good
set cover algorithm – we will use a small number of sensor
in each timeslot, and we can achieve complete coverage for
a large fraction of the timeslots. Note that we can plug any
set cover algorithm into the above heuristic, e.g., a greedy
approximation algorithm.

Algorithm 3 Repeated Set Cover

1: for all t = 1, . . . , T do
2: S′ ← {s ∈ S | s has been assigned to less than B

time slots}
3: if ∀` : A(`) ∩ S′ 6= ∅ then
4: St ← greedy minimum cover of E using S′

5: else
6: St ← S′

7: end if
8: end for

4. NUMERICAL RESULTS
In this section, we present numerical results on the sim-

ple greedy (Algorithm 1), the overlap minimization (Algo-
rithm 2), and the repeated set cover (Algorithm 3) algo-
rithms. Note that we evaluated the latter using a greedy
algorithm for the set covering step.

We have evaluated our algorithms on three types of net-
works:

• Random geometric graphs: In these graphs, the nodes
are drawn from the area of a unit square uniformly at
random, and two nodes are connected if their distance
is less than a given threshold, which we chose to be
0.15 for the experiments. We used this random-graph
model in the numerical evaluation because it can cap-
ture the geographic nature of water-distribution net-
works.

• Barabási-Albert (BA) random graphs [6]: We gener-
ated random networks starting with cliques of 2 nodes
and connecting every additional node to 2 existing
ones. B-A graphs are widely used to construct syn-
thetic graphs as their heavy-tailed degree distribution
resembles real-world technological networks.

• Water-distribution network : We also compared our al-
gorithms using a water-distribution network from [21],
which has 126 nodes, 168 pipes, one reservoir, one
pump, and two storage tanks. The layout of the net-
work is illustrated in Figure 9. This benchmark water-
distribution network has been extensively studied in

the context of sensor placement problems for water
quality.

For each of the two random network types, we generated
1000 graphs, each having 100 nodes. Then, for each value
of the battery power B, we plotted the average utility over
these graphs.
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Figure 1: Comparison of various algorithms for
scheduling on geometric graphs with |V | = 100, S = V ,
D = 2, T = 10.

Figure 1 compares our scheduling algorithms on random
geometric graphs. We see that both the overlap minimiza-
tion and the repeated set cover algorithms perform well, the
latter being slightly better. On the other hand, the simple
greedy algorithm performs much worse than the other two.
In fact, the output of the simple greedy algorithm is actually
equal to a näıve solution that assigns each sensor to the first
B sets S1, . . . , SB , achieving B/T utility.
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Figure 2: Comparison of various algorithms for
scheduling on BA graphs with |V | = 100, S = V ,
D = 2, T = 10.

Figure 2 compares our scheduling algorithms on random
BA graphs. Similarly to the case of geometric graphs, we
see that both the overlap minimization and the repeated
set cover algorithms perform very well. However, in this



case, the former performs slightly better. Finally, the per-
formance of the simple greedy algorithm is again abysmal.
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Figure 3: Comparison of various algorithms for
scheduling on the water-distribution network with
S = V , D = 2, T = 10.

Figure 3 compares our scheduling algorithms on the water-
distribution network. Again, we see that the both the over-
lap minimization and the repeated set cover algorithms per-
form well, while the simple greedy algorithm performs much
worse.

5. MAXIMIZING THE NETWORK LIFE-
TIME WHILE ENSURING COMPLETE
COVERAGE

So far, we have focused on a setup where a scheduling
scheme is designed for a fixed duration of time with the
objective of maximizing the probability of detecting an at-
tack. In this section, we study a scheduling problem with
the objective of maximizing the overall lifetime of the net-
work while insisting on the complete coverage of the whole
network. Complete coverage here means the following con-
ditions are satisfied:

(a) Every edge failure ` ∈ E (leakage in a pipe) can be
detected by some sensor under the model presented in
Section 2.

(b) An IDS is active on a node whenever a sensor at the
node is turned on to detect an edge failure, i.e., an
attack on an active node will always be detected.

We assume that every node in the network is equipped
with a sensor and an IDS, and the objective is to schedule
their turning on/off to maximize the the overall lifetime of
the network while ensuring complete coverage. Before pro-
ceeding further, we define the closed neighborhood of a node
as following:

Definition 3. The closed neighborhood of a node i, de-
noted by Ni, is the union of i and the set of vertices that
are directly connected to the node i through an edge.

Now, if D = 2 is assumed in the sensing model (i.e., an
edge failure is detected by the nodes in the closed neigh-
borhoods of the end nodes of the edge), then to achieve (a)

above, IDS and sensors need to be placed at the nodes that
form a so-called vertex 2-cover of the underlying graph of
the network. The vertex 2-cover is defined as

Definition 4. (Vertex 2-Cover) A vertex 2-cover C ⊂ V is
a subset of vertex set such that if `(u, v) is an edge of the
graph, then

∃x ∈ C : {x} ∩ (Nu ∪Nv) 6= ∅
For the sake of simplicity, we say that a node v is active

if the corresponding sensor and IDS on the node are turned
on. Thus, to have a complete coverage with D = 2, the set
of active nodes should form a vertex 2-cover. Now, owing to
the limited battery power available at each node, there is a
constraint on the duration for which a node can be active.
Thus, the problem of maximizing the overall lifetime of the
network while maintaining complete coverage is related to
finding distinct vertex 2-covers under the constraints on the
number of times a node can be included in such vertex 2-
covers.

5.1 Dominating Set Based Problem Formula-
tion

Now, we see that instead of working with vertex 2-covers
of a graph for the complete coverage problem, we can utilize
the notion of more widely studied dominating sets.

Definition 5. A dominating set is a set of vertices, de-
noted by D, such that for every i ∈ V , there exists some
j ∈ D such that i ∈ Nj .
We observe that if D is a dominating set, then by the def-
inition, for every edge `(u, v) ∈ E, there are some x, y ∈ D
such that {x}∩Nu 6= ∅ and {y}∩Nv 6= ∅. This leads to the
following observation:

Observation 1. A dominating set of a graph is also its
vertex 2-cover.

In other words, the network is guaranteed to be completely
covered whenever the set of active nodes form a dominating
set. Thus, in a way, the objective is to find distinct domi-
nating sets in a graph for the active nodes so that the overall
lifetime of the network is maximized. The problem of finding
distinct dominating sets under certain constraints has been
of great interests owing to its wide variety of applications
(e.g., [4, 13, 14, 22]). Thus, we use a dominating set based
formulation of the complete coverage problem to maximize
the network lifetime.

Let B be the time for which a node can be an active node,
and is a measure of the battery power of the node. Let S be
the set of all dominating sets in a graph. If ti be the time
for which the nodes in Si ∈ S are active, then the problem
is to find a subset S = {S1, · · · , Sr} ⊆ S so that

1. the network lifetime, T =
r∑
i=1

ti is maximized.

2. no node is active for more than B duration, i.e.,

r∑
i=1

ti1{v}∩Si 6=∅ ≤ B, ∀v

For the sake of simplicity, we assume ti = 1 from here on-
wards. Then the objective is to obtain the maximum num-
ber of distinct dominating sets in a graph such that a node
belongs to at most B distinct dominating sets.



5.2 Approaches to Lifetime Maximization
In this subsection, we will consider two different approaches

to maximize the network lifetime while ensuring complete
coverage.

5.2.1 Disjoint Dominating Set Based Approach
One way to approach this problem is to partition the ver-

tex set such that each set in the partition is a dominating set,
and all dominating sets are pair-wise disjoint. Such a par-
tition is known as the domatic partition, and the maximum
number of (disjoint dominating) sets that can be obtained
is known as the domatic number, denoted by γ. Since dom-
inating sets are pairwise disjoint in such a partition, each
vertex belongs to only one of the dominating sets. More-
over, since each node can be active for B time slots, each
dominating set can remain active for B time slots. If only
one dominating set is active at any time instant, which is
sufficient for the complete coverage, then the lifetime of the
network achievable through this approach is

Tdom = γB (9)

The domatic partition problem has been extensively stud-
ied in the literature, and is known to be NP-hard [11]. Vari-
ous sensor scheduling schemes that utilize domatic partitions
have been proposed to maximize the network lifetime while
ensuring complete coverage (e.g., [22, 20, 25]).

5.2.2 Non-Disjoint Dominating Set Based Approach
Another way to approach the network lifetime maximiza-

tion while maintaining complete coverage is by using the
non-disjoint dominating sets of active nodes. Using this
approach, it is possible to obtain T ≥ Tdom. As an illus-
tration, consider the network shown in Figure 4. The graph
has a domatic number of 2 [12] and therefore, Tdom = 2B.
However, it is possible to obtain T = 5

2
B = 5

4
Tdom if non-

disjoint dominating sets are used as follows: Obtain five
distinct (non-disjoint) dominating sets such that each node
is included in at most two of the dominating sets as shown
in Figure 4. Activate each dominating set for the B/2 du-
ration. Since there are five dominating sets and each node
has a battery power for B duration, the network remains
completely covered for 5

(
B
2

)
time.

It can be noted that the overall network lifetime using
the non-disjoint dominating set based approach directly de-
pends, and is proportional to the number of distinct dom-
inating sets that can be obtained under the constraint on
the number of times a node can appear in a dominating set.
Moreover, the network lifetime obtained this way is always
going to be better or equal to the one obtained through
disjoint dominating set based strategy. The problem of
finding the maximum number of dominating sets under the
constraints on the number of times a vertex can be in-
cluded in a dominating set is related to the notion of (r, s)-
configurations [1, 12] as defined below.

Definition 6. Let s, r be two positive integers, and L =
{1, · · · , r} be the set of labels, then (r, s)-configuration of a
graph is the assignment of s distinct labels from the set L to
each vertex in the graph such that for every i ∈ L and every
vertex v, the label i is assigned to v or one of its neighbors.

An example of (5, 2)-configuration is shown in Figure 4.
Note that the set of vertices corresponding to a particular

label in L constitute a dominating set. So, if a graph has
an (r, s)-configuration, it is possible to have r distinct dom-
inating sets in which a vertex can be included in at most
s such dominating sets. Thus, for a given s, finding the
maximum r, denoted by r∗, for which (r∗, s)-configuration
of a graph exists is of particular interest. In fact, for a
given s, the maximum lifetime of the network that can be
achieved using non-disjoint dominating set based strategy is
T = (r∗/s)B. Hence, the optimal network lifetime achieved
using the non-disjoint dominating set based strategy under
the battery power constraints (B) and complete coverage con-
dition is

T =

[
max

(
r∗

s

)]
B ≥ Tdom = γB (10)

where r∗ and s are such that an (r∗, s)-configuration of
the graph exists.

A non-disjoint dominating set based strategy can now be
outlined as follows:

1 For a given graph, compute an (r, s) configuration such
that (r∗/s) is maximum.

2 Let each time slot span B/s time unit.

3 Activate the nodes in a dominating set for the duration
of one time slot.

4 Since there are r∗ distinct dominating sets, repeat step
3 for all such dominating steps.

The overall lifetime of the network obtained as a result
of the above strategy is

(
r∗

s

)
B. It can be noted that the

non-disjoint dominating set based strategy is strictly better
than the disjoint dominating set based approach whenever
(r∗/s) > γ. An important question is therefore, for a given
s, which graphs have (r∗/s) > γ? In this regard, first we
note that every connected graph has γ ≥ 2, and therefore,
for a given s, r∗ is always at least 2s. However, there exists
many graphs for which γ = 2, but r∗ > 2s. For instance,
many cubic graphs1 have a domatic number of 2, e.g., the one
shown in Figure 4. However, the following theorem asserts
that all cubic graph have r∗ ≥ 5

2
s for a given s.

Theorem 2. [12] Any cubic graph has an (r, s)-configuration
with r = b5s/2c, and such a configuration can be found in
polynomial time.

Recently, it has been shown in [2] that the above result is
true even for a bigger class of graphs as stated in Theorem
3. Here, K1,6 is a star graph with one central node of degree
six, and six end nodes each with a degree one.

Theorem 3. [2] Let G be a graph such that

– G has a minimum degree at least two,

– no subgraph of G is isomorphic to K1,6, and

– G 6= { , , , , , , , };

then G has an (r, s)-configuration with r = b 5s
2
c.

1graphs in which each vertex has a degree three.
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Figure 4: A graph has five distinct dominating sets indicated by the nodes with the same labels. Each node
belongs to two distinct dominating sets.

The above result is particularly useful as the R − disk
proximity graph model2, which is often used to model the
limited range communication in networks such as wireless
sensor networks, is always K1,6-free. As pointed out in [2],
a large number of graphs in this family have a domatic num-
ber of 2, thus, non-disjoint dominating set based strategy is
strictly better than the disjoint dominating set based strat-
egy in those cases.

6. COMPUTING (R,S)–CONFIGURATIONS
In this section, using a game theoretic setting, we present

an algorithm to assign s labels from a set of r labels to each
node such that the number of distinct labels in the closed
neighborhoods of all nodes is maximized. In the case (r, s)-
configuration of a graph exists, each node should have all r
labels in its closed neighborhood.

Let L = {1, 2, · · · , r} be the set of r labels, and Q be the

set of all s-element subsets of Q. Note that |Q| =

(
r

s

)
.

Moreover,

f : V −→ Q (11)

i.e., f is a set function that assigns q ∈ Q to each vertex in
a graph. Similarly, if Ni represents the closed neighborhood
of a vertex i, then we define F (i) as follows:

F (i) =
⋃
j∈Ni

f(j) (12)

If the assignment of labels to nodes, as in (11), is a valid
(r, s)-configuration, then F (i) = L, ∀i. Thus, the objec-
tive is to obtain an assignment of labels that maximizes the
following:

Objective: max
f

∑
i∈V

|F (i)| (13)

2An edge exists between two vertices whenever the Eu-
clidean distance between them is at most R.

Note that the maximum value in (13) is r|V |, which is
achieved whenever the assignment of labels results in an
(r, s)-configuration.

6.1 Game-Theoretic Formulation
Game theory concepts have been extensively employed to

solve the locational optimization problems such as maxi-
mizing coverage on graphs (e.g., [24, 26]) and distributed
control of multiagent systems (e.g., [5, 19]). In one of the
approaches, the idea is to determine a potential function
that captures the overall global objective. The players’ indi-
vidual utility functions are then appropriately aligned with
the global objective such that the change in the utility of
the player as a result of unilateral change in strategy equals
the change in the global utility represented by the potential
function. The players’ strategies are then designed to en-
sure that local actions lead to the global objective. It turns
out that this sort of problem formulation and design can
be realized using a class of non-cooperative games known as
potential games, which are now extensively used for various
distributed control optimization problems.

A finite strategic game G(P,A,U) consists of a set of play-
ers P = {1, 2, · · · , n}, action space A = A1 ×A2 × · · · ×An
where Ai is a finite action set of the player i ∈ P , and a set
of utility functions U = {U1, U2, · · · , Un} where Ui : A→ R
is a utility function of the ith player.

If a = (a1, · · · , ai, · · · , an) ∈ A denotes the joint action
profile, we let a−i denote the action of players other than
the player i. Using this notation, we can also represent a as
(ai, a−i).

A game is a potential game if there exists a potential func-
tion, φ : A → R such that the change in the utility of the
player i as a result of a unilateral deviation from an action
profile (ai, a−i) to (a′i, a−i) is equal to the corresponding
change in the potential function. More precisely, for every
player i, ai, a

′
i ∈ Ai, and a−i ∈ A−i,

Ui(ai, a−i) − Ui(a
′
i, a−i) = φ(ai, a−i) − φ(a′i, a−i) (14)



In the case of potential games, there exists algorithms such
as log-linear learning (LLL) [7, 8] and binary log-linear learn-
ing (BLLL) [18] guaranteeing that only the joint action pro-
files that maximize the potential function are stocahstically
stable. The basic idea behind these algorithms is to have a
noisy best response dynamics, in which the noise parameter
allows the selection of suboptimal action occasionally by the
players. The probability of selecting a suboptimal action is
dependent on the pay-off difference between the optimal and
suboptimal cases. Thus, our objective is to design a poten-
tial game corresponding to the labeling problem on graphs
and use the learning algorithms for the potential games to
achieve the desired labeling.

6.1.1 A potential game for the graph labeling
We design a potential game G(P,A,U) to obtain a labeling

of a graph that achieves the objective in (13), which results
in an (r, s)-configuration of a graph if it exists. In our game,
vertex set is the set of players, i.e., P = V , and for each
player i ∈ V , the action set Ai is the set of all s elements
subsets of the labeling set L = {1, · · · , r}, i.e., Ai = Q, ∀i ∈
V . We also need to have a potential function that captures
the global objective. For this, we define Ix as the set of
vertices with the label x, i.e.,

Ix = {v ∈ V : x ∈ f(v)} (15)

A potential function is then defined as

φ(a) =

r∑
x=1

∣∣∣∣∣ ⋃
j∈Ix

Nj

∣∣∣∣∣ (16)

Note that φ(a) is simply the number of vertices having
a label x ∈ L in their closed neighborhoods, summed over
all the labels, which is equivalent to the

∑
i∈V
|F (i)| in (13).

Thus, φ(a) indeed captures the global objective.
Moreover, we define utility function of the player i as the

total number of labels made available by ai to the vertices
in Ni that would not have been available to them otherwise.
An example is illustrated in Fig. 5. More precisely, we define
Ui(ai, a−i) as

Ui(ai, a−i) =

r∑
x=1

aix

∣∣∣∣∣∣Ni \
⋃

k∈Ix\{i}

Nk

∣∣∣∣∣∣ (17)

where,

aix =

{
1 if x ∈ ai(= f(i))
0 otherwise.

With utility function as defined in (17) and potential func-
tion as in (16), it turns out that the game designed above
is indeed a potential game. Since our graph labeling prob-
lem can be formulated as a potential game, using the results
in [18] we deduce that if players adhere to the binary log
linear algorithm (stated below), then the objective in (13) is
achieved. In other words, if s unique labels from a total
of r labels are assigned to nodes as per below algorithm,
then the number of distinct labels in the closed neighbor-
hood of every node is maximized, which simply means that
an (r, s)-configuration of a graph (if exists for a given r and
s) is obtained.

Note that initially the nodes are assigned an s-element
subset of labels randomly. Afterwards, in each iteration,

ij

k

l

{1, 2}{3, 4}

{3, 5}

{2, 5}

{4, 5}

{4, 5}

Figure 5: Here. L = {1, · · · , 5} and each node has a
2-element subset of L. Moreover, Ni = {i, j, k, l}. For
all the four nodes in Ni, node i is the only one with
the label 1; and for the node j, node i is the only
one with the label 2. Thus, Ui(ai, a−i) = 4 + 1 = 5.

Algorithm 4 Binary Log-Linear Learning [18]

1: Initialization: Pick a small ε ∈ R+, and an a ∈ A.
2: Repeat
3: Pick a random node i ∈ V , and a random a′i ∈ Ai.
4: Compute Pε = ε

Ui(a
′
i,a−i(t))

ε
Ui(a

′
i
,a−i(t)) + ε

Ui(ai,a−i(t))
.

5: Set ai ← a′i with probability Pε.
6: End Repeat

a random node selects with a certain probability a subset
of s-labels that improve the overall labeling to attain the
objective in (13), which is eventually achieved.

6.2 Simulations
As in Section 4, we simulate the algorithm for three dif-

ferent networks including,

- Random geometric graph with n = 100 nodes dis-
tributed uniformly at random over a unit square area.
We assume that an edge exists between two nodes
whenever the (euclidean) distance between them is at
most 0.15.

- Barabási-Albert (BA) graph with 100 nodes in which
each new node is connected to two already existing
nodes as per preferential attachment strategy.

- Water distribution network with 126 nodes and 168
pipes as described in Section 4 [21].

For all the networks, we assume r and s to be 5 and 2
respectively, i.e., each element is assigned two labels from
the set {1, · · · , 5} with the objective that all five labels are
available in the closed neighborhood of every node in the
network. Since the random geometric graph and the BA
graph each have 100 nodes, the maximum value in (13) is
|V |r = 100 × 5, and a labeling that achieves this value is
indeed a (5, 2)-configuration. To keep a track of how far a
given labeling is from becoming an (r, s)-configuration, we
define deficiency of the labeling as

Deficiency = |V |r −
∑
i∈V

∣∣∣∣∣∣
⋃
j∈Ni

f(j)

∣∣∣∣∣∣ (18)

where f(i), as previously, is the set of labels assigned to node
i. If a labeling is an (r, s)-configuration, then its deficiency is
zero. The output of Algorithm 4 for the random geometric
and BA graphs are shown in Figures 6 and 7 respectively.

For the water network, we note that nine nodes have a de-
gree of 1, i.e., have only one neighbor. Since every node has
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Figure 6: Deficiency of labeling as a function of
(BLLL) iterations in a random geometric graph with
100 nodes.
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Figure 7: Deficiency of labeling as a function of
(BLLL) iterations in a BA graph with n = 100.

two distinct labels, each of these nine nodes will be missing
at least one of the five total labels in their closed neighbor-
hoods. In other words, every labeling with s = 2 will have
a deficiency of at least nine. Figure 8 illustrates the best
possible labeling (having a deficiency of nine) obtained as a
result of Algorithm 4. The nodes containing each of the five
labels are also shown separately in Figure 9.

7. CONCLUSIONS
The deployment of intrusion detection systems can add

significantly to the system’s resilience against attacks by de-
tecting them early enough, thus minimizing the losses in-
curred. However, in resource-constrained systems, such as
sensor networks with limited battery supplies, a continuous
operation of IDS for extended period of times becomes a
major issue. Efficient scheduling schemes for running IDS
at various nodes are therefore required. Here, we studied
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Figure 8: Deficiency of labeling as a function of
(BLLL) iterations in the water network. The hor-
izontal line indicates the best possible value (nine)
of deficiency here.

scheduling schemes for IDS in the context of water distri-
bution networks. In one of the problems, we fixed the time
duration and designed schedules to maximize the detection
probability during that time, while posing constraints on
the available battery supplies to the individual IDS. We
proposed and compared three algorithms, including simple
greedy, overlap minimization, and repeated set cover. The
latter two algorithms performed significantly better than the
first one when evaluated for random geometric, Barabási-
Albert, and water distribution networks. In another setting,
we insisted that IDS needs to be scheduled in such a man-
ner that every attack is detected, and the objective was to
maximize the overall lifetime of the network while respect-
ing the constraints on the available battery supplies to the
individual IDS. We proposed a non-disjoint dominating set
based strategy to obtain such a schedule by using the no-
tion of (r, s)-configurations in graphs, and showed that this
approach is better than the widely used disjoint-dominating
set based strategy for the network lifetime maximization.
We seek to extend this work towards more general scenarios
and physical models of other infrastructure networks.
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