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Abstract—In networked systems, monitoring devices such as sensors are typically deployed to monitor various target locations.
Targets are the points in the physical space at which events of some interest, such as random faults or attacks, can occur. Most often,
monitoring devices have limited energy supplies, and they can operate for a limited duration. As a result, energy-efficient monitoring of
target locations through a set of monitoring devices with limited energy supplies is a crucial problem in networked systems. In this
paper, we study optimal scheduling of monitoring devices to maximize network coverage for detecting and isolating events on targets
for a given network lifetime. The monitoring devices considered could remain active only for a fraction of the overall network lifetime.
We formulate the problem of scheduling of monitoring devices as a graph labeling problem, which unlike other existing solutions, allows
us to directly utilize the underlying network structure to explore the trade-off between coverage and network lifetime. In this direction,
first we present a greedy heuristic, and then a game-theoretic solution to the graph labeling problem. The proposed setup can be used
to simultaneously solve the scheduling and placement of monitoring devices, which, as our simulations illustrate, gives improved
performance as compared to separately solving the placement and scheduling problems. Finally, we illustrate our results on various
networks, including real-world water distribution networks and random geometric networks.

Index Terms—Scheduling, network coverage, graph labeling, potential games, dominating sets.
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1 INTRODUCTION

D ETECTION and isolation of unwanted events such as
faults, failures, and malicious intrusions is a funda-

mental concern in a variety of practical networks. For
example, leakage detection in water distribution networks
can reduce physical damage as well as financial losses [1].
For this purpose, monitoring devices, such as sensors, are
typically deployed strategically throughout the network.
Spatially distributed systems over large areas may often
be monitored only by battery-powered devices, as wired
deployment can be prohibitively expensive or impossible.
If the power supply provided by batteries is insufficient
for continuous monitoring during the intended lifetime of
a system, batteries must be replaced regularly. Since the cost
of battery replacement for a large number of devices can be
very expensive, one of the primary design concerns for such
systems is increasing the time until the batteries of sensors
are depleted. At the same time, it is desired to maintain a
certain level of monitoring in terms of the number of targets
covered throughout the network lifetime. Here, targets are
the points in the physical space at which events of interest
can occur. For instance, in water distribution networks,
events can be the pipe bursts, and so targets can be the
water pipes, which need to be monitored through sensors
such as battery operated pressure sensors.

One of the primary approaches for conserving battery
power is “sleep scheduling.” The idea is to have only a sub-
set of the sensors activated at any given time, and to turn off
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(i.e., “sleep”) the remaining ones, thereby conserving power.
By activating different sets of devices one after another, the
overall lifetime of a system can be substantially increased.
Previous research efforts, which we discuss briefly in Sec-
tion 9, have mostly focused on finding schedules that ensure
complete coverage, that is, guaranteeing that every target is
monitored by some device at any given moment in time
(e.g., [2], [3]). However, complete coverage is a very strict
requirement, which severely limits the sets of devices that
may be asleep at the same time. In fact, coverage (i.e., ratio
of monitored targets to the total number of targets) is a
submodular function of the set of active devices in most
models (e.g., [4], [5]), which roughly means that attaining
complete coverage is disproportionately expensive com-
pared to achieving reasonably good coverage. Managing
energy resources of monitoring devices via their scheduling
to achieve an appropriate coverage of targets is a significant
issue in networks where an extended network lifetime is a
critical requirement.

In this paper, we design efficient scheduling schemes for
a set of monitoring devices with limited battery supplies
to achieve maximum target coverage for a given network
lifetime. Scheduling of such devices to achieve complete
network coverage is a special case of this general formula-
tion. We model the network as a graph, in which monitoring
devices could be deployed at a subset of nodes, and targets
could be a subset of nodes and edges. Each monitoring de-
vice has a limited active time, and covers a subset of targets
within its range during its active time. For a given network
lifetime, the objective is to determine the maximum possible
coverage, both in terms of the detection and isolation of
(events at) targets, and a schedule of monitoring devices to
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obtain an optimal coverage.
In this direction the main contributions of the paper are:

(1) We show that the optimal scheduling of monitor-
ing devices is an APX-hard problem, that is, there is
no polynomial-time approximation scheme (PTAS) for the
problem unless P=NP.
(2) We provide a graph-theoretic formulation of the schedul-
ing problem by showing that it is equivalent to a unique
graph labeling problem, which allows us to directly exploit
the network structure to obtain optimal schedules.
(3) To solve the graph labeling, and hence the scheduling
problem, we propose two solutions; first, a greedy heuris-
tic that runs in polynomial time, and gives near optimal
solutions for many networks as we illustrate. However, in
general, performance guarantees of the heuristic in terms
of the optimality of the solution remain unknown. Second,
we present a game-theoretic solution, in which we pose
the labeling problem as a potential game. Using a well
known binary log-linear learning (BLLL) algorithm to solve
the potential game then ensures that in the long run, we
achieve a globally optimal solution with an arbitrarily high
probability.
(4) Moreover, we illustrate that the game-theoretic solu-
tion allows simultaneously optimizing the placement and
scheduling of monitoring devices that gives better results
– as shown by the numerical results – compared to sepa-
rately solving the placement and scheduling. Note that the
placement problem involves selecting optimal locations to
deploy a given set of monitoring devices to maximize the
target coverage within networks.
(5) We analyze the performance of the approach through
simulations on various networks including real-world water
distribution networks and random networks. For random
networks, we also provide analytical results to determine
the performance of random scheduling, which does not
require any information about the network structure.

The rest of the paper is organized as follows: Section
2 explains our system model and defines the scheduling
problem. Section 3 addresses the issue of complexity of the
problem. Section 4 presents a graph labeling based formula-
tion of the scheduling, and Section 5 proposes solutions to
the graph labeling problem. Section 6 extends our approach
to solve the simultaneous placement and scheduling of
monitoring devices. Section 7 presents a particular case of
interest of the scheduling problem, and Section 8 illustrates
simulation results. Section 9 provides an overview of related
work, and Section 10 concludes the paper.

2 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, first, we present the system model, and then
we formulate the problem of optimal scheduling of resource
bounded monitoring devices in networks.

(a) Network Graph – We model the network as an undi-
rected graph1, G(V,E), in which V is the set of nodes, and
E is the set of edges given by the unordered pairs of nodes.
Two nodes are adjacent if there exists an edge between them.
The neighborhood of a node v, denoted byN(v), is the set of all

1. Our results can also be applied to directed graphs in a straightfor-
ward way. For the ease of presentation, we consider only undirected
graphs in this paper.

nodes that are adjacent to v, i.e., N(v) = {u : (u, v) ∈ E},
and the neighborhood of a subset of nodes S, denoted by N(S),
is
⋃
v∈S

N(v). The degree of a node v, represented by δ(v), is

simply δ(v) = |N(v)|. A path is a sequence of nodes such
that any two consecutive nodes in the path are adjacent, and
the number of edges included in the path is the length of the
path. Any two nodes are said to be connected if there exists
a path between them. The distance between connected nodes
u and v, denoted by d(u, v), is the length of the shortest
path between them. Similarly, the distance between node u
and edge e = (i, j) is d(u, e) = max(d(u, i), d(u, j)). The
network graph abstracts interactions among various nodes
within the network.

(b) Targets – They are a subset of nodes and/or edges,
denoted by Y ⊆ (V ∪ E), that could be subjected to
an abnormal activity (or event), such as pipe failure, and
therefore, need to be monitored by the monitoring devices.

(c) Monitoring Devices – These devices are deployed at
a subset of nodes S ⊆ V in the network, and they can
monitor the other nodes and/or links of the network for
some unusual activity, for instance, detecting link failures
such as pipe burst in water networks. We consider a general
model of monitoring, which is independent of the specific
implementation and nature of the detection devices. We
refer to any abnormal activity on a target as an event. A
monitoring device can monitor all nodes and edges for
events that lie within some pre-specified distance, referred
to as the range, of the device. If u is the node at which a
monitoring device with the range λ is deployed, then the
device covers (monitors) all the nodes and edges in the set

{v ∈ V : d(u, v) ≤ λ} ∪ {e ∈ E : d(u, e) ≤ λ}.

In other words, a target is covered if and only if it lies
within the range of some monitoring device. Each device
is resource-bounded in terms of the available battery supply,
denoted by B, which means that a device can be active (or
can be operational) for onlyB time duration. Furthermore, a
monitoring device has only two output states – event detected
at some target without knowing the exact location of the
target, and no event detected.

2.1 Network Performance Measures

We are interested in measuring the quality of monitoring
of targets through a set of monitoring devices, both from
the detection and isolation perspectives. In detection, the
objective is just to detect any abnormal activity on some
target irrespective of determining the exact location of it,
whereas in isolation, the goal is to uniquely detect the target at
which the abnormal activity occurs. Moreover, we refer to
the overall lifetime of the network, i.e., duration for which
monitoring of targets for detection (isolation) is considered,
as the network lifetime T . To simplify, we divide the time
into time slots of equal length. The battery supply B of a
monitoring device could be represented by the number of
time slots, say σ, in which the device could remain active.
Moreover, the network lifetime T could be represented
by the total number of time slots, say k, for which the
detection (isolation) of targets is considered. Note that T and
B represent the actual duration of overall network lifetime
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and battery lifetime of individual monitoring device respec-
tively, whereas, k and σ, which are chosen to be positive
integers, represent respectively the total number of time slots
and the time slots for which each device could remain active.

(a) Detection Measure – Let there be a total of m targets,
and mi be the number of targets that are covered by the
monitoring devices that are active in the ith time slot. We
define the average detection performance, denoted by D, as

D =
1

k

k∑
i=1

(mi

m

)
. (1)

(b) Isolation Measure – Consider two targets x and y,
and let S(x), S(y) ⊆ S be the subsets of sensing devices
that detect events at targets x and y respectively. If S(x) is
identical to S(y), then we can never distinguish or isolate
the event at target x from the event at target y. Thus, to
isolate events at x and y, S(x) must be different from S(y),
which simply means that there should exist at least one
sensing device that gives different outputs in the case of
events at x and y. In other words, a sensing device should
exist that detects event at either x or y, but not both at the
same time. If such a sensing device exists for x and y, we say
that the target-pair x, y is covered. Now to isolate (distinguish)
event at x from events at all other targets, it is necessary that
all target-pairs x, y, ∀y 6= x are covered. If the total number
of targets is m, then for each target x, there are

(m− 1

2

)
target-pairs that need to be covered to isolate event at x
from events at all other targets. Considering all m targets,
we have a total of

(m
2

)
target-pairs in the whole network.

If all such target-pairs are covered, event at any target can
be isolated. Thus, the goal is to maximize the number of
target-pairs that are covered. We denote by `j the number
of target-pairs that are covered in the jth time slot by the
sensing devices active in the jth time slot. Then we define
the average isolation performance, denoted by I , as

I =
1

k

k∑
j=1

(
`j
`

)
(2)

where k is the total number of time slots.

2.2 Problem Formulation
Consider a network G(V,E) in which S ⊆ V is the subset
of nodes at which monitoring devices with ranges λ are
deployed, and Y ⊆ (V ∪ E) are the set of targets. Each
monitoring device could remain active in at most σ of the
total of k time slots due to battery supply constraints. In
each time slot i, let Si ⊆ S be the subset of nodes with
active monitoring devices. Thus, we get a schedule of (active)
monitoring devices as S1, S2, · · · , Sk.

The objective is to determine the maximum average detection
performance D (or average isolation performance I) for a given
network life time, represented by k time slots, under the battery
constraints of monitoring devices, represented by σ time slots, and
also a schedule of monitoring devices that achieves the maximum
D (or I).

It is obvious that increasing k could decrease the maxi-
mum value of D (or I). So, in a way, our goal is to under-
stand a relationship between k and D (or I), and design
a systematic scheme to obtain a schedule for activating

monitoring devices with limited battery supplies to obtain
the desired network performance. Note that the scheduling
problem for a complete coverage of targets, in which the
objective is to determine a schedule that ensures D = 1
throughout the network life is a special case.

3 PROBLEM COMPLEXITY

In this section, we show that the problem of finding a sched-
ule that maximizes the average detection performance for a
given network lifetime and battery supplies, as discussed in
Section 2.2, is APX-hard. APX-hardness implies that (unless
P=NP), there does not exist a polynomial-time algorithm
that can solve the problem to within arbitrary multiplicative
factor of the optimum.

In our case, for a target τ , if Qτ represents the fraction
of the total number of time slots in which an event on τ can
be detected (i.e., τ is covered), then the expected value of
detecting an event on an arbitrary target, denoted by Q is

Q =
1

|Y |
∑
τ∈Y

Qτ . (3)

Note that Q and D have exactly same values for a
given schedule (S1, S2, · · · , Sk), and therefore, they both
measure the average detection performance of the schedule.
We formulate finding a schedule that maximizes detection
performance as the following optimization problem:

Definition (Maximum Average Detection): Given a graph
G = (V,E), a set of monitoring devices S ⊆ V , a set of
targets Y ⊆ (V ∪E), range of the monitoring device λ, a net-
work lifetime represented by k time slots, a battery supply
represented by σ time slots, find a schedule (S1, S2, . . . , Sk)
that maximizes the average detection performance Q.

Theorem 3.1. The Maximum Average Detection Problem is
APX-hard.

We show APX-hardness by reducing a well-known APX-
hard problem, the Maximum Cut Problem [6] to the de-
tection problem. The Maximum Cut Problem is defined as
follows:

Definition (Maximum Cut Problem): Given a graph G =
(V,E), find a disjoint partition V1, V2 of V that maximizes
the number of edges |E(V1, V2)| between V1 and V2.

Proof (Theorem 3.1) – We prove APX-hardness by show-
ing that there exists a PTAS-reduction from the Maximum
Cut Problem to the Maximum Average Detection Problem.
First, we define a polynomial-time mapping from an in-
stance of the cutting problem to an instance of the detection
problem:

• let the network of the Maximum Average Detection
Problem be the graph of the Maximum Cut Problem;

• let the set of monitoring devices be S = V ;
• let the set of targets be Y = E;
• let the range of the monitoring device be λ = 1;
• let the network lifetime be k = 2 time slots;
• and let the battery supply be σ = 1 time slot.

Second, we define a polynomial-time mapping from a
solution (S1, S2) of an instance of the detection problem
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(i.e., a schedule) to a solution (V1, V2) of the corresponding
instance of the cutting problem (i.e., a cut):

V1 := S1 and V2 := S2. (4)

Next, observe that if an edge is cut by (V1, V2), then the
corresponding target is covered by both S1 and S2, which
implies Qτ = 1. On the other hand, if an edge is not cut
by (V1, V2), then the corresponding target is covered in only
one time slot, which implies Qτ = 1

2 . Consequently, for any
pair of solutions (S1, S2) and (V1, V2), we have

Q(S1, S2) =
1

|E|

 ∑
τ∈E(V1,V2)

1 +
∑

τ 6∈E(V1,V2)

1

2

 (5)

=
1

|E|

(
|E(V1, V2)|+ 1

2
(|E| − |E(V1, V2)|)

)
=

1

2
+

1

2

|E(V1, V2)|
|E| . (6)

Using the same argument, we can also show that if a
schedule (S1, S2) is an optimal solution to the detection
problem, then the cut (V1 = S1, V2 = S2) is also an
optimal solution to the cutting problem, and vice versa.
Therefore, if a schedule (S1, S2) is at most (1 − ε) times
worse than the optimal schedule, then the corresponding cut
(V1, V2) is at most (1−2ε) times worse than the optimal cut.
Consequently, there is a PTAS-reduction from the Maximum
Cut Problem to the Maximum Average Detection Problem.

As a consequence, we cannot optimally solve the max-
imum average detection problem in a polynomial time.
Hence, we need efficient heuristics that can provide rea-
sonably good solutions with acceptable time complexities.
In this regard, it becomes crucial to maximally exploit the
structure of the problem in a systematic way. To achieve this
objective, we first provide a graph-theoretic formulation of
the scheduling problem in the next section.

4 A GRAPH-THEORETIC FORMULATION OF THE
SCHEDULING PROBLEM

In this section, using various graph-theoretic notions, we
formulate the scheduling problem as a graph labeling
problem. Our approach is to first obtain a bi-partite graph,
denoted by G(V, E), from a given graph. This bi-partite
graph illustrates targets and the monitoring devices with
given ranges covering those targets. We then formulate the
scheduling problem on the original network G(V,E) as a
graph labeling problem on the bi-partite graph G(V, E).

4.1 Bi-partite Graphs for Detection and Isolation
When scheduling of monitoring devices is required with
an objective to maximize the average detection score D,
as described in Section 2.1, the bi-partite graph G(V, E) is
simply obtained as follows: the vertex set V is the union
X ∪Y , where X = S ⊆ V is the set of nodes corresponding
to the set of monitoring devices, and Y = Y is the set of
targets in the original network G. Moreover, each x ∈ X is
adjacent to vertices in Y that are at most λ distance away
from x in G. An example is shown in Figure 1.

If maximizing the average isolation measure I , as in
Section 2.1, is the objective of scheduling, then G(V, E) is
obtained as follows: As in the case of detection, the vertex
set of the bi-partite graph is V = X ∪ Y , where X = S ⊆ V
corresponds to the set of monitoring devices. To obtain Y ,
we define a node for every pair of targets in Y . There will

be

(
|Y |
2

)
such nodes in Y . As for the edge set E of the

bi-partite graph, let y ∈ Y corresponds to the (unordered)
target-pair (τ1, τ2) ∈ Y . Then, each x ∈ X is adjacent
to y ∈ Y in G if and only if exactly one of the targets
τ1 or τ2 is within λ distance from (the monitoring device
corresponding to) x in the original network G. In other
words, in the bi-partite graph G, there will be no edge
between x and y corresponding to the target-pair (τ1, τ2),
if and only if the monitoring device x covers both targets τ1
and τ2 in G, or does not cover any of the targets τ1 and τ2.
An example is illustrated in Figure 1.

Example
Consider a graph G(V,E) in Figure 1. Let S = {1, 2, 4} ⊆ V
be the set of monitoring devices and edges in the set
Y = {e1, e2, e3, e5} be the targets. Moreover, each moni-
toring device has the range λ = 2. The bi-partite graphs
G(V, E) for the scheduling of monitoring devices to max-
imize the detection and isolation measures are shown in
Figures 1(b) and 1(c) respectively. The vertex set of bi-
partite graphs in both cases is V = X ∪ Y , where X = S.
For the detection case, Y = Y , and for the isolation case,
Y = {e12, e13, e15, e23, e25, e35}, where eij corresponds to
the pair of edges (ei, ej) in Y . Note that an edge between
x ∈ X and eij ∈ Y indicates that the monitoring device
at x covers the target-pair (ei, ej), or in other words, can
distinguish between events at ei and ej .

3

45

e2

e3e4

e5

1

2

e1

e2

1

2

4

e1

e2

e3

e5

1

2

4

e1,2

e1,3

e1,5

e2,3

e2,5

e3,5

(a) (b) (c)

Fig. 1. (a) An example network graph G(V,E). Bi-partite graph repre-
sentations for (b) detection and (c) isolation.

4.2 A Graph Labeling Problem and its Equivalence to
the Scheduling Problem
After obtaining the bi-partite graph G(V = X ∪ Y, E) from
a given network G(V,E), we can re-write the detection and
isolation scores as in (1) and (2) respectively in terms of
G. Note that if Si ⊆ X is the subset of active monitoring
devices in the ith time slot, then for the detection (isolation),
the set of targets (target-pairs) covered by Si is simply the
neighborhood of set Si, i.e., N(Si) =

⋃
x∈Si

N(x). Here, N(x)

is the neighborhood of node x as defined in Section 2.
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Hence, for a given schedule (S1, S2, · · · , Sk) where k is the
total number of time slots, the average detection (isolation)

measure is simply (1/k)
k∑
i=1
|N(Si)|. Thus, given a bi-partite

graph G(X ∪ Y, E), network life in terms of k time slots,
and battery supply constraint in terms of σ time slots, the
problem of finding an optimal schedule that maximizes
the average detection (isolation) measure as described in
Section 2.2 becomes equivalent to finding a set of k subsets
{S1, S2, · · · , Sk}, where Si ⊆ X , such that

max
{S1,··· ,Sk}

k∑
j=1

|N(Sj)|, (7)

and each node x ∈ X is included in at most σ such subsets.
The above problem can be cast as a graph labeling

problem as described below.

Graph Labeling Problem
Let K = {1, 2, · · · , k} be the set of labels, and L be the set

of all σ-subsets2 of K. Note that |L| =
(
k

σ

)
. We define

f : X −→ L (8)

i.e., f is a set function that assigns a subset of σ labels from
K to each x ∈ X . Also, for y ∈ Y , we define F (y) as follows:

F (y) ,
⋃

x∈N(y)

f(x). (9)

Note that |F (y)| is simply the number of distinct labels
available in the neighborhood of y. The objective is to obtain
an assignment of labels to the nodes in X (i.e., (8)) such that

Objective: max
f

∑
y∈Y
|F (y)| (10)

Here, the objective is to assign σ labels to each node in X
such that the sum of the number of distinct labels available
in the neighborhood of y, ∀y ∈ Y , is maximized. The
scheduling problem in (7) and Section 2.2, is equivalent to
the graph labeling problem described above.
Proposition 4.1. The problem of obtaining an optimal sched-

ule that maximizes the average detection (isolation)
through a set of monitoring devices with limited battery
supplies that cover a set of targets (target-pairs) for a
given network lifetime, which is divided into k time
slots, is equivalent to the graph labeling problem as
defined in Equations (8)–(10).

Proof – In the graph labeling problem, let the subset of
labels assigned to the vertex x, i.e., f(x) ∈ L, corresponds
to the indices of time slots in which the monitoring device
corresponding to x is active. Since x has at most σ dis-
tinct labels by the definition of f , the monitoring device
corresponding to node x can be active in at most σ time
slots. Hence, the battery supply condition that requires a
monitoring device to be active in at most σ time slots,
is always satisfied. Moreover, F (y) indicates time slots in

2. The cardinality of each subset is σ, where σ is some positive
integer.

which the target (target-pair) y ∈ Y remains covered by
some x ∈ X . Then, (1/k)

∑
y∈Y
|F (y)| is simply the average

detection (isolation) measure. The set of vertices that have
label i correspond to the monitoring devices active in the ith

time slot, i.e., Si. Thus, finding a labeling (8) that maximizes
(10) is basically finding a schedule (S1, S2, · · · , Sk) that
maximizes the average detection (isolation) measure.

An illustration of the graph labeling for the scheduling
problem is given below.

Example
In Figure 2, instances of optimal labeling of graphs in
Figures 1(b) and 1(c) are shown for K = {1, 2, · · · , 5}
and σ = 2. Here |K| = 5 means that the given network
lifetime spans five time slots. Each node x has at most
two labels, which represents that a node can be active
in at most two time slots. The node labels indicate time
slots in which they remain active, thus, giving us optimal
schedules. Here, the optimal detection score is 0.75, which
could be obtained with the schedule S1 = S4 = {2}, S2 =
{4}, S3 = {1, 4}, S5 = {1}. Similarly, the optimal isolation
score is 0.633, which could be obtained with the schedule
S1 = {2, 4}, S2 = {1}, S3 = {4}, S4 = {1}, S5 = {2}.

1

2

4

e1

e2

e3

e5

3,5

1,4

2,3

1

2

4

e1,2

e1,3

e1,5

e2,3

e2,5

e3,5

2,4

1,5

1,3

(a) (b)

Fig. 2. Graph labelings for K = {1, 2, · · · , 5} and σ = 2. Node labels,
i.e., f(x) are shown in red.

5 SOLUTIONS TO THE GRAPH LABELING

In this section, first, we discuss the random assignment
of labels to nodes, and then provide two improved so-
lutions to the graph labeling problem. The first one is
a simple greedy heuristic, whereas, the second solution
utilizes game-theoretic concepts. The greedy heuristic runs
in polynomial time, and gives a near optimal solution for
many practical networks as illustrated in the next section.
However, in general, the approximation ratio of the algo-
rithm is not known. On the other hand, the game-theoretic
solution guarantees probabilistic convergence to a globally
optimal solution if the algorithm is run for a sufficiently
large number of iterations.

The simplest way to label a graph is to randomly assign
σ labels to each node from a set of k label. The scheduling
thus, obtained is the random scheduling. As expected, the
detection (localization) performance of random scheduling
is far from being optimal. However, it can be useful in appli-
cations where information regarding the network structure
is not available. In fact, we can compute the detection perfor-
mance D due to random scheduling for random geometric
and Erdős-Rényi random networks as follows:
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Proposition 5.1. Let G(V,E) be a random geometric graph
in which each node contains a monitoring device that
remains active in σ time slots that are randomly chosen
from a total of k time slots, which correspond to the
overall lifetime of the network. If each node in a graph
is also a target, then the average detection performance
of this random scheduling is

D(G) = 1− (k − σ)

k
exp

(−σλπr2
k

)
(11)

where r is the radius of the sensing footprint of node,
and λ is the number of nodes per unit area.

Proof – The average detection performance is equivalent
to finding the probability that an arbitrary node u is covered
in an arbitrary time slot i. We observe that

Pr
(
u is not covered in the ith slot

)
= Pr

(
u is not active
in the ith slot

) ∏
v∈N(u)

Pr
(
v is not active
in the ith slot

)
(12)

Here, probability that u is not active in the ith time
slot is simply (k − σ)/σ. The second term in (12) is the
probability that none of the nodes in the neighborhood of
node u is active in the ith time slot. The probability of having
j neighbors in N(u) in a random geometric graph is given

by Poisson distribution, i.e., (λπr2)
j
e−λπr

2

j! . Thus,

∏
v∈N(u)

Pr
(
v is not active in the ith slot

)

=
∞∑
j=0

(
λπr2

)j
e−λπr

2

j!

(
k − σ
k

)j (13)

Inserting in (12), we get

Pr
(
u is not covered in the ith slot

)
= e−λπr

2 (k − σ)

k

∞∑
j=0

1

j!

(
λπr2(k − σ)

k

)j
= e−λπr

2 (k − σ)

k
e
λπr2(k−σ)

k =

(
k − σ
k

)
e
−σλπr2

k

(14)

.
The desired result follows directly from above.

As above, it can be shown that in the case of Erdős-Rényi
random graphs with n nodes, denoted by Gn,p, in which
any two nodes are adjacent with some probability p, this
random scheduling scheme results in an average detection
performance given by

D(Gn,p) = 1− (k − σ)

k
exp

(−σ
k
np

)
(15)

Note that in (15), it is assumed that all the nodes have
monitoring devices and all the nodes need to be covered.

5.1 Greedy Heuristic
The graph labeling problem closely resembles the set cov-
ering problem, since we have to ‘cover’ the set of targets
using a set of monitoring nodes, each of which could cover
a given subset of the targets. Since the straightforward
greedy algorithm is known to be an efficient approximation
algorithm for the set covering problem, we can expect it to
perform well for the graph labeling problem also. Hence, we
formulate a simple greedy heuristic for the graph labeling
problem as follows (Algorithm 1): For a given labeling set
K and σ, iteratively select a combination of a label in K and
a source node in X that maximizes the sum of number of
distinct labels available in the neighborhoods of all target
nodes in Y . Note that in each iteration, only a source node
with less than σ labels could be selected.

Algorithm 1 Greedy Heuristic
1: Given: σ, K = {1, 2, · · · , k}
2: Initialization: X ′ ← X , f(x)← ∅, ∀x ∈ X
3: While |X ′| 6= ∅ do
4: (x, `)← argmax

x∈X ′,`∈K

∑
y∈Y

∣∣∣⋃x∈N(y) f(x)
∣∣∣

5: f(x)← f(x) ∪ {`}
6: If |f(x)| = σ do
7: X ′ ← X ′ \ {x}
8: End If
9: End While

If n is the total number of source nodes,m be the number
of target nodes, and k be the total number of labels in the
labeling set, then greedy heuristic could be executed in at
most O(σkn2m) time as there are O(σn) iterations and each
iteration could take O(knm) time. Greedy heuristic gives
a simple strategy to solve the labeling problem, however,
its approximation ratio remains unknown. Therefore, we
present a game-theoretic solution by posing the labeling
problem as a potential game.

5.2 Game Theoretic Solution to the Graph Labeling
Game theory concepts have been extensively employed to
solve locational optimization problems, such as maximizing
coverage on graphs (e.g., [7], [8]) and distributed control of
multiagent systems (e.g., [9], [10]). In a particular approach,
the idea is to determine a potential function that captures
the overall global objective. The players’ individual utility
functions are then appropriately aligned with the global
objective, such that the change in the utility of the player
as a result of unilateral change in strategy equals the change
in the global utility represented by the potential function.
The players’ strategies are then designed to ensure that local
actions lead to the global objective. It turns out that this
problem formulation and design can be realized using a
class of non-cooperative games known as potential games,
which are now extensively used for various distributed
control optimization problems.

A finite strategic game Γ(P,A,U) consists of a set of
players P = {1, 2, · · · , n}, action space A = A1 × A2 ×
· · · × An where Ax is a finite action set of the player x ∈ P ,
and a set of utility functions U = {U1,U2, · · · ,Un} where
Ux : A → R is a utility function of the player x. If a =
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(a1, · · · , ax, · · · , an) ∈ A denotes the joint action profile, we
let a−x denote the action of players other than the player x.
Using this notation, we can also represent a as (ax, a−x).

A game is a potential game if there exists a potential
function, φ : A → R such that the change in the utility of the
player x as a result of a unilateral deviation from an action
profile (ax, a−x) to (a′x, a−x) is equal to the corresponding
change in the potential function. More precisely, for every
player x, ax, a′x ∈ Ax, and a−x ∈ A−x, we get

Ux(ax, a−x) − Ux(a′x, a−x) = φ(ax, a−x) − φ(a′x, a−x)
(16)

In the case of potential games, there exist algorithms,
such as log-linear learning (LLL) [11], [12] and binary log-
linear learning (BLLL) [13] that could be utilized to drive
the players to action profiles that maximize the potential
function. These algorithms embody the notion of conver-
gence of such games to the most efficient Nash equilib-
rium, particularly in scenarios where utility functions are
designed to ensure that the action profiles that maximize
the global objective of the system coincide with the potential
function maximizers [11], [13]. More precisely, in potential
games, LLL and BLLL algorithms guarantee that only the
joint action profiles that maximize the potential function
are stochastically stable [13]. It roughly means that in the
long run, we are almost certain to get a solution that is in
the small neighborhood of an optimal solution as the noise
parameter in the algorithm goes to zero [14]. The LLL and
BLLL are in fact, nosiy best-response algorithms that induce a
Markov chain over the action space with a unique limiting
distribution that depends on the noise parameter. As the
noise parameter reduces to zero, the limiting distribution
has a large part of its mass over the set of potential maxi-
mizers (see e.g., [11], [13], [15] for details).

The basic idea behind these algorithms is that the noise
parameter allows selecting suboptimal actions occasionally
by the players. The probability of selecting a suboptimal
action is dependent of the pay-off difference between the
optimal and suboptimal cases. Thus, formulating the graph
labeling problem as a potential game would allow us to use
the above mentioned learning algorithms to find the most
efficient solutions to the graph labeling problem. Thus, our
objective now is to design a potential game corresponding
to the labeling problem on graphs, and incorporate learning
algorithms for the potential games to achieve the desired
labeling.

5.2.1 A Potential Game for the Graph Labeling

We design a potential game Γ(P,A,U) to obtain a labeling
of a graph that achieves the objective in (10), thus solving
the scheduling problem. In our game, the set of players is
the vertex set X in the vertex partition (V = X ∪ Y) of the
bipartite graph G, i.e., P = X . For each player x ∈ X , the
action set Ax is the set of all σ-subsets of the labeling set
K = {1, · · · , k}. We also need to have a potential function
that captures the global objective. For this, we define Sj as
the set of vertices with the label j, i.e.,

Sj = {x ∈ X : j ∈ f(x)} (17)

A potential function is then defined as

φ(a) ,

k∑
j=1

∣∣∣∣∣∣
⋃
x∈Sj

N(x)

∣∣∣∣∣∣ (18)

Note that φ(a) is simply the total number of nodes in Y
having a label j ∈ K in their neighborhoods, summed over
all the labels, which is equivalent to the

∑
y∈Y
|F (y)| in (10).

Thus, φ(a) indeed captures the global objective. Moreover,
we define the utility function of the player x as follows:

Ux(ax, a−x) ,

k∑
j=1

axj

∣∣∣∣∣∣N(x) \
⋃

z∈Sj\{x}

N(z)

∣∣∣∣∣∣ (19)

where,

axj =

{
1 if j ∈ ax(= f(x))
0 otherwise.

Note that if y ∈ N(x), then the value of ax to node
y can be computed by counting the number of labels in
ax that are not assigned to any node in N(y) \ {x}. The
utility of ax is simply the sum of these values for all
y ∈ N(x). For instance, in Figure 2(a), node 1 has labels
{3, 5}, which represents the action a1. Moreover, node 1 has
two neighbors, e1 and e2. Since node 1 is the only node in
N(e1) with labels 3 and 5, the value of a1 to node e1 is 2.
Similarly, for e2, node 1 is the only node in N(e2) with label
5, hence, the value of a1 to e2 is 1. The utility of a1 is simply
the sum of these values, that is U1(a1, a−1) = 2 + 1 = 3.

Next, we show that with the potential function as de-
fined in (18), and the utility function as in (19), the game
designed above is indeed a potential game.
Theorem 5.2. Γ(P,A,U) is a potential game if utilities are

defined as in (19).

Proof – The potential function, as defined in (18) can be
written as,

φ(ax, a−x) =

k∑
j=1

∣∣∣∣∣∣
⋃
x∈Sj

N(x)

∣∣∣∣∣∣
=

k∑
j=1

axj
∣∣∣∣∣∣N(x) \

⋃
z∈Sj\{x}

N(z)

∣∣∣∣∣∣ +

∣∣∣∣∣∣
⋃

z∈Sj\{x}

N(z)

∣∣∣∣∣∣


=

k∑
j=1

axj

∣∣∣∣∣∣N(x) \
⋃

z∈Sj\{x}

N(z)

∣∣∣∣∣∣ +

k∑
j=1

∣∣∣∣∣∣
⋃

z∈Sj\{x}

N(z)

∣∣∣∣∣∣
= U(ax, a−x) +

k∑
j=1

∣∣∣∣∣∣
⋃

z∈Sj\{x}

N(z)

∣∣∣∣∣∣
(20)

Similarly, for a = (a′x, a−x), we get

φ(a′x, a−x) = U(a′x, a−x) +

k∑
j=1

∣∣∣∣∣∣
⋃

z∈Sj\{x}

N(z)

∣∣∣∣∣∣ (21)

Subtracting (21) from (20) gives us the desired result, i.e.,

φ(ai, a−i)− φ(a′i, a−i) = U(ai, a−i)− U(ai, a−i)
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Using the results in [13], we deduce that in our setup
if players adhere to the binary log-linear learning (stated
below), then the action profiles that are stochastically stable
are the ones that maximize the potential function (18). In
other words, in the long run, we achieve a graph labeling
that maximizes the objective in (10) with arbitrarily high
probability.

Algorithm 2 Binary Log-Linear Learning [13]
1: Initialization: Pick a small ε ∈ R+, an a ∈ A, and total

number of iterations.
2: While i ≤ number of iterations do
3: Pick a random node x ∈ X , and a random a′x ∈ Ax.
4: Compute Pε = ε−Ux(a′x,a−x)

ε−Ux(a′x,a−x) + ε−Ux(ax,a−x) .
5: Set ax ← a′x with probability Pε.
6: i← i+ 1
7: End While

Note that initially each node is assigned a set of σ labels
randomly. Afterwards, in each iteration, a node is selected
at random, and a set of σ labels that improve the overall
labeling to attain the objective in (10), is assigned to the
node with a certain probability (as in line 4 above).

6 SIMULTANEOUS PLACEMENT AND SCHEDULING
OF MONITORING DEVICES

So far, we have considered optimal scheduling of resource
bounded monitoring devices, assuming that their place-
ment is fixed, i.e., locations at which monitoring devices
are deployed are given. If S is the set of all such nodes
at which monitoring devices could be deployed, then the
placement problem is to select a subset X ⊆ S with the
given cardinality such that the number of covered targets
(target-pairs in the case of isolation) is maximized. Typically,
to maximize the coverage of targets for a given network
lifetime, the placement problem is first solved, followed by
the computation of efficient schedules.

However, for a given network lifetime, and a fixed
number of resource bounded monitoring devices, simulta-
neously optimizing their placement and scheduling could
further improve the average detection (isolation) measure.
For instance, consider the network in Fig. 3, in which three
monitoring devices with λ = 1 and σ = 2 are deployed
to cover the maximum number of nodes for k = 4. Fixing
the placement of devices at nodes {3, 4, 5}, optimal sched-
ule (for instance, S1 = S2 = {4}, S3 = S4 = {3, 5})
gives D = 0.642, whereas the maximum possible D un-
der the conditions is 0.714, which could be obtained by
placing the devices at nodes {3, 4, 6} and with a schedule
S1 = S3 = {3, 6}, S2 = S4 = {4}.

The BLLL based algorithm to schedule a set of mon-
itoring devices with fixed locations, presented in Section
5.2, can be modified to simultaneously optimize placement
as well as scheduling of such devices to maximize the
average detection (isolation). This modification is presented
as Algorithm 3. Fixing the number of monitoring devices
|X |, the objective is to select X ⊆ S , and assign at most σ
labels to each node from a labeling set K = {1, 2, · · · , k} so that

1 7

2

3

4 6

5

S1, S2

S3, S4 S3, S4

1 7

2

3

4 6

5

S2, S4

S1, S3

S1, S3

(a) (b)

Fig. 3. (a) Optimal schedule for a given placement. (b) Optimal place-
ment and schedule of three monitoring devices with λ = 1, σ = 2 for
k = 4.

the average detection measure D (or the isolation measure I) is
maximized. The labeling of nodes selected in X will then give
the schedule. As previous, we can formulate this problem as
a potential game, and can thus, solve the problem using the
BLLL algorithm.

6.1 A Potential Game Formulation
In this case, players P are the monitoring devices, for which
we need to find the locations – the nodes at which they are
deployed; as well as schedules – time slots in which they
become active. The action of each player p, denoted by ap
is the selection of (xp, f(xp)), where xp ∈ S and f(xp) ∈
L. Note that L is the set of all subsets of the labeling set
K containing σ labels (as defined in (8)). Moreover, as in
(17), let Sj to be the subset of nodes (containing monitoring
devices) with label j, that is

Sj = {xp ∈ S : j ∈ f(xp)}. (22)

Next, similar to (19), we define the utility function of the
player p as

Up(ap, a−p) =

k∑
j=1

apj

∣∣∣∣∣∣N(xp) \
⋃

z∈Sj\{xp}

N(z)

∣∣∣∣∣∣ , (23)

where,

apj =

{
1 if j ∈ f(xp)
0 otherwise.

If for each target node y ∈ Y , we define F (y) (similar to
(9)) as F (y) =

∑
xp∈N(y)

f(xp), then our global objective is to

select a subset X ⊆ S and assign σ labels to each xp ∈ X
such that

Objective: max
X ,f

∑
y∈Y
|F (y)| (24)

A potential function that captures the above objective is

φ(a) =

k∑
j=1

∣∣∣∣∣∣
⋃

xp∈Sj

N(xp)

∣∣∣∣∣∣ . (25)

Here a represents the actions of all players, that is a =
(a1, a2, · · · , a|X |).

Using exactly the same argument as in the proof of
Theorem 5.2, we can state the following.
Proposition 6.1. The game described in subsection 6.1 is a

potential game with the utility and potential functions
defined as in (23) and (25) respectively.
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Algorithm 3 Simultaneous Placement and Scheduling
1: Initialization: Pick a small ε ∈ R+ and the number of

iterations. Select randomly a subset of nodes X ⊆ S ,
and assign labels to nodes in X , i.e, select a ∈ A.

2: While i ≤ number of iterations do
3: Randomly select a node x ∈ X .
4: Randomly select a node s ∈ (S \ X ) ∪ {x}, and
as ∈ As.

5: Compute Pε = ε−Us(as,a−x)

ε−Us(as,a−x) + ε−Ux(ax,a−x) .
6: With probability Pε, set X ← (X \ {x}) ∪ {s}, and

select as for node s.
7: i← i+ 1
8: End While

Hence, using a binary log-linear learning, we get a solu-
tion that, as the number of iteration goes to infinity, selects
nodes at which monitoring devices can be placed, as well as
their schedules that achieve the maximum average detection
performance. We note that the placement and scheduling
of monitoring devices obtained by first optimally solving
the placement problem and then optimally solving the
scheduling to maximize the detection performance D, is
also a solution of the problem of simultaneously placing
and scheduling monitoring devices to maximize D. As a
result an optimal solution of the simultaneous placement
and scheduling problem gives a detection performance that
is at least as good as the detection performance obtained by
separately solving the optimal placement and the optimal
scheduling problems. Simulation results for the above algo-
rithm are illustrated in Section 8.3. Using various networks,
it is shown that simultaneously selecting locations and
schedules of monitoring devices using Algorithm 3, gives
improved average detection compared to the one obtained
by solving the placement and scheduling separately.

7 SCHEDULING TO MAXIMIZE NETWORK LIFETIME
WHILE ENSURING COMPLETE COVERAGE

So far we have studied the problem of finding schedules
maximizing the detection performance D given the battery
and overall network lifetime σ and k respectively. A relevant
problem of interest is to compute schedules of monitoring
devices that maximize the network lifetime k for a fixed
σ and D = 1, that is schedules ensuring complete coverage.
Considering targets to be the set of nodes (i.e., Y = V)
and ranges of monitoring devices to be λ = 1, the optimal
scheduling problem is very much related to finding distinct
dominating sets in a graph, where dominating sets are de-
fined as following.

Definition A dominating set is a subset of vertices in a
graph Si ⊆ V , such that for every u ∈ V , either u ∈ Si,
or there exists some v ∈ Si such that v ∈ N(u).

Note that the network is guaranteed to be completely
covered whenever the set of nodes with active monitoring
devices form a dominating set. Thus, the objective here
is to compute distinct dominating sets in a given graph.
Moreover, since a monitoring device can be active in at most
σ time slots, it can be included in at most σ dominating

sets. As a result, the scheduling problem to maximize net-
work lifetime given σ and complete coverage constraint is
equivalent to computing the maximum number of distinct
dominating sets in a network graph under the condition
that a node can be included in at most σ such dominating
sets. Owing to a wide variety of applications, finding dis-
tinct dominating sets under various constraints has been a
problem of great interest (e.g., [16], [17], [18]). There are two
approaches to obtaining distinct dominating sets: disjoint,
and non-disjoint dominating sets based approaches.

In the disjoint dominating sets based approach, the objec-
tive is to partition the vertex set V into a maximum number
of (disjoint) subsets such that each subset in the partition
is a dominating set. Such a partition is called the maximum
domatic partition (MDP), and the size of the partition, that is
the number of disjoint dominating sets obtained, is referred
to as the domatic number, γ. For a given σ, nodes in each
dominating set can remain active for σ time slots, thus,
achieving a network lifetime of k time slots given by,

k = σγ (26)

The MDP problem is known to be NP-hard [19]. Vari-
ous sensor scheduling schemes based on MDP have been
proposed in literature (e.g., [18], [20], [21]).

Is it possible to achieve a network lifetime better than
σγ? The answer is yes, that is by using a non-disjoint dom-
inating sets based approach [2], [22]. In this approach, the
goal is to obtain the maximum number of subsets Si ⊂ V
such that each Si is a dominating set and each v ∈ V is
included in at most σ dominating sets. Unlike MDP based
approach, dominating sets obtained here do not have to be
disjoint. The problem of finding the maximum number of
dominating sets with a restriction on the number of times a
node can be included in a dominating set is related to the
notion of (k, σ)-configurations [23], [24] defined below.

Definition ((k, σ)-Configurations in Graphs) Let σ, k be two
positive integers, and K = {1, · · · , k} be the set of labels,
then (k, σ)-configuration of a graph is the assignment of σ
distinct labels from the set K to each node in the graph such
that for every i ∈ K and every node v, the label i is assigned
to v or one of its neighbors.

Note that in a (k, σ)-configuration, the set of nodes corre-
sponding to a particular label in K constitutes a dominating
set. For a given σ, we denote the maximum value of k for
which (k, σ)-configuration exists by k∗. Consequently, the
scheduling problem to maximize the network lifetime while
ensuring complete coverage is equivalent to computing
(k∗, σ)-configuration of the network graph. From a MDP
of a graph, it is trivial to obtain a (σγ, σ)-configuration, that
is by assigning σ unique labels to each dominating set in
MDP, we deduce that k∗ ≥ σγ. In other words, non-disjoint
dominating sets based approach is always at least as good
as the disjoint dominating sets based approach. In fact, for
many graphs k∗ > σγ, for instance, many cubic graphs3 have
γ = 2, however, all cubic graph have k∗ ≥ 5

2σ for a given
σ [23]. Recently, in [24] we have extended this result to a
bigger class of graphs as stated in Theorem 7.1. Here, K1,6

3. graphs in which each vertex has a degree three.
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is a star graph with one central node of degree six, and six

end nodes each with a degree one (K1,6 = ).
Theorem 7.1. [24] Let G be a graph such that

– G has a minimum degree at least two,
– no subgraph of G is isomorphic to K1,6, and
– G 6= { , , , , , , , };

then G has an (k, σ)-configuration with k = b 5σ2 c.
The above result is particularly useful as proximity

graphs (e.g., random geometric graphs), which are often
used to model the limited range communication in networks
such as wireless sensor networks, are always K1,6-free. As
a result, if we consider proximity networks modeled by the
graphs in Theorem 7.1, and consider B as the time duration
for which each monitoring device (placed at each node) can
remain active, then it is always possible to compute sched-
ules through which complete coverage of targets (nodes) is
ensured for at least b 5B2 c time duration.

8 NUMERICAL RESULTS

In this section, we present numerical results for the greedy
and BLLL based algorithms on urban water distribution
networks and random geometric networks.

8.1 Scheduling Monitoring Devices in Water Distribu-
tion Networks
Water distribution networks can be modeled as undirected
graphs in which edges represent the pipes and nodes rep-
resent the junctions (e.g., [25]). To detect pipe bursts and
leakages, pressure sensors are deployed at junctions, which
could sense the pressure transient generated as a result of
pipe burst within a certain distance (range) from the sensor.
The distance threshold based model has been used in water
networks in the context of sensor placement problems, e.g.,
[26], [27]. The pressure sensors are battery operated devices
with limited battery lifetime. Thus, to operate these sensors
for an extended period of time, they need to be scheduled.
Here, we simulate scheduling algorithms, including simple
greedy and BLLL based algorithm for the efficient schedul-
ing of monitoring devices, which are pressure sensors in this
case, to obtain high values of D in three water distribution
networks of various sizes. The details of these networks,
referred to as the Water Network 1, Water Network 2, and
Water Network 3, are as follows:

Water Network 1 [28], [29], often used as a benchmark
network in the context of sensor placement problems for
water quality, has 126 nodes, 168 pipes, one reservoir, one
pump, and two storage tanks. Water network 2 [30] is a
grid system in Kentucky with 366 pipes, 270 nodes, three
tanks, and five pumps. Water network 3 [30] is primarily a
loop system in Kentucky with four tanks, two pumps, 1156
pipes, and 962 nodes. The layouts of all three networks are
illustrated in Figure 4. For all the networks, we consider that
the sensors are deployed at the junctions as source nodes X
(monitoring devices), and the set of pipes, which are edges
in the corresponding network graph, as targets Y . Moreover,
for each sensing device, we assume σ = 2, and compute D
for a network lifetime, given by k time slots, using greedy

and BLLL algorithms. For each BLLL instance, we perform
25,000 iterations by selecting ε to be 0.015. The plots of D
as a function of k for various ranges of sensing devices (as
defined in Section 2) are given in Figure 5.

We can see that both greedy and BLLL gives approxi-
mately same results. However, BLLL has an advantage over
the greedy algorithm as it allows to simulatneously solve
the placement as well as scheduling problem (as discussed
in Section 6), which gives improved D compared to indi-
vidually solving the placement problem and the scheduling
problem. Moreover, if BLLL is run for sufficiently large
number of iterations, the algorithm achieves an optimal
solution with a very high probability. Similar plots can be
obtained for the scheduling of monitoring devices to maxi-
mize the average isolation measure I by first obtaining the
appropriate network representation as outlined in Section
4.1. In Figures 6 and 7, we illustrate the performance of
BLLL algorithm for all three water networks by plotting D
as a function of iterations. In Figure 6, we consider various
values of k and observe that after a sufficient number of
iterations, the algorithm maintains optimal values with high
probability. In Figure 7, we see a similar behavior for various
values of σ.

8.2 Scheduling Monitoring Devices in Random Geo-
metric Networks

Random geometric networks are a form of spatial networks
in which nodes are deployed uniformly at random in a cer-
tain area. An edge exists between two nodes if the Euclidean
distance between them is at most r, which is often referred
to as the radius of the sensing footprint. Owing to a wide
variety of applications in various domains, these networks
have been extensively studied, such as in the modeling of
wireless sensor networks. For our simulations, we consider
a network with 100 nodes, deployed uniformly at random
over an area of 10 × 10 unit2, and r = 2. The set of targets
here is the set of all nodes. Moreover, a certain fraction
of nodes (either 20% or 50%) are selected at random as
source nodes. A monitoring device has a battery lifetime
of at most σ = 2 time slots, and can monitor targets
that are at a Euclidean distance of at most 2 units from
it,4 that is the radius of sensing footprint is 2 units. In
Figure 5, D as functions of k are illustrated using greedy
and BLLL algorithms. Each point on the plots is an average
of fifty randomly generated graph instances. In Figure 6, the
convergence of BLLL algorithm is shown for some instances
of random geometric graphs with 100 nodes, out of which
20 randomly selected nodes contain monitoring devices.

8.3 Simultaneous Placement and Scheduling of Moni-
toring Devices

We illustrate the Algorithm 3 for the simultaneous place-
ment and scheduling of monitoring devices for all three
water networks and the random geometric graphs here. For
the water networks, we consider that monitoring devices
can be placed at twenty percent of the nodes, which need

4. In terms of the (graph) distances as defined in Section 2, the range
of each monitoring device is λ = 1, as the Euclidean distance of at most
2 between two nodes u and v implies d(u, v) = 1.
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(a) Water network 1 (b) Water network 2 (c) Water network 3

Fig. 4. Layouts of three water networks considered.
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Fig. 5. Plots of D as a function of network lifetime k for scheduling on water networks and random geometric networks, assuming that each
monitoring device has a battery lifetime of σ = 2 time slots.
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Fig. 7. Plots of D as a function of (BLLL) iterations with k = 20 and various σ.

to be selected. Each monitoring device has a range λ, and
we separately consider two cases of λ = 2 and λ = 3. The
set of pipes (or edges in the corresponding network graph)
are the targets that need to be covered by these devices. We
simulate two scenarios; in the first case we use Algorithm
3 to simultaneously select the nodes and schedules for the
monitoring devices; in the second scenario, we first solve
the placement problem by selecting nodes X ⊂ V that
maximize the number of edges that are at most distance
λ from some node in X , and then solving the scheduling
problem using Algorithm 2. We note here that the placement
problems, in this context, are typically solved using some
variant of the minimum set cover problem, or the maximum
coverage problem in case the number of monitoring devices

is fixed (e.g., [4], [5], [31]). Since the number of devices is
fixed here, and the targets to be covered are edges, we use
the maximum coverage problem to place (a given number
of) monitoring devices at nodes that maximize the number
of edges that are at most λ distance from at least one of the
selected nodes. Since maximum coverage problem is NP-
hard, we solve it using a greedy heuristic, which gives the
best approximation ratio, (1− 1/e) [32].

The results are illustrated in Figure 8. It can be seen
that Algorithm 3 (simultaneously solving placement and
scheduling) always gives higher average detection D. For
the random geometric graphs, we simulate instances of 500
nodes deployed at random in an area of 500 × 500 unit2,
out of which 100 could contain monitoring devices capable
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of covering nodes within a Euclidean distance of 30 units
in one case, and 40 units in the other. The targets here
are nodes, and the objective is to maximize the average
detection for a given network lifetime. As with the wa-
ter networks, average detection is improved if placement
and scheduling problems are solved simultaneously using
Algorithm 3 as compared to optimizing placement and
scheduling separately. In all cases, the battery lifetime of
each monitoring device is assumed to be σ = 2 time slots.

9 RELATED WORK

Mechanisms for detecting link and node failures based
on system dynamics have been studied extensively in the
literature. For example, Dhal et al. consider the detection
of link failures in a network synchronization process from
noisy measurements at a single network component [33].
As another example, Rahimian and Preciado propose a
methodology to detect and isolate link failures in a weighted
and directed network of identical multi-input multi-output
LTI systems, based on the output responses of a subset
of nodes [34]. However, since we are interested in the
placement and scheduling of these devices instead of the
specific detection mechanisms, our model abstracts away
the specific mechanisms. In other words, our model assumes
that monitoring devices are available to us, which can detect
link and node failures based on some detection mechanism,
such as the ones presented in the above papers.

One of the earliest efforts to conserve battery power
through scheduling sensor devices is the work of Slijepcevic
and Potkonjak [35]. In [35], the authors consider the problem
of maximizing lifetime while preserving complete coverage
of an area, which they formulate as the Set K-Cover Prob-
lem. To solve this problem, they introduce a heuristic for
finding mutually exclusive sets of sensors such that each set
completely covers the monitored area. In a follow-up work,
Abrams et al. introduce three approximation algorithms for
a variation of the Set K-Cover Problem [36]. Later, Desh-
pande et al. study several generalizations of the Set K-Cover
Problem, and develop an approximation algorithm based on
a reduction to Max K-Cut [37].

Besides the Set K-Cover Problem, researchers have stud-
ied various other formulations of the scheduling problem.
Moscibroda and Wattenhofer consider disjoint dominating-
set based clustering in sensor networks [20]. The authors
study the problem of maximizing the lifetime of a sensor
network, and provide approximation algorithms for multi-
ple variations of the problem. Cardei et al. study schedules
that consist of non-disjoint sets of sensors and continuously
monitor all targets [2]. They model the solution as the maxi-
mum set covers problem, and propose two heuristics based
on linear programming and a greedy approach. Koushanfar
et al. consider the problem of scheduling sensor devices
such that the values of sleeping devices can always be recov-
ered from the measurements of active devices within a given
error bound [38]. The authors first introduce a polynomial-
time isotonic regression for recovering the values of sleeping
devices, and building on this regression, they then formulate
the scheduling problem as domatic partitioning problem,
which they solve using an ILP solver.

Our approach is most related to the work of Wang et al.,
who study the trade-off between maximizing lifetime and
minimizing “coverage breach,” that is, minimizing the total
amount of time that each target is not covered by any of
the sensors [22], [39]. The authors propose organizing the
sensors into non-disjoint sets, and introduce an algorithm
based on linear programming as well as a greedy heuristic.
In a follow-up work, Rossi et al. propose an exact approach
based on a column-generation algorithm for solving the
scheduling problem, and they also derive a heuristic from
their approach [40]. However, graph-theoretic formulation
proposed in this paper allows us to directly exploit the
network structure to obtain optimal schedule for a given
network lifetime maximizing the detection or identification
of targets. Moreover, game theory based solution could
be used to simultaneously solve the placement problem
and the scheduling problem, which gives improved overall
performance compared to the case in which the placement
and scheduling problems are solved separately.

A few research efforts have considered simultaneous
placement and scheduling. Krause et al. study simultaneous
placement and scheduling of sensor devices for monitoring
spatial phenomena, such as road traffic [41]. The authors
assume that for any set of active sensors, the resulting
“sensing quality” is given by a submodular function, and
they aim to maximize the worst-case sensing quality. In the
case of network monitoring, compared to this approach,
our approach has the advantage of considering and tak-
ing advantage of the network topology. Türkoğulları et al.
consider the problem of maximizing lifetime through sink
placement, scheduling, and determining sensor-to-sink flow
paths under energy, coverage, and budget constraints [42].
To solve this problem, they propose a mixed-integer linear
programming model as well as a heuristic, which is more
scalable but lacks performance guarantees. However, these
approaches are constrained in the sense that a solution
must monitor every target with a given quality in every
single time step. Our approach, on the other hand, has
more flexible constraints, which can result in much longer
lifetime.

A number of studies have focused on the placement of
sensor nodes, without considering sleep scheduling. You-
nis and Akkaya have surveyed earlier literature on node
placement, including the placement of sensor nodes [43].
Krause et al. consider the problem of deploying sensors
for detecting malicious contaminations in large-scale water-
distribution networks [5]. Based on the submodularity of
realistic objective functions, the authors design scalable
placement algorithms with provable performance guaran-
tees. Furthermore, they show that their method can be
extended to multicriteria optimization and adversarial ob-
jectives. Hart and Murray provide a survey of sensor place-
ment strategies for water-distribution networks [44]. Finally,
besides scheduling, researchers have also studied other
similar approaches for conserving battery power. For exam-
ple, Zhao et al. consider selective collaboration of sensors
in order to minimize communication, which increases the
longevity of networks of battery-powered sensors [45].
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Fig. 8. Plots of D as a function of k to compare the performance of simultaneously optimizing placement and schedules using Algorithm 3 with the
case of individually optimizing the placement problem and the scheduling problem.

10 CONCLUSIONS

We studied the problem of scheduling resource bounded
monitoring devices in networks to maximize the detection
and isolation of failure events for a given network lifetime.
We showed that the scheduling problem is equivalent to a
graph labeling problem, which allowed direct exploitation
of the network structure to obtain optimal schedules. To
solve the graph labeling problem, we presented a game-
theoretic solution. We also showed that the detection (iso-
lation) performance of monitoring devices deployed within
the network was better when the placement and schedul-
ing problems for these devices were solved simultaneously
compared to the case in which the optimal placement of
these devices was solved first followed by the computation
of optimal schedules. Our graph labeling formulation and
game-theoretic solution allowed us to simultaneously solve
placement and scheduling problems. We demonstrated re-
sults for various networks including water distribution and
random networks. The graph labeling problem presented
here could be useful in solving resource allocation problems
in other domains such as multi-agent and multi-robot sys-
tems. Moreover, the proposed approach could be effective in
characterizing and comparing network topologies in terms
of the coverage performance, especially when resource-
constraint monitoring devices are utilized.
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