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Abstract. Bug-bounty programs have the potential to harvest the ef-
forts and diverse knowledge of thousands of white hat hackers. As a con-
sequence, they are becoming increasingly popular as a key part of the
security culture of organizations. However, bug-bounty programs can be
riddled with myriads of invalid vulnerability-report submissions, which
are partially the result of misaligned incentives between white hats and
organizations. To further improve the effectiveness of bug-bounty pro-
grams, we introduce a theoretical model for evaluating approaches for
reducing the number of invalid reports. We develop an economic frame-
work and investigate the strengths and weaknesses of existing canonical
approaches for effectively incentivizing higher validation efforts by white
hats. Finally, we introduce a novel approach, which may improve effi-
ciency by enabling different white hats to exert validation effort at their
individually optimal levels.
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1 Introduction

In recent years, many organizations have launched independent bug-bounty pro-
grams (e.g., Google and Facebook) or have joined bug-bounty platforms, such as
HackerOne, Cobalt or Bugcrowd, that facilitate programs for them. These pro-
grams allow independent security researchers, so-called white hats, to evaluate
the security of a website or software within a set of predefined rules. White hat
hackers are encouraged to submit reports for potential vulnerabilities, which af-
ter validation by the organization will be rewarded, for example, with monetary
bounties. The benefits of these programs are at least twofold. First, the orga-
nizations’ products are examined by the large and diverse population of white
hat hackers, which would be prohibitively expensive to employ directly. White
hats’ efforts effectively complement the usage of automated web vulnerability
scanners, which have been shown to have only limited coverage [8,25]. Second,
the public nature of the majority of these programs can signal to third parties
the commitment of organizations towards continual security improvements.

The scale of bug-bounty programs is sizable and growing. For example, on
HackerOne, more than 20000 security vulnerabilities have been reported and
fixed for hundreds of organizations as of May 2016. These contributions are based



on reports from over 2500 different white hat hackers, who received bounties
totaling over $7.3M.

However, the public nature of the majority of the programs also poses a
challenge since virtually anyone can participate, and organizations may be over-
whelmed by low-value reports [27]. In fact, bug-bounty platforms acknowledge
that the key challenge “companies face in running a public program at scale is
managing noise, or the proportion of low-value reports they receive” [13]. These
low-value reports include spam (i.e., completely irrelevant reports), false pos-
itives (i.e., issues that do not actually exist or have no security impact), and
out-of-scope reports. For the purpose of our work, we will refer to all of these
issues as invalid reports.

Invalid reports may be the result of imprecise research approaches or lack of
thorough validation by white hats. For example, some hackers utilize automated
vulnerability scanners in the discovery process, which typically have a high false-
positive rate [8]. Since filtering out false positives is costly, some hackers may
prefer to send the outputs of an automated scanner to the bug-bounty program.
Further, some discoveries may initially appear to be valid, while they are actually
not. For example, a hacker needs to read the participation rules for a program
and validate whether an identified issue is out-of-scope. Another important facet
is that the hacker needs to demonstrate that a discovered flaw can really lead to
a security problem. Finally, writing a good report for a valid discovery requires
effort, and can also be seen as a part of the validation process.

In practice, the number of invalid reports is significant. For example, for
Bugcrowd’s public programs, 34.5% of all submissions were marked invalid (from
January 2013 to June 2015) [7]. HackerOne reported that 54% of all submissions
were marked as invalid before the platform started to proactively improve the
signal-to-noise ratio (in 2015) [13].

As a direct response, bug-bounty platforms have started to offer multiple
policies that participating organizations can use for reducing the number of
invalid reports. For example, HackerOne has introduced “Signal Requirements”
and “Rate Limiter” mechanisms, which organizations can use to increase the
quality of reports [13]. The former allows only those hackers to submit reports
who maintain a given ratio of valid to invalid submissions, while the latter limits
the number of reports that a hacker can make in some time interval. These
policies aim to incentivize hackers to engage in consistent efforts to validate their
reports. According to HackerOne [13], these measures together have decreased
the percentage of invalid reports to around 25%.

Unfortunately, policies may also prevent some hackers, who could contribute
valid reports, from participating and may force others to waste effort by being
overly meticulous. Consequently, strict policies will result not only in a reduced
number of invalid reports, but also in a lower number of valid reports. In sum-
mary, finding the right policies and their optimal configuration is a challenging
problem since white hat hackers need to be incentivized to produce and submit
valid reports, but at the same time, discouraged from submitting invalid reports.



With our work, we provide the first theoretical framework for modeling these
policies, finding their optimal configuration, and comparing them with each
other. In addition to modeling existing policies, we also propose a new policy,
which directly rewards hackers for their accuracy. For each policy, we provide
theoretical results on how hackers react to the implementation of the policy,
and then complement our analytic results with numerical analyses comparing
the policies.

The remainder of this paper is organized as follows. In Section 2, we discuss
related work on bug-bounty programs, and vulnerability discovery. In Section 3,
we introduce our economic model of bug-bounty programs. In Section 4, we
study a set of canonical policies for decreasing the number of invalid reports. In
Section 5, we present numerical results on these policies. Finally, in Section 6,
we offer concluding remarks and outline future work.

2 Related Work

2.1 Bug Bounty and Vulnerability Markets

There has been a long-standing interest for using market approaches to address
software security problems. Böhme established a terminology for organizational
principles of vulnerability markets by comparing bug bounties, vulnerability
brokers, exploit derivatives and cyber-insurance [5]. Among these market ap-
proaches, bug bounties have received strong attention from both industry and
academia. Schechter proposed a testing competition in which multiple testers
report security defects to a software company for reward [23]. Ozment further
extended Schechter’s testing competition into a vulnerability auction to improve
its efficiency and better defend against attacks [18]. In both mechanisms, the
amount of reward grows linearly with time, and resets to the initial value ev-
ery time a report is accepted. This reward policy enables the firm to minimize
the cost while still offering a fair price for the vulnerabilities discovered by the
testers. The reward level at a given time can also serve as a measurement of
software security. However, these two mechanisms did not fully consider the
problem of invalid reports, which cause high cost for today’s bug-bounty pro-
grams and the participating organizations. Schechter proposed to require testers
to pay the transaction costs of processing reports [23]. However, this idea would
prevent many hackers from submitting reports and thus is not implemented in
reality. Our research focuses on real bug-bounty programs and their policies,
thus complements these early proposed mechanisms.

In recent years, researchers have conducted multiple empirical analyses on
bug-bounty programs. Finifter et al. empirically studied the Google Chrome
vulnerability reward program (VRP) and the Mozilla Firefox VRP [11], and
suggested that VRPs are more cost-effective compared to hiring full-time se-
curity researchers in terms of finding security flaws. Zhao et al. conducted a
comprehensive study of two bug bounty ecosystems, Wooyun and HackerOne,
to understand their characteristics, trajectories and impact [27]. They quantita-
tively discussed the low signal-to-noise ratio problem which is the focus of this



paper. Maillart et al. empirically studied reward distribution and hacker enroll-
ments of public bounty programs on HackerOne and found that growing rewards
cannot match the increasing difficulty of vulnerability discovery, and thus hack-
ers tend to switch to newly launched programs to find bugs more easily [17].
Similar to [27], they suggested that a bounty program manager should try to
enroll as many hackers as possible to deplete the number of vulnerabilities more
effectively. However, this leads to a significant increase of invalid submissions,
which we aim to address in this paper.

For other types of market-based vulnerability discovery mechanisms, Kan-
nan and Telang theoretically demonstrated that unregulated vulnerability mar-
kets almost always perform worse than regulated ones, or even non-market ap-
proaches [15]. They further found that offering rewards for benign vulnerabil-
ity discoverers is socially beneficial. Frei et al. studied a security ecosystem in-
cluding discovers, vulnerability markets, criminals, vendors, security information
providers and the public, based on 27,000 publicly disclosed vulnerabilities to
examine the risk and impact of such an ecosystem [12]. They found that be-
tween 10% and 15% of the vulnerabilities of major software vendors are handled
by commercial vulnerability markets, and exploits become available faster than
patches on average. Ransbotham et al. empirically examined the effectiveness of
vulnerability markets and concluded that market-based disclosure restricts the
diffusion of vulnerability exploits, reduces the risk of exploitation, and decreases
the volume of exploitation attempts [21]. Algarni and Malaiya analyzed data of
several existing vulnerability markets and showed that the black market offers
much higher prices for zero-day vulnerabilities, and government agencies make
up a significant portion of the buyers [1]. Bacon et al. have proposed a more
general market design that contains bug hunters, developers, and users [4]. Bug
bounty, and vulnerability markets in general have also caused debates regard-
ing their ethics. A recent panel discussion of such issues and their implications
can be found in [10]. Finally, Libicki et al. conducted a comprehensive study of
vulnerability markets and their relevance to cyber security and public policy [16].

2.2 Empirical Analysis of Software Vulnerability Discovery

Previous work has studied various software vulnerability datasets to understand
vulnerability discovery. Rescorla studied the ICAT dataset of 1,675 vulnerabil-
ities and found very weak or no evidence of vulnerability depletion. He thus
suggested that the vulnerability discovery efforts might not provide much social
benefit [22]. This conclusion is being challenged by Ozment and Schechter, who
showed that the pool of vulnerabilities in the foundational code of OpenBSD is
being depleted with strong statistical evidence [19,20]. Ozment also found that
vulnerability rediscovery is common in the OpenBSD vulnerability discovery his-
tory [19]. Therefore, they gave the opposite conclusion, i.e., vulnerability hunting
by white hats is socially beneficial. More recently, Shahzad et al. [24] conducted
a large-scale study of the evolution of the vulnerability life cycle using a com-
bined dataset of NVD, OSVDB and FVDB. Their study provided three positive
signs for increasing software security: (1) monthly vulnerability disclosures are



decreasing since 2008, (2) exploitation difficulty of the identified vulnerabilities
is increasing, and (3) software companies have become more agile in responding
to discovered vulnerabilities.

More recently, researchers started to pay attention to the behaviors of vul-
nerability discoverers. One finding is that vulnerability discoverers are rather
heterogeneous. Edmundson et al. conducted a code review experiment for a
small web application with 30 subjects [9]. One of their findings is that none of
the participants was able to find all 7 Web vulnerabilities embedded in the test
code, but a random sample of half of the participants could cover all vulnerabil-
ities with a probability of about 95%, indicating that a sufficiently large group
of white hats is required for finding vulnerabilities effectively. Zhao et al. con-
ducted an initial exploratory study of white hats on Wooyun [26] and uncovered
the diversity of white hat behaviors regarding productivity, vulnerability type
specialization, and discovery transitions. Huang et al. uncovered that hackers at
various levels of experience exist in the vulnerability disclosure ecosystem [14].
They found that hackers with different levels of accuracy have diverse strate-
gies in selecting to which programs to contribute [14]. In this paper, we account
for these studies by evaluating the effectiveness of bug bounty policies for both
homogeneous and heterogeneous white hat hackers.

3 Model

In this section, we introduce our economic model of bug-bounty programs. Note
that we will focus on features that are relevant to invalid reports and policies
for limiting them. A list of symbols used in this paper can be found in Table 1.

Table 1. List of Symbols

Symbol Description

Constants and Functions

V average value of a valid report for the organization

C average cost of processing a report for the organization

Wi value of time for hackers of type i

Φi fraction of discoveries by hackers of type i that are valid vulnerabilities

Di(ti) number of potential vulnerabilities discovered by hackers of type i

Ii(vi) number of discoveries validated by hackers of type i

Variables

b average bounty paid for a valid report

ti time spent on vulnerability discovery by hackers of type i

vi time spent on validating discoveries by hackers of type i

α accuracy threshold imposed on participating hackers

ρ report-rate threshold imposed on participating hackers

δ validation reward for participating hackers



Notation We use uppercase letters to denote constants (e.g., V ) and functions
(e.g., Di(ti)), lowercase letters to denote variables (e.g., b), and bold font to
denote vectors (e.g., t). We use Lagrange’s notation (i.e., the prime notation) for
derivatives of single variable functions (i.e., D′i(ti) denotes the first derivative of
Di(ti)). For multivariable functions, we use Leibniz’s notation (e.g., d

dbUO(b, t,v)
denotes the first derivative of UO(b, t,v) with respect to b). Finally, we use −1 to
denote the inverse of a function (e.g., D−1i (ti) is the inverse of function Di(ti)).

In our model, we consider an organization that runs a bug-bounty program
and hackers that may participate in the program. We group hackers who have the
same productivity and preferences together into hacker types. Since hackers of the
same type will respond in the same way to the policies set by the organization,
we study their choices as a group instead of as individuals.

The number of potential vulnerabilities discovered by hackers of type i is

Di(ti), (1)

where ti is the amount of time hackers of type i spend on discovery. We assume
that Di(0) ≡ 0 and that Di is a non-negative, increasing, and strictly concave
function of ti. That is, we assume that the marginal productivity of discovery
is decreasing, which is supported by experimental results and existing models
(e.g., [28,2,6]).

On average, Φi · Di(ti) of these discoveries are actual vulnerabilities and
(1 − Φi)Di(ti) of them are invalid (0 < Φi < 1). The number of potential
vulnerabilities that are validated (i.e., confirmed to be valid or to be invalid) by
hackers of type i is

Ii(vi), (2)

where vi is the amount of time hackers of type i spend on validating their dis-
coveries. We assume that Ii(0) ≡ 0 and that Ii is a non-negative, increasing,
unbounded, and strictly concave function of vi. The rationale behind the con-
cavity assumption is that some discoveries are easier to validate, and a rational,
utility-maximizing hacker starts validation with the easier ones. Finally, we ob-
viously have that

vi ≤ I−1i (Di(ti)) . (3)

That is, a hacker will not waste time on validation once he has finished with all
of his discoveries.

After validating his Ii(vi) discoveries, the hacker will report all Φi · Ii(vi)
discoveries that he has confirmed to be valid vulnerabilities. Further, he will also
report all Di(ti) − Ii(vi) unvalidated discoveries, of which Φi · (Di(ti)− Ii(vi))
are valid and (1 − Φi) (Di(ti)− Ii(vi)) are invalid. Hence, the number of valid
reports made by hackers of type i is

Φi ·Di(ti), (4)

while the number of invalid reports is

(1− Φi) (Di(ti)− Ii(vi)) . (5)



The utility of hackers of type i is

UHi(b, ti, vi) = b · Φi ·Di(ti)−Wi · (ti + vi), (6)

where b is the average bounty that the organization pays for a valid report, and
Wi > 0 is the hacker’s utility for spending time on other activities. In other
words, Wi is the opportunity cost of the hacker’s time.

The organization’s utility is

UO(b, t,v) =
∑
i

(V − b)ΦiDi(ti)︸ ︷︷ ︸
net value of valid reports

−C ·
(
ΦiDi(ti)︸ ︷︷ ︸

valid reports

+ (1− Φi) (Di(ti)− Ii(vi))︸ ︷︷ ︸
invalid reports

)
︸ ︷︷ ︸

cost of processing reports

,

(7)
where V > 0 is the average value of a valid report for the organization, and
C > 0 is the average cost of processing a report. Note that V can incorporate a
variety of factors, such as a difference between the processing costs of valid and
invalid reports, cost of patching a vulnerability, etc. By letting V̂ = V − C, we
can express the organization’s utility as

UO(b, t,v) =
∑
i

(V̂ − b)ΦiDi(ti)− C · (1− Φi) (Di(ti)− Ii(vi)) . (8)

4 Analysis

In this section, we provide theoretical results on our bug-bounty model, and
study how hackers respond to various policies. First, as a baseline case, we study
the model without any policy against invalid reports. Then, we study two poli-
cies, accuracy threshold and report-rate threshold, which model existing practical
approaches for limiting invalid reports. Finally, we propose a novel policy, vali-
dation reward, which incentivizes hackers to validate their discoveries instead of
imposing strict limits on their actions.

4.1 Without an Invalid-Report Policy

First, we consider a baseline case, in which the organization does not have a pol-
icy for limiting invalid reports. In this case, the organization’s choice is restricted
to adjusting the bounty paid for valid reports. The following proposition char-
acterizes the hackers’ response to the bounty value chosen by the organization.

Proposition 1. Without an invalid-report policy, hackers of type i will spend

t∗i (b) =

{
(D′i)

−1
(
Wi

b·Φi

)
if D′i(0) > Wi

b·Φi

0 otherwise
(9)

time on vulnerability discovery and v∗i = 0 time on validating their discoveries.



Proof. First, it is easy to see that the maximum of

UHi(b, ti, vi) = b · Φi ·Di(ti)−Wi · (ti + vi) (10)

is always attained at vi = 0. In other words, hackers have no incentive to validate
their discoveries, and their optimal decision is v∗i = 0 for every type i.

Second, to find the optimal ti for the hackers, we take the first derivative of
their utility UHi with respect to ti:

d

dti
UHi(b, ti, 0) = b · Φi ·D′i(ti)−Wi. (11)

The maximum of UHi is attained either at the lower bound ti = 0 or when the
first derivative is equal to 0:

d

dti
UHi(b, ti, 0) = 0 (12)

b · Φi ·D′i(ti)−Wi = 0 (13)

D′i(ti) =
Wi

b · Φi
. (14)

Since Di(ti) is strictly concave, we have that D′i(ti) is strictly decreasing. Con-
sequently, if D′i(0) ≤ Wi

b·Φi , then Equation (14) cannot have a positive solution
ti > 0, and the maximum utility is attained at the lower bound t∗i = 0.

On the other hand, if D′i(0) > Wi

b·Φi , then there exists a unique solution

t̃i = (D′i)
−1
(
Wi

b · Φi

)
(15)

to Equation (14). Furthermore, it is easy to see that ti = 0 cannot be an optimum
in this case, since an infinitesimal increase to ti = 0 would lead to a higher payoff
due to d

dti
UHi(b, 0, 0) = b ·Φi ·D′i(0)−Wi > 0. Thus, t∗i = t̃i is the unique optimal

choice in this case. ut

4.2 Accuracy Threshold

Second, we consider programs that accept reports only from those hackers who
maintain a sufficiently high ratio of valid reports (e.g., invitation-only programs
or the “Signal Requirements” mechanisms of HackerOne [13]). We model these
programs using a policy that imposes a restriction on the participating hackers’
accuracy. We define accuracy formally as the following ratio:

number of valid reports

number of valid reports + number of invalid reports
(16)

=
Φi ·Di(ti)

Φi ·Di(ti) + (1− Φi)(Di(ti)− Ii(vi))
(17)

=
Φi ·Di(ti)

Di(ti)− (1− Φi)Ii(vi)
. (18)



Please recall that Ii(vi) ≤ Di(ti) by definition, which ensures that accuracy
cannot exceed 1.

Based on the above definition of accuracy, we formalize the accuracy-threshold
policy as follows.

Definition 1 (Accuracy-Threshold Policy). Under an accuracy-threshold
policy with threshold α ∈ [0, 1], the hackers’ choices must satisfy

Φi ·Di(ti)

Di(ti)− (1− Φi)Ii(vi)
≥ α. (19)

The following proposition characterizes the hackers’ responses to the accuracy-
threshold policy when α > Φi (when α ≤ Φi their responses are obviously the
same as without a policy).

Proposition 2. Under an accuracy-threshold policy, if α > Φi, hackers of type i
will spend

t∗i (b, α) =

0 if D′i(0) ≤ Wi

b·Φi−Wi
1

I′
i
(0)

α−Φi
α·(1−Φi)

t̃i otherwise
(20)

time on vulnerability discovery, where t̃i is the unique solution to

D′i(t̃i)

b · Φi −Wi
1

I ′i

(
I−1i

(
Di(t̃i)

α−Φi
α·(1−Φi)

)) α− Φi
α · (1− Φi)

 = Wi. (21)

In addition, they will spend

v∗i (b, α) = I−1i

(
Di(t

∗
i )

α− Φi
α · (1− Φi)

)
(22)

time on validating their discoveries.

Note that even though we cannot express the solution of Equation (21) in closed
form, it can be found easily numerically since the left-hand side is strictly de-
creasing or negative (see the proof for details). Furthermore, this also holds for
the remaining propositions (Propositions 3 and 4).

Proof. Similar to the case without any policy, hackers are interested in mini-
mizing their time spent on validating their discoveries. Consequently, for any
given ti, hackers will choose the minimum validation effort v∗i that satisfies the
accuracy-threshold constraint. Hence, we have

Φi ·Di(ti)

Di(ti)− (1− Φi)Ii(v∗i )
= α (23)

Φi ·Di(ti) = α ·Di(ti)− α · (1− Φi)Ii(v∗i ) (24)

Ii(v
∗
i ) = Di(ti)

α− Φi
α · (1− Φi)

(25)



v∗i = I−1i

(
Di(ti)

α− Φi
α · (1− Φi)

)
. (26)

Note that I−1i exists since Ii is strictly increasing.
Next, we study the optimal t∗i for the hackers. Using the above characteriza-

tion of v∗i , we can express the hackers’ utility as a function of b and ti:

UHi(b, ti) = b · Φi ·Di(ti)−Wi ·
(
ti + I−1i

(
Di(ti)

α− Φi
α · (1− Φi)

))
. (27)

In order to find the utility-maximizing ti, we take the first derivative of the
hackers’ utility with respect to ti:

d

dti
UHi = b · Φi ·D′i(ti)−Wi

−Wi ·
(
I−1i

)′(
Di(ti)

α− Φi
α · (1− Φi)

)
·D′i(ti)

α− Φi
α · (1− Φi)

(28)

=D′i(ti)

b · Φi −Wi
1

I ′i

(
I−1i

(
Di(ti)

α−Φi
α·(1−Φi)

)) α− Φi
α · (1− Φi)

−Wi.

(29)

Recall that Di(ti) is a strictly increasing function of ti by definition. Since
α−Φi

α·(1−Φi) ≥ 0, the argument of I−1i is increasing in the formula above, which

implies that the argument of I ′i is also increasing because I−1i is an increasing
function. Since I ′i is a strictly decreasing function, the value of I ′i is decreas-
ing, which implies that the fraction 1

I′i(...)
in the formula above is an increasing

function of ti. Consequently, we have

d

dti
UHi = D′i(ti)︸ ︷︷ ︸

strictly decreasing

(
b · Φi −Wi

1

I ′i (. . .)︸ ︷︷ ︸
increasing

α− Φi
α · (1− Φi)︸ ︷︷ ︸
non-negative

)
︸ ︷︷ ︸

decreasing

− Wi︸︷︷︸
constant

. (30)

Since D′i(ti) is always positive, the first term is either decreasing or negative.
Therefore, the following equation has at most one solution for ti:

d

dti
UHi = 0. (31)

Using an argument similar to the one used in the proof of Proposition 1, we
can show that if the above equation has a solution t̃i, then the unique optimal
choice is t∗i = t̃i; otherwise, the unique optimal choice is t∗i = 0. Since the first
term on the right-hand side of Equation (30) is either decreasing or negative,
d
dti
UHi = 0 does not have a solution if and only if d

dti
UHi is negative at ti = 0.

Therefore, t∗i = 0 is the unique optimal choice if and only if

0 ≥ D′i(0)

(
b · Φi −Wi

1

I ′i
(
I−1i

(
Di(0)︸ ︷︷ ︸

=0

α−Φi
α·(1−Φi)

)) α− Φi
α · (1− Φi)

)
−Wi (32)



Wi ≥ D′i(0)

(
b · Φi −Wi

1

I ′i
(
I−1i (0)︸ ︷︷ ︸

=0

) α− Φi
α · (1− Φi)

)
(33)

Wi ≥ D′i(0)

(
b · Φi −Wi

1

I ′i(0)

α− Φi
α · (1− Φi)

)
(34)

D′i(0) ≤ Wi

b · Φi −Wi
1

I′i(0)
α−Φi

α·(1−Φi)
. (35)

ut

4.3 Report-Rate Threshold

Next, we consider programs that limit the number of reports that each hacker
can submit in some fixed time interval (e.g., the “Rate Limiter” mechanism
of HackerOne [13]). We model these programs using a policy that imposes a
restriction on the participating hackers’ submission rate Di(ti)− (1− Φi)Ii(vi).
In practice, programs impose these limitations on each hacker individually. To
model this, we will assume in this subsection that each hacker type contains only
a single hacker. Note that scaling up the analysis to a multitude of hackers is
trivial, since hackers having the same parameters will make the same choices, so
we can simply add their report numbers together.

We define the rate-threshold policy as follows.

Definition 2 (Rate-Threshold Policy). Under a rate-threshold policy with
threshold ρ > 0, the hackers’ choices must satisfy

Di(ti)− (1− Φi)Ii(vi) ≤ ρ. (36)

The following proposition characterizes the hackers’ responses to the rate-
threshold policy.

Proposition 3. Under a rate-threshold policy, hackers of type i will spend

t∗i (b, ρ) =


0 if D′i(0) ≤ Wi

b·ρ
D−1i (ρ/Φi) if D′i

(
D−1i (ρ/Φi)

)
≥ Wi

b·Φi−Wi·(I−1
i )

′
(ρ/Φi)

1
1−Φi

t̃i otherwise

(37)

time on vulnerability discovery, where t̃i is the unique solution to d
dti
UHi = 0.

In addition, they will spend

v∗i (b, ρ) =

{
0 if Di(t

∗
i ) ≤ ρ

I−1i

(
Di(t

∗
i )−ρ

1−Φi

)
otherwise

(38)

time on validating their discoveries.

The proof of Proposition 3 can be found in Appendix A.1.



4.4 Validation Reward

One of the primary reasons for the large number of invalid reports is the mis-
alignment of incentives: hackers are only interested in increasing the number of
valid reports, while organizations are also interested in decreasing the number
of invalid reports. Existing approaches try to solve this problem by imposing
constraints on the hackers’ choices (e.g., imposing a threshold on their accuracy
or on their report rate). Here, we propose a novel, alternative approach, which
incentivizes hackers to reduce the number of invalid reports by rewarding their
validation efforts. The advantage of this approach is that it does not impose strict
constraints on the hackers’ choices, but instead aligns their incentives with those
of the organization, and allows the hackers to optimize their productivity.

A validation-reward policy can be formulated in multiple ways. For example,
the organization could slightly lower bounties for valid reports, but give a bonus
based on the submitter’s accuracy. Alternatively, it could raise bounties, but
deduct from the payment based on the submitter’s rate of invalid reports. Here,
we will study the latter approach since it allows us to align the hackers’ incentives
with those of the organization in a very straightforward way.

In practice, this policy can be easily implemented in the same way as an accu-
racy or rate threshold, by keeping track of each hacker’s valid and invalid reports.
Similar to the rate-threshold policy, we will assume for ease of presentation that
each hacker type contains only a single hacker.

We define the validation-reward policy as follows.

Definition 3 (Validation-Reward Policy). Under a validation-reward policy
with incentive δ > 0, a hacker’s utility is

UHi(b, δ, ti, vi) = b ·Φi ·Di(ti)−Wi · (ti + vi)− δ · (1−Φi)(Di(ti)− Ii(vi)), (39)

and the organization’s utility is

UO(b, δ, t,v) =
∑
i

(V̂ − b)Φi ·Di(ti)− (C − δ)(1− Φi) (Di(ti)− Ii(vi)) . (40)

The following proposition characterizes the hackers’ responses to the validation-
reward policy.

Proposition 4. Let

v̂i =

{
0 if I ′i(0) ≤ Wi

δ·(1−Φi)

(I ′i)
−1
(

Wi

δ·(1−Φi)

)
otherwise.

(41)

Under a validation-reward policy, hackers of type i will spend

t∗i (b, δ) =


0 if ṽi = 0 and D′i(0) ≤ Wi

b·Φi−δ·(1−Φi)
0 if ṽi > 0 and D′i(0) ≤ Wi

b·Φi−
Wi
I′
i
(0)

t̃i otherwise

(42)



time on vulnerability discovery, where t̃i is the unique solution to d
dti
UHi = 0.

In addition, they will spend

v∗i (b, δ) = min
{
v̂i, I

−1
i (Di(t

∗
i ))
}

(43)

time on validating their discoveries.

The proof of Proposition 4 can be found in Appendix A.2.

5 Numerical Results

In this section, we present numerical results on our bug-bounty model in order to
evaluate and compare the policies introduced in Section 4. First, in Section 5.1,
we consider homogeneous hackers by instantiating our model with a single hacker
type, and we study the hackers’ responses. Second, in Section 5.2, we consider
heterogeneous hackers and evaluate policies based on the organization’s utility.

5.1 Homogeneous Hackers

For the vulnerability-discovery function D(t), we use an instance of Anderson’s
thermodynamic model [3]: D(t) = ln(10 · t + 1). Note that we added 1 to the
argument so that D(0) = 0. We instantiate the remainder of our model with the
following parameters: V = 10, C = 1, and a single hacker type with W1 = 1,
Φi = 0.2, and I1(v1) = ln(20 · v1 + 1). Notice that these hackers are assumed
to be relatively good at validating their discoveries since I1 grows faster than
D. Finally, note that we have experimented with other reasonable parameter
combinations as well, and found that the results remain qualitatively the same.

Figure 1 shows the hackers’ responses to various policies and the resulting
utilities for the organization and the hackers. First, Figure 1(a) shows that with-
out any policy, the organization attains maximum utility at b = 2.07: with lower
bounties, hackers dedicate significantly less time to vulnerability discovery (zero
time when b < 0.31), while with higher bounties, the cost of running the program
becomes prohibitively high. In Figures 1(b), 1(c), and 1(d), we set the bounty
value to b = 2.07 and study the effects of varying the policy parameters.

Figure 1(b) shows that the accuracy-threshold policy is very effective and
robust: the organization’s utility increases steeply with the threshold α, reaches a
70% improvement at α = 0.74, and declines negligibly after that. In contrast, the
rate-threshold policy is considerably less reliable (Figure 1(c)): the organization’s
utility is improved by 55% at ρ = 0.2, but it decreases rapidly as the threshold
decreases or increases, and it may reach significantly lower values than without
a policy. Thus, the organization must implement this policy with great care
in order to avoid suppressing productivity. Finally, Figure 1(d) shows that the
validation-reward policy is robust: even though the organization’s utility does
not increase until the threshold reaches δ < 0.66, it increases steeply after that,
reaching and maintaining a 69% improvement.
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Fig. 1. The organization’s and the hackers’ utilities (dashed and dotted lines) and
the times spent on vulnerability discovery and validation (solid and dash-dotted lines)
under various policies as functions of the bounty value.

5.2 Heterogeneous Hackers

Now, we add a second type of hackers, who are worse at validating their discov-
eries, which we model by letting I2(v2) = ln(2.5 · v2 + 1) (all other parameters
are the same as for the first type). Since we now have multiple hacker types, who
may have different responses and utilities, we will plot only the organization’s
utility for clarity of presentation.

Figure 2 shows the organization’s utility under various policies with two types
of hackers. Similar to Figure 1(c), Figure 2(b) shows that the rate-threshold
policy must be implemented carefully since overzealous limiting may significantly
decrease the organization’s utility, while lenient limiting is ineffective. On the
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Fig. 2. The organization’s utility under various policies as a function of the bounty
value and policy parameter.

other hand, the accuracy-threshold and validation-reward policies (Figures 2(a)
and (c)) have large “plateaus” around the optimal values, which make them
more robust to changes in configuration or parameter values. Nonetheless, if the
bounty value is very low, even these policies – especially the validation-reward
policy – may be too strict and deter hackers from participating.

Figure 3 shows the organization’s maximum attainable utility under various
policies with two types of hackers. For each policy and bounty value, we searched
over possible values of the policy parameter space (i.e., α = 0.2, 0.21, . . . , 1;
ρ = 0, 0.05, . . . , 5; or δ = 0, 0.012, . . . , 1.2) and plotted the maximum utility.
Since the two hacker types differ only in their validation performance, the utility
values without a policy shown by Figure 3 are proportional to the values shown
by Figure 1(a), and the maximum is again attained at b = 2.07. Compared to
this baseline, the accuracy-threshold, rate-threshold, and validation-reward poli-
cies can attain 31%, 13%, and 52% improvement, respectively. However, if the
bounty value is not high enough, none of the policies can improve the organiza-
tion’s utility. Finally, offering validation rewards outperforms the other policies



0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

1.5

2

2.5

Bounty b

O
rg

a
n
iz

a
ti

o
n
’s

u
ti

li
ty
U

O

Without a Policy

Accuracy Threshold

Rate Threshold

Validation Reward

Fig. 3. The organization’s maximum attainable utility under various policies as a func-
tion of the bounty value

.

significantly, since it is able to incentivize heterogeneous hackers to operate at
their individual maxima instead of forcing them towards a uniform strategy.

6 Conclusion

In this paper, we provided the first theoretical framework for modeling policies
for reducing the number of invalid reports in bug-bounty programs. Using our
framework, we investigated a set of canonical policies, and studied the hackers’
responses to these policies, showing that each type has a unique response to each
policy. In addition to studying existing policies, we also proposed a new policy
that incentivizes hackers without restricting their actions.

Based on numerical analyses, we found that all of the considered policies may
substantially improve an organization’s utility, which explains their widespread
use [13]. However, their effectiveness and reliability vary significantly. We found
that the rate-threshold policy is not only less effective than the other two, but it
must also be configured more carefully. In contrast, the accuracy-threshold and
validation-reward policies are less sensitive to changes in parameter and config-
uration values, and they can also be more effective. However, without adequate
bounties, even these policies might “backfire” and actually deter hackers from



dedicating time to vulnerability discovery. Finally, we found that the validation-
reward policy may significantly outperform the other two when hackers are not
homogeneous, since it allows hackers to operate at their individual optima.

In future work, we plan to extend our model and analyses by considering
combinations of policies. In other words, we will consider organizations that
implement multiple policies at the same time. Building on our current analysis,
we will study how hackers respond to various policy-combinations, and we will
explore which combinations are the most effective and robust.
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A Proofs

A.1 Proof of Proposition 3

Proof. First, notice that Φi·Di(ti) ≤ ρ must hold under the rate-threshold policy.
Otherwise, even if the hacker validated all of his discoveries (i.e., if Ii(vi) =
Di(ti)), his rate would be higher than the threshold:

Di(ti)− (1− Φi)Ii(vi) = Di(ti)− (1− Φi)Di(ti) = Φi ·Di(ti) > ρ.

https://hackerone.com/blog/signal-requirements


Consequently, we can restrict ti to
[
0, D−1i (ρ/Φi)

]
.

Next, we find the optimal vi for a given ti. Similar to the previous cases, the
hacker will obviously choose the minimum vi that satisfies the constraint posed
by the policy. If Di(ti) ≤ ρ, then any vi satisfies the constraint, which implies
that the optimal choice is v∗i = 0. Otherwise, the optimum v∗i is the solution of
the following equation:

Di(ti)− (1− Φi)Ii(v∗i ) = ρ (44)

(1− Φi)Ii(v∗i ) = Di(ti)− ρ (45)

v∗i = I−1i

(
Di(ti)− ρ

1− Φi

)
. (46)

Now, we turn our attention to finding the optimal t∗i . Using the above char-
acterization of v∗i , we can express the hackers’ utility as a function of b and ti:

UHi(b, ti) =

{
b · Φi ·Di(ti)−Wi · ti if ti ≤ D−1i (ρ)

b · Φi ·Di(ti)−Wi ·
(
ti + I−1i

(
Di(ti)−ρ
1−Φi

))
otherwise.

(47)

Since UHi(b, ti) is the same as in the case without any invalid-report policy when
ti ≤ D−1i (ρ), we readily have that the first derivative of UHi with respect to ti
is strictly decreasing on

[
0, D−1i (ρ)

]
. Next, we study the first derivative of UHi

with respect to ti on
[
D−1i (ρ), D−1i (ρ/Φi)

]
:

d

dti
UHi =b · Φi ·D′i(ti)−Wi ·

[
1−

(
I−1i

)′(Di(ti)− ρ
1− Φi

)
·D′i(ti)

1

1− Φi

]
(48)

=b · Φi ·D′i(ti)−Wi ·

1− 1

I ′i

(
I−1i

(
Di(ti)−ρ
1−Φi

))D′i(ti) 1

1− Φi

 (49)

=D′i(ti)

b · Φi −Wi
1

I ′i

(
I−1i

(
Di(ti)−ρ
1−Φi

)) 1

1− Φi

−Wi. (50)

Since Di and I−1i are strictly increasing and I ′i is strictly decreasing, the fraction
1

I′i(...)
in the formula above is an increasing function of ti. Consequently, we have

d

dti
UHi = D′i(ti)︸ ︷︷ ︸

strictly decreasing

b · Φi −Wi
1

I ′i (. . .)︸ ︷︷ ︸
increasing

1

1− Φi


︸ ︷︷ ︸

decreasing

− Wi︸︷︷︸
constant

. (51)

Hence, d
dti
UHi = 0 has at most one solution for ti on

[
0, D−1i (ρ/Φi)

]
.

Therefore, we have three cases:



– d
dti
UHi ≤ 0 at ti = 0: In this case, t∗i = 0 is the unique optimal choice. Since

the hacker’s utility is the same as without any invalid-report policy in this
region, we readily have from Proposition 1 that this case is characterized by
D′i(0) ≤ Wi

b·Φi .

– d
dti
UHi ≥ 0 at ti = D−1i (ρ/Φi): In this case, t∗i = D−1i (ρ/Φi) is the unique

optimal choice. By substituting ti = D−1i (ρ/Φi) into Equation (50), we can
characterize this case as:

D′i
(
D−1i (ρ/Φi)

)b · Φi −Wi
1

I ′i

(
I−1i

(
Di(D

−1
i (ρ/Φi))−ρ
1−Φi

)) 1

1− Φi

−Wi ≥ 0

D′i
(
D−1i (ρ/Φi)

) [
b · Φi −Wi

1

I ′i
(
I−1i (ρ/Φi)

) 1

1− Φi

]
≥Wi

D′i
(
D−1i (ρ/Φi)

)
≥ Wi

b · Φi −Wi ·
(
I−1i

)′
(ρ/Φi)

1
1−Φi

. (52)

– Otherwise, d
dti
UHi = 0 has a unique solution t̃i, which is the unique optimal

choice for the hacker. ut

A.2 Proof of Proposition 4

Proof. First, we characterize the optimal value v∗i ∈ [0, I−1i (Di(ti))] for a given
value ti. To find the utility-maximizing vi, we use the first derivative of UHi with
respect to vi:

d

dvi
UHi = −Wi + δ · (1− Φi)I ′i(vi). (53)

Since I ′i(vi) is a strictly decreasing function of vi and both δ and (1 − Φi) are
positive, the derivative of UHi with respect to vi is decreasing. Consequently, if
the derivative is less than or equal to zero at vi = 0, then the unique optimal
choice is v∗i = 0. This case can be characterized as follows:

−Wi + δ · (1− Φi)I ′i(0) ≤ 0 (54)

I ′i(0) ≤ Wi

δ · (1− Φi)
. (55)

Otherwise, d
dvi
UHi = 0 has a unique solution ṽi > 0:

−Wi + δ · (1− Φi)I ′i(ṽi) = 0 (56)

I ′i(ṽi) =
Wi

δ · (1− Φi)
(57)

ṽi = (I ′i)
−1
(

Wi

δ · (1− Φi)

)
. (58)



If ṽi ≤ I−1i (Di(ti)), then ṽi is feasible, and the hacker’s unique optimal choice is
v∗i = ṽi. Otherwise, the derivative of UHi does not reach zero on [0, I−1i (Di(ti))].
Since the derivative is always positive in this case, the optimum is attained at the
upper bound I−1i (Di(ti)), that is, the unique optimal choice is v∗i = I−1i (Di(ti)).
Therefore, by letting

v̂i =

{
0 if I ′i(0) ≤ Wi

δ·(1−Φi)

(I ′i)
−1
(

Wi

δ·(1−Φi)

)
otherwise,

(59)

we have that v∗i is either v̂i or I−1i (Di(ti)) depending on which one is lower.
Second, we study the optimal value t∗i . Using the above characterization of

v∗i , we can express the hacker’s utility as a function of b, δ, and ti:

UHi(b, δ, ti) ={
b · ΦiDi(ti)−Wi ·

(
ti + I−1i (Di(ti))

)
if ti ≤ D−1i (Î)

b · ΦiDi(ti)−Wi ·
(
ti + I−1i (Î)

)
− δ · (1− Φi)(Di(ti)− Î) otherwise,

where Î = Ii(v̂i). Note that the first case corresponds to v̂i ≥ I−1i (Di(ti)), while
the second case corresponds to v̂i < I−1i (Di(ti)).

To find the utility-maximizing ti, we use the first derivative of UHi with
respect to ti. Firstly, the derivative on (D−1i (Î),∞) is

d

dti
UHi = b · Φi ·D′i(ti)−Wi − δ · (1− Φi)D′i(ti) (60)

= (b · Φi − δ · (1− Φi))︸ ︷︷ ︸
constant

· D′i(ti)︸ ︷︷ ︸
strictly decreasing

− Wi︸︷︷︸
positive constant

. (61)

Since D′i is always positive by definition, the first term is either non-positive (i.e.,
when b · Φi ≤ δ · (1− Φi)) or strictly decreasing (i.e., when b · Φi > δ · (1− Φi)).
Hence, d

dti
UHi is either negative or strictly decreasing when ti ∈ (D−1i (Î),∞).

Secondly, the derivative on [0, D−1i (Î)] is

d

dti
UHi = b · Φi ·D′i(ti)−Wi ·

[
1 +

(
I−1i

)′
(Di(ti))D

′
i(ti)

]
(62)

=
(
b · Φi −Wi ·

(
I−1i

)′
(Di(ti))

)
·D′i(ti)−Wi (63)

=

(
b · Φi −

Wi

I ′i(I
−1
i (Di(ti)))

)
︸ ︷︷ ︸

decreasing

· D′i(ti)︸ ︷︷ ︸
strictly decreasing

− Wi︸︷︷︸
positive constant

. (64)

Since Di and I−1i are increasing and I ′i is decreasing, the fraction Wi

I′i(...)
in the

formula above is increasing in ti. Consequently, the first term is either non-
positive or strictly decreasing, which implies that d

dti
UHi is either negative or

strictly decreasing when ti ∈ [0, D−1i (Î)]. Therefore, the derivative of UHi with
respect to ti is either negative or strictly decreasing for any value of ti.



Consequently, if the derivative is less than or equal to zero at ti = 0, then the
unique optimal choice is t∗i = 0. When v̂i = 0, this case can be characterized as:

(b · Φi − δ · (1− Φi)) ·D′i(0)−Wi ≤ 0 (65)

D′i(0) ≤ Wi

b · Φi − δ · (1− Φi)
. (66)

On the other hand, when v̂i > 0, it can be characterized as:b · Φi − Wi

I ′i(I
−1
i (Di(0)︸ ︷︷ ︸

=0

))

 ·D′i(0)−Wi ≤ 0 (67)

b · Φi − Wi

I ′i(I
−1
i (0)︸ ︷︷ ︸
=0

)

 ·D′i(0)−Wi ≤ 0 (68)

D′i(0) ≤ Wi

b · Φi − Wi

I′i(0)

. (69)

Finally, if the derivative is greater than zero at ti = 0, then d
dti
UHi = 0 has

a unique solution t̃i > 0. In this case, the unique optimal choice is t∗i = t̃i. ut
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