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Abstract. A broad variety of problems, such as targeted marketing and the spread of viruses and
malware, have been modeled as maximizing the reach of diffusion through a network. In cyber-
security applications, however, a key consideration largely ignored in this literature is stealth. In
particular, an attacker who has a specific target in mind succeeds only if the target is reached be-
fore the malicious payload is detected and corresponding countermeasures deployed. The dual
side of this problem is deployment of a limited number of monitoring units, such as cyber-
forensics specialists, to limit the success of such targeted and stealthy diffusion processes. We
investigate the problem of optimal monitoring of targeted stealthy diffusion processes. While nat-
ural variants of this problem are NP-hard, we show that if stealthy diffusion starts from randomly
selected nodes, the defender’s objective is submodular and can be approximately optimized. In
addition, we present approximation algorithms for the setting where the choice of the starting
point is adversarial. We further extend our results to settings where the diffusion starts at multiple
seed nodes simultaneously, and where there is an inherent delay in detecting the infection. Our
experimental results show that the proposed algorithms are highly effective and scalable.1
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1. Introduction

In recent years, diffusion processes in social networks have been the focus of intense
study (Domingos & Richardson 2001, Richardson & Domingos 2002, Kempe et al.
2003, Kempe et al. 2005, Mossel & Roch 2007). Much of the work in this space consid-
ers diffusion as a desirable process, motivated by the study of viral marketing strategies,
and seeks to maximize its reach by choosing the (near) optimal set of influential nodes.
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However, the same mathematical framework can also be applied to malicious diffusion
processes. Indeed, the spread of computer worms—perhaps the most prominent ma-
licious diffusion process—has been studied extensively using epidemic models (Omic
et al. 2009, Lelarge 2009). Even though these models have been successfully used to an-
alyze the spread of some real-world worms, such as the Code Red worm from 2001 (Zou
et al. 2002), they do not consider a key aspect of malware: stealth. In practice, once a
worm is detected, we can implement a number of effective countermeasures. For ex-
ample, if we acquire a sample of a worm, we can use it to implement signature-based
antivirus software. As another example, if we learn of the vulnerabilities exploited for
propagation, we can patch them and effectively stop the worm. In the case of non-
targeted worms, which try to infect as many computers as possible, stealth does not
always play a crucial role, since it may be in conflict with the primary goal of maxi-
mizing impact. For example, the Code Red worm defaced the websites hosted by the
webservers that it had infected, thereby immediately revealing its presence.

In contrast, recent years have seen the rise of highly targeted worms. For example,
the Stuxnet worm targeted uranium-enrichment infrastructure in Iran, reportedly de-
stroying one-fifth of the uranium centrifuges at the Natanz facility (Kelley 2013), while
the Gauss worm was designed to spy on Lebanese banks, including Bank of Beirut and
EBLF, but it also targeted users of Citibank and PayPal in the Middle East (Kaspersky
Labs’ Global Research & Analysis Team 2012). Even though these worms propagated
in a non-deterministic manner, typically via USB flash drives and local area networks,
they had very specific (sets of) targets (Figure 1). In the case of these worms, stealth
plays a key role, as the worm must remain covert until reaching its target in order to
succeed.

Worms that can propagate over local networks and removable drives pose a serious
threat to systems that are meant to be secured by the “air gap,” that is, by not connecting
them to the Internet or other public networks. In order to keep these systems safe, it is
imperative that we detect worms before they reach their target. Consequently, systems
must be continuously monitored for suspicious activities and anomalies. For example,
we can monitor network connections originating from a system to detect when a worm
connects to a remote command-and-control server, or use entropy analysis to find en-
crypted malware payload. However, since thorough monitoring of a system requires
substantial resources and experts’ time, we cannot monitor every system. Hence, we are
faced with the problem of determining which systems to monitor.

1.1. Approach

We introduce a new model of stealthy diffusion with the goal of choosing a collection
of nodes to monitor so as to maximize the probability that the malicious diffusion is
detected before some high value asset is affected. We analyze the problem of monitoring
stealthy diffusion as a game between two players, the attacker and the defender; we take
the side of the defender. The game is defined on a known graph, with a distinguished
target node. The attacker chooses a single seed node, and the defender selects k monitor
nodes. Both the defender’s and attacker’s choices are restricted to subsets of network
nodes (i.e., only nodes that are under their direct control, or, for the attacker, that could
be directly attacked). The defender’s utility is the probability that the diffusion process
hits a monitor node before reaching the target.

Our model bears resemblance to recent work on competitive influence maximiza-
tion (Bharathi et al. 2007, Borodin et al. 2010, Clark & Poovendran 2011, He et al.
2012, Tsai et al. 2012, Tsai et al. 2013, Vorobeychik & Letchford 2015). However, our
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Fig. 1. Many worms, such as Conficker (top), spread so as to maximize the number of infections. Others, like
Gauss (bottom), aim at specific targets, and deliberately try to avoid being detected, so that their spread is
highly localized.

model is distinct in two respects: first, because it accounts for stealth in the attacker’s
primary objective, and second, because of the defender’s focus on malware detection,
rather than blocking.

We consider two design choices, with two options each:
1. Diffusion process model. The two options here are the independent cascade model

as described by Kempe et al. (2003), and a variant of the independent cascade model
where each infected node repeatedly tries to infect its neighbors, until they are all
infected. The latter model, which we call repeated independent cascade, provides a
more realistic model for malicious diffusion, such as the spread of computer worms.
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We also find the repeated variant to be exciting on a conceptual level, since it con-
siderably enriches the problem of monitoring the diffusion process in our setting,
whereas it does not lead to meaningful problems in the classic influence maximiza-
tion setting, as it is inevitable that all nodes will be infected eventually.

2. Attacker power. In the distributional setting, the attacker does not respond to the
defender’s choice of monitors: we are given upfront a probability distribution over
his choice of seed nodes. In the maximin setting, the (more powerful) attacker best-
responds to any choice of monitors by minimizing the defender’s utility, and the
defender’s goal is to maximize the minimum utility.

1.2. Results

Our theoretical results focus on choosing an approximately optimal set of monitors in
polynomial time. Structure-wise, the results are split according to the attacker model
(item 2 above), as this is the more significant factor. All the results below hold for both
diffusion models.

In Section 3, we study the distributional setting. We present a polynomial-time al-
gorithm that approximates the optimal solution to a factor of 1 − 1/e − o(1). We also
show that this result is tight, by proving that it is NP-hard to approximate the problem
to a factor of 1 − 1/e + o(1). These results are reminiscent of the classic results for
influence maximization (Kempe et al. 2003).

In Section 4, we study the maximin version of the problem, which turns out to be
much more challenging. In fact, the problem is NP-hard to approximate to any factor,
even when the defender’s monitor budget is increased by a factor of ln |S|, where S is
the set of possible seed nodes. On the positive side, we show that with an additional
increase in the number of monitors — |S|k ln(1/ε) — we can achieve a 1 − ε fraction
of the optimum for k monitors, in polynomial time. We also establish a stronger result
when the diffusion process is deterministic: k ln |S|monitors suffice to do as well as the
k-monitor optimum.

In Section 5, we discuss a generalization of our model and results to a setting where,
like the defender, the attacker also has a budget b, and selects b seed nodes to start the
diffusion. We discuss the extent to which our results extend to this setting. In particular,
we show that all of our results about the distributional setting readily extend to the
case of multiple seed nodes. Whereas, some of our guarantees for the maxmin setting
deteriorate when b > 1 is considered. We also discuss the problem of selecting the
initial seed nodes from the attacker’s point of view, and demonstrate the hardness of
such optimization. In Section 6, we discuss another generalization of our model that
takes into account possible detection delays associated with monitors.

In Section 7, we test several algorithms on random graphs and the autonomous-
system relationship graph. We find that our approximation algorithm for the distribu-
tional setting is essentially optimal in practice. For the maximin setting, while our ap-
proximation algorithm is not far from optimal, we present two algorithms that are closer
to optimal in practice, albeit without providing worst-case guarantees.

1.3. Related Work

Multiple models have been suggested for studying diffusion processes (Bass 1969,
Domingos & Richardson 2001, Kempe et al. 2003, Kempe et al. 2005, Mossel & Roch
2007, Richardson & Domingos 2002, Yang & Leskovec 2010). One of the most well-
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studied models in this space is the independent cascade model of Kempe et al. (2003),
where the infection starts at one node and at every time step t = 1, 2, . . . , any newly
infected node gets a chance at infecting its neighbors. Diffusion can also be modeled as
a continuous-time process, such as in the influential work of Bass (1969) who used dif-
ferential equations to describe a diffusion process over a continuous time horizon. More
recently, Yang & Leskovec (2010) introduced the linear influence model that models
the global influence of any node on the rate of diffusion through an implicit network.

Previous papers have also used diffusion models to study epidemics and security as-
pects of a network structure. The susceptible-infected-susceptible (SIS) and susceptible-
infected-removed (SIR) models describe the spread of viruses in a network under infect-
ing and curing processes (Ganesh et al. 2005, Van Mieghem et al. 2009). Diffusion mod-
els are also used in crime models for the purpose of physical security (Mukhopadhyay
et al. 2016). Another related setting is the deterministic and randomized pursuit-evasion
games, where one or more cops move on a network in order to catch moving rob-
bers (Adler et al. 2003, Isler et al. 2006, Parsons 1978). Our work addresses inherently
different problems and models than these works.

After the publication of the conference version of our results, we were made aware
of a related existing work in the space of robust submodular optimization by Krause
et al. (2007). In this work, the authors consider maximizing the minimum of n mono-
tone submodular functions and show how one can recover OPT using an O(log(n))
multiplicitively larger budget. As we will describe further in Section 4, we can reduce
the problem of optimal monitoring in the maxmin setting (more powerful attacker) to
the robust optimization framework of Krause et al. (2007).

2. Model

Our starting point is a model of diffusion (of viruses or malware) through a network
from an initial set S of affected nodes. Importantly, in our theoretical results in Sec-
tions 3 and 4, we assume that S is a singleton; we discuss the generalization to any
number of seed nodes in Section 6.

Let G = (V,E), with |V | = n be a graph with a set of nodes V , and for simplicity
assume that this graph is undirected. Each edge (v, w) ∈ E is associated with a proba-
bility pvw which captures the likelihood of direct diffusion from node v to its neighbor
w. For two nodes v, w ∈ V , we use d(v, w) to denote their shortest path distance in the
graph. For a node v ∈ V and integer d we use Γd(v) = {w | d(v, w) ≤ d} to denote
the set of all nodes that are within distance d from v.

One natural model of diffusion that has commonly been considered in the past is
known as the independent cascade (IC) model (Kempe et al. 2003). A set of seed nodes
S ⊆ V is infected at the beginning of the diffusion process. In each subsequent round,
when a node first becomes infected it is active for exactly one round. Each active node
v ∈ V passes the infection to its uninfected neighbor w ∈ V with probability pvw, inde-
pendently of previous rounds or neighbors. Note that in the independent cascade model,
the diffusion process dies out after at most n rounds. In the context of cyber malware
spread, the notion that an infected node can only spread malware to its neighbors once
seems too limiting. We therefore also consider a natural extension, which we term the
repeated independent cascade (RIC) model, in which infected nodes remain active in all
subsequent rounds. Thus, every infected node v attempts to pass the infection to each
uninfected neighbor w with probability pvw in every round. We assume that for any
edge e ∈ E, either pe = 0 or pe ≥ ρ for some ρ ∈ Ω( 1

poly(n) ).
In most of the literature to date, given a diffusion process, the problem has been to
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choose a set of initial seed nodes S ⊆ V so as to maximize the expected total number of
nodes infected in the network.2 In cyber security, on the other hand, the attacker often
has specific targets in mind, and it is crucial for the attacker to avoid detection. These
two objectives are typically in conflict: greater spread of an infection increases the like-
lihood of reaching the target, but also increases the likelihood of being detected before
the target is reached. To formalize this tradeoff, letM ⊂ V be a set of monitored nodes,
which we call simply monitors, let S ⊆ V be a set of potential seed nodes (for example,
nodes that can be reached by the attacker directly), and let t /∈ S be the target of attack.
The restriction that t /∈ S is natural in cyber security: for example, sensitive data is
often not located on workstations in regular use, but on servers available only behind
a firewall (and usually not susceptible to direct phishing attacks); as another example,
critical cyber-physical system infrastructure is often separated from the internet by the
air gap, so that it cannot be attacked directly, but is susceptible to indirect infection (for
example, through software updates).

In our model, the attacker seeds a single node s ∈ S; see Section 5 for a generaliza-
tion to the case of multiple seeds. For a given seed node s and a collection of monitors
M , we define the attacker’s utility as the probability that the target node t is infected
before any monitoring node detects an infection. More formally, the attacker’s utility
is the probability that the infection reaches the target t before or at the same time as
when the first monitor is infected. The defender’s utility is the converse: the probability
that an infection is detected prior to reaching the target t. We denote the corresponding
defender’s utility function by U(M, s).

We consider two models of attacker behavior. In the first model, the attacker chooses
s ∈ S using a known distribution D over S. In this case, we are interested in the
expected utility of the defender, that is, the probability that there exists m ∈ M that is
infected before t, where the probability is taken over the edge probabilities of G and the
choice of S. We denote this by

U(M) = Es∼D[U(M, s)],

where U(·) denotes the utility function when seeds are chosen randomly.
In the second model, the attacker first observes the choice of monitors M , and then

chooses a seed node s ∈ S that minimizes the defender’s utility. We call this model the
maximin model and denote the defender’s utility by

V(M) = min
s∈S

U(M, s).

where V(·) denotes the utility function when seeds are chosen in an adversarial way. In
both attack models, the defender’s goal is to choose a set of monitor nodes M ⊆ M
to maximize the defender’s utility, whereM is the set of feasible monitoring locations
and |M | ≤ k for a given budget k. We use OPTk to denote an optimal selection of M
for a given model and budget k.

3. Weak Attackers: The Distributional Setting

In this section, we study the weaker attacker model, where a known distribution over
seeds is given. This section’s main result is a tight 1 − 1

e approximation for the case

2 This goal is actually meaningless in the RIC model if a graph is connected, since all nodes will eventually
be infected.
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where the attacker’s seed node is drawn from a known distribution. Our algorithm pro-
ceeds by greedily choosing a set of k monitors based on their marginal gains, U(M ∪
{m})−U(M). However, since the diffusion process is stochastic and can be unbounded,
we cannot compute the exact value of U(M) directly — this problem is indeed #P-hard
for the independent cascade model using a similar reduction to that of Chen et al. (2010).
Instead, we estimate U(M) in two steps by Uτ (M) and Ûτ (M). Define Uτ (M) to be
the utility measured over the first τ time steps, i.e., the probability that the target is not
reached before at least one monitor is infected, measured over the first τ time steps. We
in turn estimate Uτ (M) via Ûτ (M) by running ` copies of the diffusion process up to
time τ , and taking the average over the outcomes.

Algorithm 1 DISTRIBUTIONAL MONITORING

Input: G,M, k,S, t, attacker distribution D over choice of seeds S, and δ, ε > 0.
1. Let `← 8k2

ε2 ln( 2k|M|
δ ) and τ ← n

ρ ln( 4kn
ε ).

2. Start with M ← ∅.
3. For i = 1, . . . , k do

(a) Letm ∈M be a node that maximizes the marginal gain Ûτ (M∪{m})−Ûτ (M),
where the simulation is taken over ` samples.

(b) Set M ←M ∪ {m}.
Output: Set of monitors M .

Like Kempe et al. (2003), to establish the approximation guarantee of this algorithm,
we rely on the celebrated result of Nemhauser et al. (1978) on optimizing monotonically
non-decreasing submodular functions. A function F defined over a set S is said to
be submodular if F : 2S → R+ satisfies a natural diminishing returns property: the
marginal gain from adding an element to T ⊂ S is at least the marginal gain from
adding that element to any superset of T . More formally, for any T ⊂ T ′ ⊂ S, and any
s /∈ T ′,

F (T ∪ {s})− F (T ) ≥ F (T ′ ∪ {s})− F (T ′).

Function F is furthermore monotonically non-decreasing, if for all s and T ⊆ S,
F (T ∪ {s}) ≥ F (T ). Consider the problem of choosing T ⊆ S with k elements
that maximizes the value of F (·). While this problem is NP-hard in general, Nemhauser
et al. (1978) show that a simple greedy algorithm that builds T by repeatedly adding an
element with the maximum marginal gain achieves a (1 − 1

e ) approximation. We use
this result to prove the main theorem of this section.

Theorem 1. For any ε, δ > 0, Algorithm 1 runs in time poly(n, 1
ε ,

1
ρ , log( 1

δ )) and re-
turns a set M ⊆M, such that |M | = k, and with probability 1− δ

U(M) ≥
(

1− 1

e

)
U(OPTk)− ε.

This guarantee holds under both the IC and RIC models.

Below we prove the theorem for the RIC model. A similar (and slightly simpler)
approach with different parameters also works for the IC model. We omit the modified
proof due to space constraints.

The next lemmas first show that U(·) is a monotonically non-decreasing submodular
function, and furthermore, for the choice of parameters in the algorithm, Ûτ (·) ≈ U(·).
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Putting these together, we show that the greedy algorithm finds a set that has utility at
least (1− 1

e ) U(OPTk)− ε.

Lemma 2. U(·) is monotonically non-decreasing and submodular over the set of mon-
itor nodes.

Proof. Consider the outcome of the infection process to be a partial ordering between
the set of nodes in the order that they are infected. For ordered partition σ, let Pr(σ)
indicate the probability of partition σ occurring, taken over the choice of seed node from
D and the outcomes of edge activations. For a given partial ordering σ and choice of
monitor nodes M , let fσ(M) = 1 if there is a monitor m ∈ M that is infected in σ
before t. Then

U(M) =
∑
σ

fσ(M) Pr(σ).

Since a non-negative linear combination of submodular functions is also submodu-
lar, to show that U(·) is submodular it suffices to show that for any σ, fσ(·) is submod-
ular over set monitor nodes. Take any partial ordering σ , M1 ⊂ M2, and m′ 6∈ M2.
There are two cases.

Case 1: There exists m ∈ M2 that is infected before t in σ. Then adding m′ to M2

does not produce any gain. So, fσ(M1 ∪ {m′}) − fσ(M1) ≥ 0 = 1 − 1 = fσ(M2 ∪
{m′})− fσ(M2).

Case 2: No m ∈M2 exists that is infected before t. Then adding m′ to M1 and M2

has the same effect. So, fσ(M1 ∪ {m′})− fσ(M1) = fσ(M2 ∪ {m′})− fσ(M2).
As shown above, the marginal gain of each element is non-negative, therefore, U(·)

is also monotonically non-decreasing.

The next lemma shows that for the choice of parameter τ in the algorithm, Uτ (·) ≈
U(·). At a high level, to prove this we first show that after a large enough number of
time steps, every edge in an s-t path is activated and t is infected with a high probability.
Since the probability that t is not infected by time step τ is small, one can ignore the
utility of the player in this case while only introducing a small change in the overall
utility. More details of this analysis are given below.

Lemma 3. For any ε, let τ = n
ρ ln(nε ). Then |U(M)− Uτ (M)| ≤ ε.

Proof. Any s-t path has at most n edges, each succeeding with probability at least ρ. For
each edge, after τ ′ = 1

ρ ln(nε ) time steps, the probability that the edge is not activated
is equal to the probability that τ ′ independent attempts fail to activate the edge, which
is at most (1 − ρ)τ

′ ≤ e−ρτ
′

= ε
n , where the first inequality comes from the fact that

1 − x ≤ e−x for all x ∈ [0, 1]. Then t will be activated in the first τ = nτ ′ time steps,
with probability at least 1− ε.

Let A be the event that t is infected by round τ , and Ā to be its complement. By
the above argument, Pr(Ā) ≤ ε. Let U(M |A) indicate the utility U(M) of the set M
conditioned on the eventA. That is, U(M |A) is the probability that a monitor is infected
before the target, given that the target is infected in the first τ steps. Define Uτ (M |A),
U(M |Ā) and Uτ (M |Ā) similarly. By this definition, Uτ (M |A) = U(M |A). On the
other hand, if the target is not reached within the first τ steps, then Uτ (M |Ā) = 1. So,
Uτ (M |Ā) ≥ U(M |Ā). It follows that,

Uτ (M) = Uτ (M |A) Pr(A) + Uτ (M |Ā) Pr(Ā)

≥ U(M |A) Pr(A) + U(M |Ā) Pr(Ā)
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= U(M),

and

Uτ (M) = Uτ (M |A) Pr(A) + Uτ (M |Ā) Pr(Ā) = U(M |A) Pr(A) + Pr(Ā)

≤ U(M) + ε.

Putting the above two inequalities together we have |U(M)− Uτ (M)| ≤ ε.

The next lemma shows that Uτ (M) ≈ Ûτ (M) when the estimation is done by
running ` copies of the diffusion process, for a large enough value of `.

Lemma 4. For any ε, δ > 0 and M , let Ûτ (M) be the average of ` = 1
2ε2 ln( 2

δ ) simu-
lations of Uτ (M). With probability at least 1− δ,∣∣∣Ûτ (M)− Uτ (M)

∣∣∣ ≤ ε.
Proof. We estimate the probability that the target is not reached before a monitor is
infected, in the first τ time steps, using ` = ln( 2

δ ) 1
2ε2 simulations. The outcome of

each simulation is a random variable Xi with expectation Uτ (M). Using Hoeffding’s
inequality we have

Pr
[∣∣∣Ûτ (M)− Uτ (M)

∣∣∣ ≥ ε] = Pr

[∣∣∣∣∣1` ∑̀
i=1

Xi − E

[
1

`

∑̀
i=1

Xi

]∣∣∣∣∣ ≥ ε
]

≤ 2e−2`ε2 ≤ δ.

We are now ready to prove the theorem.

Proof of Theorem 1 Recall from Algorithm 1 that ` = 8k2

ε2 ln( 2k|M|
δ ) and τ = n

ρ ln( 4kn
ε ).

The algorithm takes k rounds, and at each round estimates the utility of O(|M|)
monitors. By Lemma 4, for each of these estimates, with probability 1− δ

k|M| , we have∣∣∣Ûτ (M)− Uτ (M)
∣∣∣ ≤ ε/(4k). So, with probability 1− δ, all the estimates Ûτ (·) used

in the algorithm are within ε/4 of their respective Uτ (·). Using Lemma 3, this is within
ε/(4k) of U(·). Therefore, |Ûτ (M) − U(M)| ≤ ε/(2k) for all M considered by the
greedy algorithm.

The (1− 1
e ) U(OPTk)−ε guarantee then follows by applying the result of Nemhauser

et al. (1978) (described above) for optimizing submodular functions, and observing that
at each of the k steps of Algorithm 1, which uses estimates of the utilities, the true
marginal utility of the chosen monitor differs from the choice the exact greedy algorithm
would have made at this round by at most ε/k. So, at each step the true contribution of
the node chosen at that step is close to the contribution of node with the best marginal
gain. We conclude that after k estimated greedy choices the outcome has a utility that
differs from the exact greedy solution, which has value (1 − 1

e ) U(OPTk), by at most
ε.3

Next we provide a matching hardness result to complement Theorem 1. This hard-
ness result is obtained through a reduction from the MAX-COVER problem.

3 Proof of Theorem 7 formalizes this argument for a more general optimization problem discussed in the
future section.
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Theorem 5. Finding a (1 − 1
e + o(1))-approximately optimal monitor set is NP-hard

under the IC and RIC models. That is, it is NP-hard to find a set M ⊆ M such that
|M | ≤ k and

U(M)

U(OPTk)
> 1− 1

e
.

This is true even if D has singleton support.

Proof. We present a reduction from the search version of the MAX-COVER problem:
Given a set of elements U , a collection of its subsets A ⊆ 2U , and a budget k such that
there exists a subset ofA with size k that covers all the elements U , it is NP-hard to find
a subset of A of size k that covers more than 1− 1

e fraction of U (Johnson 1973).
We create a graph G = (V,E) as follows. V includes one vertex per a ∈ A, one

vertex per u ∈ U , the deterministic seed node s (which has probability 1 under D), the
target t, and two additional vertices v1 and v2 (see Figure 2). The set of edges and their
corresponding probabilities are as follow.

E =


e : au ∀a ∈ A, u ∈ U , s.t. u ∈ a pe = 1
e : su ∀u ∈ U pe = 1

|U |2
e : sv2, v1v2, v1t pe = 1


This graph is an instance of the targeted diffusion problem with monitor setM corre-
sponding to nodes in A, s being the attacker seed node, and t being the target node.

Let M ′ be the choice of monitor nodes that correspond to a k-cover of (U,A) and
OPTk be the optimal set of k monitors. Since there is a path of length 3 between s
to t that consists of edges with probability 1, target t is certainly infected at time step
3 if a monitor is not infected earlier. So, the utility of M ′ is the probability that at
least one of the nodes in U is infected in the first time step (and as result one monitor
becomes infected in the second time step). Then, the utility of M ′ is the probability of
the complement of the event where none of the members of U are infected in the first
step. Letting |U | = m, we have

U(OPTk) ≥ U(M ′) = 1−
(

1− 1

m2

)m
.

Let M ⊆ M be any monitor set and let α be the fraction of the elements of U that
are adjacent to some member of M , i.e., |Γ(M)| = αm is the size of the neighborhood
of M in U . The utility of the defender for choosing M is the probability that at least
one of the nodes in Γ(M) is infected in the first time step. Therefore,

U(M) = 1−
(

1− 1

m2

)αm
.

We have

lim
m→∞

U(M)

U(M ′)
=

1−
(
1− 1

m2

)αm
1−

(
1− 1

m2

)m
= lim
m→∞

−
(
1− 1

m2

)αm( 2α

(1− 1
m2 )m2

+ α log
(
1− 1

m2

))
−
(
1− 1

m2

)m( 2

(1− 1
m2 )m2

+ log
(
1− 1

m2

))
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t v1

v2

s

U M

Fig. 2. Illustration of the construction used in the proof of Theorem 5. All solid edges have probability 1 and
all dotted edges have probability 1/|U |2.

= lim
m→∞

α log
(
1− 1

m2

)
log
(
1− 1

m2

) = α,

where the second equality follows by the application of L’Hospital’s rule. So, if U(M)
U(M ′) >

1 − 1
e , then |Γ(M)| > (1 − 1

e )m. This implies that a polynomial time algorithm pro-
duces a (1 − 1

e )-approximation for any MAX-COVER instance, which contradicts the
hardness of (1− 1

e )-approximation for MAX-COVER.

4. Powerful Attackers: The Maximin Setting

We next tackle more powerful attackers that observed the defender’s choice of monitors
(for example, when such a choice is made public) and best-respond to it. The defender’s
goal is then to choose a set of monitors M that maximizes V(M) = mins∈S U(M, s).

Our first result is negative: we show that it is NP-hard to find a set of (1−o(1))k ln(|S|)
monitor nodes with non-zero utility even when OPTk has utility 1. That is, the targeted
diffusion problem is hard to approximate to any factor even when the given budget is
significantly larger.

This hardness result follows by a reduction from the MIN-SET-COVER problem. At
a high level, we embed a MIN-SET-COVER instance between the set of possible monitor
nodesM, and possible attacker seed nodes S, such that the optimal solution covers S
fully and achieves utility 1 (see Figure 3). All possible seed nodes are connected to the
target, so a seed node that is not covered by a monitor will infect the target before the
infection is detected by other monitors. Therefore, any suboptimal choice of monitors
leads to a utility of 0. The details of this approach are described below.

Theorem 6. For any ε > 0, it is NP-hard under the IC and RIC models to find a set
M ⊆M such that |M | ≤ (1− ε) ln(|S|)k, and

V(M)

V(OPTk)
> 0.

This is true even if the diffusion process is deterministic, that is, ρ = 1.

Proof. We reduce from the search version of the MIN-SET-COVER problem: Given a
set of elements U , a collection of its subsets A ⊆ 2U , and k such that we are promised
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t v

S M

Fig. 3. Illustration of the construction used in the proof of Theorem 6. All edges have probability 1.

that there exists a subset of A with size k that covers all the elements of U , for any
ε > 0, it is NP-hard to find a subset of A of size (1 − ε)k ln(|U |) that covers U (Dinur
& Steurer 2014).

Let (U,A) be an instance of MIN-SET-COVER with the promise that there exists
a subset of A of size k that covers all the elements U . We create a graph G(V,E) as
shown in Figure 3. V includes one vertex per a ∈ A, one vertex per u ∈ U , the target t,
and an additional vertex v.E includes one edge as for every a ∈ A and u ∈ U such that
u ∈ a. Furthermore, E has an edge vu for all u ∈ U ∪{t}. All edges have probability 1
(so the IC and RIC models are equivalent in the context of this construction).

Consider the maximin targeted diffusion problem with the set of possible monitors
M corresponding to the set of nodes in A, set of possible attacker seed nodes S cor-
responding to the set of nodes in U , and t being the target node. Let OPTk denote the
optimal set cover for (U,A). Then V(OPTk) = 1, because whichever node in S the
attacker chooses, it is covered by some monitor, which is reached in one step (whereas
it takes two steps to reach t).

Assume on the contrary that there is a polynomial time algorithm for finding a set
|M | ≤ (1 − ε) ln(|S|)k such that V(M) > 0. Since, all the edge probabilities are
1, this implies that V(M) = 1. If Γ(M) ( S, then the attacker could choose any
u ∈ S \ Γ(M) as the seed node and successfully attack the target with probability 1,
leading to V(M) = 0. Therefore, Γ(M) = S. But, this shows that there is a polynomial
time algorithm that approximates set cover within (1− ε) ln(|U |), which contradicts the
hardness result stated above.

Next, we show that it is possible to achieve 1 − ε multiplicative factor approxima-
tion of V(OPTk) using at most |S|k ln(1/ε) monitors. For a seed node s, let Us(·)
represent the utility function when the attacker deterministically selects s. Algorithm 2
informally proceeds as follows: For each seed node s, individually, choose k ln(1/ε)
monitors greedily based on their estimated marginal gain with respect to Us(·) and store
them in a set M(s). The algorithm then returns

⋃
s∈SM(s).

Theorem 7. For any maximin targeted diffusion instance, any k, ε > 0, γ > 0 and δ >
0, Algorithm 2 runs in time poly(n, 1

ε ,
1
γ ,

1
ρ , log( 1

δ )) and finds a set |M | ≤ |S|k ln(1/ε)

such that with probability 1− δ, V(M) ≥ (1− ε) V(OPTk)− γ. This guarantee holds
under both the IC and RIC models.

As before, we prove the theorem for the more difficult RIC model; modifying the
proof for the IC model is an easy exercise.
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Algorithm 2 MAXMIN MONITORING

Input: G,M, k,S, t and δ, ε, γ > 0.
1. Let `← 36k2 ln2(1/ε)

γ2 ln
(

δ
2|S|·|M|k ln(1/ε)

)
and τ ← n

ρ ln( 8nk ln(1/ε)
γ ).

2. For all s ∈ S, do
(a) Set M(s)← ∅.
(b) For all i = 1, . . . , k log( 1

ε ): Letmi ∈M be a node that maximizes the estimated
marginal gain Ûτs (M(s)∪{mi})−Ûτs (M(s)), where the simulation is taken over
` tries up to τ time steps. Set M(s)←M(s) ∪ {mi}.

(c) M ←M ∪M(s).
Output: Set of monitors M .

Proof. Let OPTk represent the optimal set of k monitor nodes for the maximin utility
V(·). For a seed node s, let OPTk(s) represent the optimal set of k monitors when the
attacker deterministically selects s. Then for all s ∈ S, V(OPTk) ≤ Us(OPTk(s)).

To prove the claim, it suffices to show that for any s, when we choose M(s) using
k ln(1/ε) greedy selections of monitors, we have,

Us(M(s)) ≥ (1− ε) Us(OPTk(s))− γ, (1)

and as a result,

V

(⋃
s

M(s)

)
≥ min

s
Us(M(s)) ≥ min

s
(1− ε) Us(OPTk(s))− γ

≥ (1− ε) V(OPTk)− γ.

Hereinafter, we focus on establishing Equation (1). For ease of notation, we suppress s
in Us(·) and M(s) and represent them, respectively, by U(·) and M . Let ξ = γ

2k ln(1/ε) .
For a fixed M and

` =
8

ξ2
log(δ/(2|S| · |M|k ln(1/ε)))

simulations up to time step τ = n
ρ ln(4nk log(1/ε)/ε), using Hoeffding’s inequality we

have

Pr

[∣∣∣Ûτ (M)− Uτ (M)
∣∣∣ ≥ ξ

4

]
≤ 2e−`ξ

2/8 ≤ δ

|S| · |M|k ln(1/ε)
.

A total of |S| · |M|k ln(1/ε) sets are considered by the algorithm, so with probability
1 − δ, for any M considered by the algorithm, we have

∣∣∣Ûτ (M)− Uτ (M)
∣∣∣ ≤ ξ/4.

Additionally, by Lemma 3, |Uτ (M)− U(M)| ≤ ξ/4. Therefore, with probability 1−δ,
for any M considered by the algorithm, we have

∣∣∣Ûτ (M)− U(M)
∣∣∣ ≤ ξ/2.

Let us introduce additional notations to help with the proof. For any set M and
monitor m, let gM (m) = U(M ∪m)−U(M) be the marginal utility of m with respect
to the set M . Similarly, let ĝτM (m) = Ûτ (M ∪m) − Ûτ (M). Then, with probability
1− δ, for any M and m considered by the algorithm, we have |ĝτM (m)− gM (m)| ≤ ξ.

Next, for any i ≤ k ln(1/ε), let Mi =
⋃
j≤imj be the set of monitors that have

been chosen by the greedy algorithm up to and including step i for the seed node s. we
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prove by induction that.

U(OPTk(s))− U(Mi) ≤
(

1− 1

k

)i
U(OPTk(s))− 2iξ.

For the case of i = 0, the claim holds trivially. Assume that this claim holds for i − 1.
At step i, mi is chosen such that mi = arg maxm ĝ

τ
Mi−1

(m). So in particular, mi

has higher estimated marginal utility than any monitor in the set OPTk(s) \Mi−1. If
OPTk(s) \Mi−1 = ∅, then we have already achieved utility of at least OPTk(s) and
the claim holds trivially. If not, then 0 < |OPTk(s) \Mi−1| ≤ k. So,

ĝτMi−1
(mi) ≥

∑
m∈OPTk(s)\Mi−1

ĝτMi−1
(m)

|OPTk(s) \Mi−1|
.

Therefore,

gMi−1
(mi) ≥

1

k

∑
m∈OPTk(s)\Mi−1

gMi−1
(m)− 2ξ. (2)

On the other hand, using submodularlity, we have that

U(OPTk(s))− U(Mi−1) ≤
∑

m∈OPTk(s)\Mi−1

gMi−1(m),

So, using this in conjunction with Equation (2), we get

gMi−1(mi) ≥
1

k
(U(OPTk(s))− U(Mi−1))− 2ξ.

It follows that

U(OPTk(s))− U(Mi) = U(OPTk(s))− U(Mi−1)− gMi−1
(mi)

≤
(

1− 1

k

)
(U(OPTk(s))− U(Mi−1)) + 2ξ

≤
(

1− 1

k

)i
U(OPTk(s)) + 2(i− 1)ξ + 2ξ

≤
(

1− 1

k

)i
U(OPTk(s)) + 2iξ.

Therefore, after i = k ln(1/ε) rounds and replacing ξ = γ
2k ln(1/ε) , we get Us(M(s)) ≥

(1− ε) Us(OPTk(s))− γ. So, with probability 1− δ, V(M) ≥ (1− ε) V(OPTk)− γ.

Our final theoretical result states that if the diffusion process is deterministic (case
of ρ = 1), then k ln(|S|) monitor nodes are sufficient to find the optimal solution. Note
that by the (1− ε) ln(|S|)k lower bound of Theorem 6, which holds even for the ρ = 1
case, this is the smallest number of monitors needed to guarantee a non-zero utility.

The idea behind our Algorithm, presented below as Algorithm 3, is to choose mon-
itors in a way as to “cover” the set of all possible seed nodes. Specifically, for each
possible seed node s ∈ S and candidate monitor node m ∈ M, we say that m covers s
if m is successful at monitoring the diffusion process starting from s, i.e., the determin-
istic diffusion process starting at s infects m before it infects the target. Our algorithm
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Fig. 4. An illustration of Step 2 of Algorithm 3. In the example, S = {s1, s2, s3, s4}, and M =
{m1,m2,m3}. The given graph is on the left, and the constructed set cover instance is on the right.

then constructs an equivalent set cover instance for an instance of a deterministic diffu-
sion problem and greedily finds a set cover of size k ln(|S|).

Algorithm 3 MAXIMIN MONITORING WITH ρ = 1

Input: G,M, k,S, t.
1. For all s ∈ S create the set Γd(s,t)−1(s).
2. Create a set cover instance (S,M), where for the element corresponding to s ∈ S

and the set corresponding to m ∈ M, s ∈ m if and only if m ∈ Γd(s,t)−1. See
Figure 4 for an example.

3. Greedily find a set cover M ⊆M for (S,M).
Output: Set of monitors M .

Theorem 8. For any maximin targeted diffusion instance with ρ = 1 and for any k,
Algorithm 3 runs in polynomial time in n and finds a set |M | ≤ k ln(|S|) such that
V(M) = V(OPTk).

Proof. Since ρ = 1, all edges in the instance have probability 1 and the diffusion
process is deterministic. Therefore, for any k, V(OPTk) ∈ {0, 1}. In the case of
V(OPTk) = 0, the theorem holds trivially. Hence, we focus on the case of V(OPTk) =
1.

First, we show that there is a one-to-one and onto mapping between set covers of
(S,M) and a monitor sets with utility 1. For any monitor set M such that V(M) = 1,
consider the collection of sets that correspond to M ; with abuse of notation we also call
this M . Since, V(M) = 1, for every choice of attacker seed nodes s ∈ S, there exists
a monitor m ∈ M , such that d(s,m) < d(s, t), i.e., the monitor m is infected before
target t. Therefore, for such m, we have m ∈ Γd(s,t)−1(s). It follows that the collection
of sets that correspond to the choice of monitors in M forms a set cover for (S,M).
Conversely, for any set cover M for (S,M), consider the set of monitor nodes that
correspond to M ; with abuse of notation we also call this M . Since M is a set cover,
for all s ∈ S there exists a set m ∈ M such that s ∈ M . Consider the corresponding
nodes s and m in the diffusion instance. This means that m ∈ Γd(s,t)−1(s). So, if s is
the seed node, m gets is infected before t. Therefore, for every choice of attacker seed
node s ∈ S, there is a monitor in M that is infected before the target, so V(M) = 1.

It therefore suffices to show that the greedy set cover algorithm produces a set cover
of size at most k ln(|S|). This is a well-known fact. Here, we provide a simple proof of
this fact for completeness. Since there is a one-to-one mapping between the set covers
and monitor sets with utility 1, there is a set cover of size k for (S,M). Therefore,
there must be a set that covers at least |S|k of the points. The greedy procedure chooses
this largest set, so there are at most |S|(1 − 1

k ) uncovered elements left after the first
greedy choice. Similarly, since the optimal algorithm uses at most k sets to cover the



16 N. Haghtalab et al.

remaining uncovered nodes after step i − 1, there must be a set that covers 1
k of the

remaining elements. So, there are at most |S|(1− 1
k )i elements left after the ith greedy

choice. After i = k ln(|S|) greedy choices, there are |S|(1 − 1
k )k ln |S| < 1 uncovered

elements in S. We conclude that there is a set cover of size k ln(|S|). This corresponds
to a monitor set of size k ln(|S|) with utility 1.

The idea of “covering” the seeds nodes, used in this algorithm, leads to heuristic
algorithms for diffusion processes that are not deterministic (general ρ). Even though
the theoretical guarantees of the above algorithm do not extend to the case of general
diffusion processes, the smaller number of monitor nodes required by this algorithm
(Theorem 8), compared to the larger number of monitor nodes required by Algorithm 2,
motivates experimental study of algorithms that attempt to greedily “cover” the set of
seed nodes even when ρ < 1. We discuss these algorithms in Section 7.

After the publication of the conference version of our results, we were made aware
of a related existing work in the space of robust submodular optimization by Krause
et al. (2007). In this work, the authors consider maximizing the minimum of n mono-
tone submodular function, Fi : 2X → [0, 1], i.e., maxA⊆X mini Fi subject to |A| ≤ k.
They show that by using O(log(n)) multiplicitively larger budget, they can recover
OPT . We can view the problem of monitoring in the maxmin setting through the lens
of robust optimization by considering each function U(·, s) to be the monotone sub-
modular function representing the defender’s utility under the condition that s is used
as the seed node. In this case, finding the optimal monitoring corresponds to the robust
maximization of functions U(·, s) for all s. Using the robust optimization framework
of Krause et al. (2007) together with our estimation guarantees of Section 3, we can
improve the guarantees of Theorem 7 to work with additional budget O(ln |S|). This
result asymptotically matches our guarantees of Theorem 8 (additional ln(|S|) budget)
for the case of deterministic diffusion.

5. Multiple Seed Nodes

The model of Section 2 and our theoretical results are formulated in terms of a single
seed node. It is natural, though, to ask about the case where, like the defender, the
attacker has a budget b, and selects a subset S ⊂ S of seed nodes such that |S| ≤ b. In
this section, we discuss which of our results extend to this more general setting.

5.1. Distributional Setting

In our results for the distributional case (Section 3), the restriction to b = 1 is made
purely for ease of exposition. That is, our hardness results (Theorem 5) which works
for the case of b = 1, becomes only stronger when larger b is considered. As for our
positive results, Theorem 1 can be extended to work with a general attacker budget b
with the same approximation guarantee. To see why the proof of this theorem can be
generalized, we show how each of the key ingredients of the proof can be generalized.
As for Lemma 2, the argument for submodularity of the utility extends to a general
budget b, by taking σ to be the partial ordering induced on the set of nodes which
indicates the order in which the nodes became infected when the infection started from
all b seeds nodes. Furthermore, we let fσ(M) = 1 if and only if there is a monitor
m ∈ M that is infected in σ before the infection started at all selected seed nodes
reaches the target.
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Another key ingredient of the proof of Theorem 1 requires that Ûτ , which is ob-
tained by taking the average utility of the defender under ` runs of the diffusion when
the diffusion process is only considered up to τ time steps, is a good estimate of U . This
argument relies on two steps, first that the diffusion proceeds fast enough that after τ
time steps it has infected a target or a monitor, with high probability (Lemma 3), and a
concentration bound that shows that the average of defender’s utility under a diffusion
upto step τ is highly concentrated around its mean (Lemma 4). Note that for the first
case, having a larger budget b ≥ 1 only increases the speed of the diffusion and still
ensures that a monitor or a target is infected, with high probability, before step τ . As
for the second argument, the concentration bound does not depend on the nature of the
diffusion, just that there are ` independent simulations of such a diffusion. Therefore,
our Theorem 1 extends to the case of general attacker budget function immediately.

5.2. Maxmin Setting

In our results for the Maxmin setting (Section 4), the b = 1 restriction does play a
technical role and not all of our results can be extended for a general b. Here, we outline
to what degree our results extend to this more general setting.

For our positive result, Theorem 7, our Algorithm 2 processes each possible seed
node separately, and achieves a (1 − ε)-approximation of V(OPTk) using |S|k ln( 1

ε )
monitors. This approach provides guarantees when any single seed node can be selected.
But when multiple seed nodes are selected, this approach does not account for the diffu-
sion process as a whole. We do not know whether there is a polynomial algorithm with
similar approximation guarantee for any b. However, when b is a constant, a simple re-
duction to Theorem 7 solves this problem, albeit while requiring even larger budget for
the defender. This reduction follows by creating a new seed node sA, for any A ⊆ S
such that |A| ≤ b. We connect sA to every seed node in A using edges with transmis-
sion probability 1. Now we consider the defender’s problem when a single seed node is
chosen from this new set of seed nodes {sA | A ⊆ S and |A| ≤ b}. Using Theorem 7,
we can now obtain a (1− ε)-approximation of V(OPTk) using |S|bk ln( 1

ε ) monitors.
As for the deterministic case of ρ = 1, Theorem 8 essentially goes through un-

changed. Indeed, because the diffusion process is deterministic, for a choice of k moni-
tors M , there are b seeds such that the process starting at all of them reaches the target
before (or at the same time as) any monitor if and only if there is a single seed node with
this property. So, in the deterministic case, it is sufficient to consider diffusion started at
any single node, even if the attacker’s budget b > 1.

5.3. Attacker’s Optimization Problem

Another interesting aspect of the setting where the attacker can choose a set of b seeds
nodes is from the attacker’s point of view. From attacker’s perspective, the objective of
the attacker is not monotone in the size of the set S, unlike the traditional influence max-
imization problem: while seeding more nodes would increase the likelihood of reaching
the target (or decrease the time to reach it), it may also increase the likelihood of being
detected.

To formalize our results in this sections, consider the attacker’s utility from seeds
nodes S ⊆ S and a collection of monitor M . The attacker’s utility is defined as the
probability that the target node t is infected before any monitoring node detects an
infection. We denote this utility by UA(S,M). When considering a fixed set of monitors
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Fig. 5. A construction demonstrating the lack of submodularity and monotonicity of the attacker’s utility. The
diffusion is deterministic, i.e., ρ = 1.

M , we simply refer to this quantity as UA(S). Next, we show with an example that the
attacker’s utility is not sub-modular or monotone for a fix set of monitors M .

Example 9. Consider a network with 3 seed nodes s1, . . . , s3, a fixed monitor node m,
a target t, and additional nodes. Let s1 be connected to t by a path of length 5, and by a
path of length 6 to m. Let s2 be connected to t by a path of length 4, and by a path of
length 3 to m, and s3 to be connected to t directly, and by a path of length 2 to m. See
Figure 5.

Now consider two sets X = {s1} and Y = {s1, s2}, and consider s3. UA(X) = 1,
since the s1-t path is shorter than the s1-m path. On the other hand, UA(Y ) = 0, since
s2 is closer to m than s1 and s2 are to t. Therefore, UA(·) is not monotone.

As for lack of submodularity, notice that UA(X∪{s3}) = 1 and UA(Y ∪{s3}) = 1.
This is because s3 is directly connected to t, so it will infect t before the monitor goes
off. But, this shows that

1 = UA(Y ∪ {s3})− UA(Y ) > UA(X ∪ {s3})− UA(X) = 0,

despite X ⊆ Y , so UA(·) is not submodular.

Next, we show that the attacker’s utility cannot be approximated to (1− 1
e + o(1))

for the general budget b. This hardness result is obtained by a reduction from the MAX-
COVER problem. At a high level, we embed a MAX-COVER instance in a diffusion
problem, such that every element in the instance corresponds to a node that infects the
target and monitor with probability p and 1, respectively (See Figure 6). Every subset
of the elements is represented by a candidate seed node that infects all of its members
with probability 1. The higher the number of elements that are covered by seed nodes,
the higher the probability that the target is infected no later than the monitor. Proba-
bility p is chosen such that the fraction of covered elements is translated directly into
the probability that target is infected before the monitor. Therefore, the best possible
approximation for the MAX-COVER problem translates into an approximation of the
attacker’s utility. The details of this approach are described below.

Theorem 10. Finding a (1− 1
e + o(1))-approximately optimal seeding set is NP-hard

under the IC and RIC models for the attacker. That is, it is NP-hard to find a set S ⊆ S
such that |S| ≤ b and

UA(S)

UA(OPTb)
> 1− 1

e
.
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Fig. 6. Illustration of the construction used in the proof of Theorem 10. Edges are labeled by their probability.

Proof. We use a reduction from the promise version of MAX-COVER problem: Given
a set of elements U , a collection of its subsets A ⊆ 2U , and a budget b such that there
exists a subset of A with size b that covers all the elements U , it is NP-hard to find a
subset of A of size b that covers more than 1− 1

e fraction of U (Johnson 1973).
We create a graph G = (V,E) as follows. V includes one vertex per a ∈ A, one

vertex per u ∈ U , a monitor node m, and the target t (see Figure 6). The set of edges
and their corresponding probabilities are as follow.

E =


e : au ∀a ∈ A, u ∈ U , s.t. u ∈ a pe = 1
e : ut ∀u ∈ U pe = 1

|U |2
e : um ∀u ∈ U pe = 1


This graph is an instance of the targeted diffusion problem with potential seed set S
corresponding to nodes in A, m being the fixed monitor node, and t being the target
node. Let S′ be the choice of seed nodes that correspond to a b-cover of (U,A) and
OPTb be the optimal set of b seed nodes. To receive a non-zero utility, the attacker has
to choose at least 1 seed from S. Since there is a path of length 2 between any s ∈ S
to t that consists of edges with probability 1, the monitor goes off at time step 2. So for
the attacker to succeed, t has to be infected at step 1 or 2.

Let S′ ⊆ S be any selection of k seed nodes, and consider the set of coverage of S′
(set of its neighbors) Γ(S′). So, the utility of S′ to the attacker is the probability that at
least one of the nodes in Γ(S′), which is definitely infected in the first time step, infects
t at the next time step. Then, the utility of S′ is the probability of the complement of the
event where none of the members of Γ(S′) transmit the infection to t. That is

UA(S′) = 1−
(

1− 1

|U |2

)|Γ(S′)|

.

Similarly, for S ⊆ S that represent the optimal choice for max-coverage, we have that
Γ(S) = U , and

UA(OPTb) = 1−
(

1− 1

|U |2

)|U |
.

Choose α such that |Γ(S′)| = α|U |. Let |U | = m for eache of notation. We have

lim
m→∞

UA(S′)

UA(S)
=

1−
(
1− 1

m2

)αm
1−

(
1− 1

m2

)m
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= lim
m→∞

−
(
1− 1

m2

)αm( 2α

(1− 1
m2 )m2

+ α log
(
1− 1

m2

))
−
(
1− 1

m2

)m( 2

(1− 1
m2 )m2

+ log
(
1− 1

m2

))
= lim
m→∞

α log
(
1− 1

m2

)
log
(
1− 1

m2

) = α,

where the calculation is similar to the calculation in the proof of Theorem 5. So, if
UA(S)
UA(S′) > 1− 1

e , then |Γ(S′)| > (1− 1
e )m. This implies that a polynomial time algorithm

produces a (1− 1
e )-approximation for any MAX-COVER instance, which contradicts the

hardness of (1− 1
e )-approximation for MAX-COVER.

To solve the attacker’s problem in practice, we propose a greedy heuristic, presented
below as Algorithm 4. It is easy to see that this algorithms runs in polynomial time. In
Section 7, we will also demonstrate using numerical results that it performs exception-
ally well in practice.

Algorithm 4 GREEDY ATTACK

Input: G,M,S, b, t.
1. Start with S ← ∅ and DONE ← false.
2. While |S| ≤ b and not DONE do

(a) Let s ∈ S \S be a node that maximizes the marginal gain UA(S∪{s})−UA(S).
(b) If the marginal gain is positive, set S ← S∪{s}; otherwise, setDONE ← true.

Output: Set of seed nodes S.

6. Other Generalizations

In addition, our model and results can be generalized in another direction: detection
delay. Specifically, we can allow monitoring to take arbitrarily long to detect an infec-
tion, by associating with each node v ∈ V a discrete distribution over the number of
iterations of the diffusion process between the point of time v is infected and the point
in which it detects the infection.

Happily, essentially all our results go through when detection delays are allowed. In
particular, submodularity of the utility function can be shown to hold by taking the de-
tection delays, too, into account when considering each infection order σ. For example,
if m was infected two rounds before t, but its detection delay is, say, five rounds, then
it will appear after t in the order.

Above we say “essentially all our results” because Theorem 8 is stated for a deter-
ministic diffusion process; it does generalize to the detection delay setting when delays
are deterministic (in that case each vertex can simply be replaced by a path).
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7. Numerical Results

In this section, we present numerical results on the algorithms proposed in Sections 3,
4, and 5. Furthermore, we also introduce two simple heuristics for the maximin setting,
which perform very well in practice. 4

We conducted our experiments on three types of networks:
– Erdős-Rényi (E-R) random graphs (Erdős & Rényi 1959): We generated random net-

works having 100 nodes and each possible edge being present with probability 0.5.
This model is one of the most widely used random-graph models and, hence, consti-
tutes a good baseline.

– Barabási-Albert (B-A) random graphs (Barabási & Albert 1999): We generated ran-
dom networks of 100 nodes, starting with cliques of 3 nodes and connecting every
additional node to 3 existing ones. B-A graphs are widely used to construct synthetic
graphs as their heavy-tailed degree distribution resembles real social and technologi-
cal networks.

– Autonomous System (AS) relationship graph: In the Internet, an AS is a collection
of connected routing prefixes under the control of a single administrative entity. Even
though the network formed by AS does not correspond directly to the propagation
network, it arises from similar technological and business processes. The graph used
in our experiments was obtained from the Cooperative Association for Internet Data
Analysis (CAIDA),5 and consists of 68,526 nodes and 177,000 edges.

To instantiate our problem, we selected uniformly at random:
– 1 node to be the target node,
– 10 nodes to be the potential seed nodes,
– and 10 nodes to be the potential monitored nodes,
ensuring no overlap among these. Finally, we set the infection probability of each edge
to 0.5.

For each setting, propagation model, network type, and budget value, we generated
15 instances (i.e., 15 random graphs and/or random node subsets as above) and plotted
the average values over these instances. Finally, to estimate U(M) or V(M) for a given
set of nodes M in an instance, we simulated the diffusion process 10,000 times, each
time running until either the target or a monitored node was infected.

We omit results for the repeated independent cascade model for the maximin setting
and the attacker’s problem, as they are qualitatively the same as the results presented
below.

7.1. Distributional Setting

In this setting, we showed that Algorithm 1 has provable approximation guarantees. In
our experiments, we consider empirically how close its solutions are to optimal (com-
puted by exhaustive search).

Figures 7, 8, and 9 show that our algorithm performs exceptionally well in the in-
dependent cascades model for B-A graphs, E-R graphs, and the AS relationship graph,
respectively. Furthermore, as expected, its running time is much lower than that of the
exhaustive search in the computationally more challenging cases. From the measured

4 The software and dataset used for these experiments are available at
http://aronlaszka.com/data/haghtalab2015monitoring.zip.
5 http://as-rank.caida.org/
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Fig. 7. Comparison of algorithms for the distributional setting on B-A graphs with independent cascades.
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Fig. 8. Comparison of algorithms for the distributional setting on E-R graphs with independent cascades.

running times, we can see that our algorithm scales well (appears sublinear in the bud-
get). Another interesting observation is that in the large AS network, increasing the
budget beyond 4 appears to make little difference in the objective value, suggesting that
it is most important to place the first few monitors well.

Figures 10 and 11 compare our algorithm to the exhaustive search in the repeated
independent cascades model for B-A graphs and E-R graphs, respectively. Similarly, to
the independent cascades model, we see that our algorithm performs exceptionally well.
Since the results for the two models are qualitatively the same, we will omit numerical
results for the repeated independent cascades model in the remainder of this paper.

7.2. Maximin Setting

Next, we compare Algorithm 2 to an exhaustive search in the maximin setting. Re-
call from Section 4 that Algorithm 2 may output a set of monitored nodes whose size
exceeds the budget. Consequently, to make a fair comparison, we use a variation of Al-
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Fig. 9. Comparison of algorithms for the distributional setting on the AS relationship graph with independent
cascades.
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Fig. 10. Comparison of algorithms for the distributional setting on B-A graphs with repeated independent
cascades.

gorithm 2, which is based on the same principle, but always produces a set of size k.
More specifically, we increment the sets M(s) at the same time (i.e., we iterate over all
the seed nodes and increment each set, then iterate over all the seed nodes again, etc.)
and stop the algorithm as soon as the size of their union M = ∪sM(s) reaches k.

As we will see, Algorithm 2 does not perform as well in the maximin setting as
Algorithm 1 does in the distributional setting. Consequently, we introduce two new
algorithms, called greedy and heuristic, which are closer to optimal in practice.
– Greedy is a straightforward greedy algorithm for maximizing the set function V(M)

(i.e., the same as Algorithm 1, but maximizes V instead of U).
– Heuristic is a greedy heuristic algorithm which works as follows: start with an empty

set M = ∅ and add nodes to M iteratively; in each iteration, take a seed node s with
minimum Us, and add a monitoring nodem that maximizes Us(M ∪{m}) toM . The
rationale behind this heuristic is that in order to secure the target against the worst-
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Fig. 11. Comparison of algorithms for the distributional setting on E-R graphs with repeated independent
cascades.
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Fig. 12. Comparison of algorithms for the maximin setting on B-A graphs with independent cascades.

case attacker of the maximin setting, we have to “cover” the seed node that is least
“covered.”

Figures 12, 13, and 14 compare Algorithm 2, greedy, heuristic, and exhaustive
search in the independent cascades model for B-A graphs, E-R graphs, and the AS rela-
tionship graph, respectively (in the AS graph, we omit optimal exhaustive search, which
is intractable). Firstly, we can see that Algorithm 2 does not perform well, even com-
pared to the greedy and heuristic algorithms. On the other hand, the greedy algorithm
is near optimal, but its running time is the highest among the suboptimal algorithms.
Finally, the heuristic algorithm performs reasonably well, especially in more complex
cases, and its running time is the lowest among all. That said, an advantage of Algo-
rithm 2 is that it provides worst-case guarantees, whereas there are examples showing
that the greedy and heuristic algorithms fail miserably in the worst case.
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Fig. 13. Comparison of algorithms for the maximin setting on E-R graphs with independent cascades.
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Fig. 14. Comparison of algorithms for the maximin setting on the AS relationship graph with independent
cascades.

7.3. Attack Algorithms for Multiple Seed Nodes

Finally, we evaluate Algorithm 4, which we introduced in Section 5 for finding multiple-
seed attacks in polynomial time. Similarly to the evaluation of the defense algorithms,
we consider how close the solutions of Algorithm 4 are to optimal (computed by ex-
haustive search) in terms of utility. However, in this case, the comparison is based on
the attacker’s utility (i.e., probability of winning) instead of the defender’s. Lastly, since
the problem requires finding an attack against a given set of monitoring nodes, we se-
lected 5 monitoring nodes at random to be M for each instance.

Figures 15 and 16 show that our algorithm performs exceptionally well for both B-
A and E-R graphs. For most instances, the output of Algorithm 4 is in fact optimal, and
the average difference to the optimum remains below 0.3%. Moreover, as expected, its
running time is orders of magnitude lower than that of the exhaustive search in cases
that are computationally more challenging.

Figure 17 shows that our algorithm also performs well for the AS relationship graph.
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Fig. 15. Comparison of attack algorithms on B-A graphs with independent cascades.
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Fig. 16. Comparison of attack algorithms on E-R graphs with independent cascades.

The difference to the optimum is higher than for B-A and E-R graphs, but on average,
it remains below 3.1%. Finally, the running time of our algorithm is again orders of
magnitude lower than that of the exhaustive search in computationally more challenging
cases.

8. Conclusion

We introduced a novel model of stealthy diffusion, relevant in many cyber (and cyber-
physical system) security settings, whereby an adversary aims to attack a specific target
but simultaneously to avoid detection. Focusing on the defender’s problem of choosing
monitor locations so as to maximize the probability of detecting such stealthy diffusion
(e.g., of malware) prior to its reaching the target, we present both negative (inapprox-
imability) results, and polynomial-time algorithms for several natural variants of this
problem. In one of these variants, where the attacker randomly chooses an initial site
of infection, we exhibited a greedy algorithm which achieves a constant factor approx-
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Fig. 17. Comparison of attack algorithms on the AS relationship graph with independent cascades.

imation. In another, where the attacker optimally responds to monitor placement in the
choice of initial infection, we exhibited several polynomial-time algorithms which can
return solutions arbitrarily close to optimal, but at the cost of using more monitoring
nodes. In our experiments, we introduced two additional heuristics for the latter variant
of the problem, and while all algorithms proved effective at solving the problem, the
two heuristics were particularly good, even though they can be arbitrarily suboptimal
on some classes of networks.

We also considered generalizations of the above settings, in which the attacker
chooses more than a single initial site of infection. While all of our results about the
distributional setting readily extended to this case, generalizing results for the maximin
setting proved to be non-trivial. Moreover, with more than a single node to choose, the
attacker’s problem itself becomes quite challenging, which we have confirmed by prov-
ing that the problem is in fact NP-hard. Finally, we provided a polynomial-time heuristic
algorithm for solving the attacker’s problem, and demonstrated using numerical results
that it performs exceptionally well in practice.
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